Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 162(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34402888

RESUMEN

Recent studies have demonstrated that the formation of an implantation chamber composed of a uterine crypt, an implantation-competent blastocyst, and uterine glands is a critical step in blastocyst implantation in mice. Leukemia inhibitory factor (LIF) activates signal transducer and activator of transcription 3 (STAT3) precursors via uterine LIF receptors (LIFRs), allowing successful blastocyst implantation. Our recent study revealed that the role of epithelial STAT3 is different from that of stromal STAT3. However, both are essential for blastocyst attachment, suggesting the different roles of epithelial and stromal LIFR in blastocyst implantation. However, how epithelial and stromal LIFR regulate the blastocyst implantation process remains unclear. To investigate the roles of LIFR in the uterine epithelium and stroma, we generated Lifr-floxed/lactoferrin (Ltf)-iCre (Lifr eKO) and Lifr-floxed/antimüllerian hormone receptor type 2 (Amhr2)-Cre (Lifr sKO) mice with deleted epithelial and stromal LIFR, respectively. Surprisingly, fertility and blastocyst implantation in the Lifr sKO mice were normal despite stromal STAT3 inactivation. In contrast, blastocyst attachment failed, and no implantation chambers were formed in the Lifr eKO mice with epithelial inactivation of STAT3. In addition, normal responsiveness to ovarian hormones was observed in the peri-implantation uteri of the Lifr eKO mice. These results indicate that the epithelial LIFR-STAT3 pathway initiates the formation of implantation chambers, leading to complete blastocyst attachment, and that stromal STAT3 regulates blastocyst attachment without stromal LIFR control. Thus, uterine epithelial LIFR is critical to implantation chamber formation and blastocyst attachment.


Asunto(s)
Implantación del Embrión/genética , Epitelio/metabolismo , Receptores OSM-LIF/fisiología , Útero/metabolismo , Animales , Blastocisto/fisiología , Decidua/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Receptores OSM-LIF/genética , Receptores OSM-LIF/metabolismo , Útero/citología
2.
Adv Exp Med Biol ; 900: 45-59, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27003396

RESUMEN

Cytokines are an incredibly diverse group of secreted proteins with equally diverse functions. The actions of cytokines are mediated by the unique and sometimes overlapping receptors to which the soluble ligands bind. Classified within the interleukin-6 family of cytokines are leukemia inhibitory factor (LIF), oncostatin-M (OSM), cardiotrophin-1 (CT-1) and ciliary neurotrophic factor (CNTF). These cytokines all bind to the leukemia inhibitory factor receptor (LIFR) and gp130, and in some cases an additional receptor subunit, leading to activation of downstream kinases and transcriptional activators. LIFR is expressed on a broad range of cell types and can generate pleiotropic effects. In the context of skeletal muscle physiology, these cytokines have been shown to exert effects on motor neurons, inflammatory and muscle cells. From isolated cells through to whole organisms, manipulations of LIFR signaling cytokines have a wide range of outcomes influencing muscle cell growth, myogenic differentiation, response to exercise, metabolism, neural innervation and recruitment of inflammatory cells to sites of muscle injury. This article will discuss the shared and distinct processes that LIFR cytokines regulate in a variety of experimental models with the common theme of skeletal muscle physiology.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/fisiología , Receptores OSM-LIF/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Distrofias Musculares/tratamiento farmacológico
3.
Clin Exp Pharmacol Physiol ; 38(8): 501-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21585421

RESUMEN

1. Leukaemia inhibitory factor (LIF) has been shown to have an important role during muscle regeneration. The regenerative capacity of muscles after contusion injury in LIF-knockout mice is impaired compared with that of wild-type mice. 2. To clarify whether LIF modulates muscle regeneration by regulating myogenic precursor cell activity, we studied LIF expression and myogenic precursor cell activity in gastrocnemius muscles from Wistar rats at various times after contusion injury using immunohistochemistry and the direct effect of LIF on a rat myoblast cell line (L6). 3. After contusion injury, transient upregulation of the mRNA expression of LIF, LIF receptors and signal transducer and activator of transcription (STAT) 3, downstream of LIF and involved in enhanced cell proliferation, was observed. A marked increase in LIF protein in the cytosol of damaged myofibres was strongly correlated with a significant increase in the number of myogenic precursor cells (MyoD-positive cells) by 12 h after contusion. In addition, coexpression of LIF and MyoD protein in control and injured muscles after contusion injury from 3 h to 7 days was evident. 4. Treatment of L6 cells with LIF (1 ng/mL) in serum-free medium enhanced proliferation (bromodeoxyuridine incorporation) by 24 h. This was accompanied by increased expression of c-Myc protein within 12 h and was abolished by short interference RNA against c-Myc mRNA. 5. Together, the results of the present study suggest that LIF acts via paracrine and autocrine actions to regulate myogenic precursor cell activity during muscle regeneration after contusion injury and that the proliferative effect of LIF on L6 cells occurs via c-Myc signalling.


Asunto(s)
Genes myc/fisiología , Factor Inhibidor de Leucemia/fisiología , Músculo Esquelético/fisiología , Factor de Transcripción STAT3/fisiología , Animales , Línea Celular , Proliferación Celular , Grupos Control , Contusiones/metabolismo , Masculino , Ratones , Músculo Esquelético/lesiones , Mioblastos/metabolismo , Mioblastos/fisiología , ARN Interferente Pequeño/análisis , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Receptores OSM-LIF/fisiología , Transducción de Señal/fisiología , Regulación hacia Arriba
4.
J Clin Invest ; 120(2): 582-92, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20051625

RESUMEN

Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr-/- osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer.


Asunto(s)
Desarrollo Óseo/fisiología , Resorción Ósea/patología , Oncostatina M/farmacología , Receptores OSM-LIF/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Desarrollo Óseo/efectos de los fármacos , Proteínas Morfogenéticas Óseas/genética , Huesos/anatomía & histología , Marcadores Genéticos/genética , Glicoproteínas , Péptidos y Proteínas de Señalización Intercelular , Luciferasas/metabolismo , Ratones , Oncostatina M/deficiencia , Oncostatina M/genética , Oncostatina M/fisiología , Tamaño de los Órganos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteocitos/efectos de los fármacos , Osteocitos/fisiología , ARN Mensajero/genética , Receptores de Oncostatina M/genética , Receptores de Oncostatina M/fisiología , Transducción de Señal
5.
Eur Cytokine Netw ; 20(2): 51-62, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19541590

RESUMEN

The aim of this article is to recapitulate the key features of leukaemia inhibitory factor cytokine (LIF), to review its numerous physiological effects and to comment on the most recent data. We will also present results of transcriptome analyses, which have highlighted different categories of LIF targets, identified in murine embryonic stem (ES) cells and early derivatives. We hope to stimulate new research fields on this puzzling cytokine, which, forty years after its discovery, has still not disclosed all its secrets.


Asunto(s)
Factor Inhibidor de Leucemia/fisiología , Animales , Diferenciación Celular/fisiología , Implantación del Embrión/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Exostosis Múltiple Hereditaria/genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Infertilidad Femenina/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/deficiencia , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Ratones , Osteocondrodisplasias/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Embarazo , Receptores OSM-LIF/clasificación , Receptores OSM-LIF/fisiología , Factor de Transcripción STAT3/fisiología , Transducción de Señal , Especificidad de la Especie , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/fisiología
6.
Cloning Stem Cells ; 10(4): 523-34, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18956948

RESUMEN

Leukemia inhibitory factor (LIF) is a multifunctional cytokine with an important role during early embryonic development, implantation, and as an inhibitor of murine embryonic stem cell differentiation. It exerts its effects by binding to the leukemia inhibitory factor receptor, a heterodimer of two transmembrane proteins, the specific leukemia inhibitory factor receptor subunit, and the common gp130. A partial cDNA clone coding for the membrane-bound form of the specific rabbit leukemia inhibitory factor receptor was isolated from the genital ridge of 13.5 days postcoitum fetus. Fluorescent in situ hybridization analysis revealed that the rabbit leukemia inhibitory factor receptor gene is located on chromosome OCU11p11.1. It has been shown that the membrane-bound rabbit leukemia inhibitory factor receptor mRNA is expressed during embryo implantation but not at earlier developmental stages. Rabbit embryonic stem cell-like line establishment is improved in the presence of LIF, and those cells express both leukemia inhibitory factor and its receptor. The withdrawal of leukemia inhibitory factor results the differentiation of embryonic stem cell-like cells to beating myocardial-like cells. Our findings suggest that the self-renewal mechanism is similar in mouse and rabbit embryonic stem cells, and expands our knowledge on the role of the LIF-LIFR signal pathway in early rabbit embryogenesis and rabbit embryonic stem cell establishment.


Asunto(s)
Desarrollo Embrionario/genética , Células Madre Embrionarias/fisiología , Receptores OSM-LIF/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Técnicas de Cultivo de Célula , Cromosomas/genética , Clonación Molecular , Células Madre Embrionarias/metabolismo , Humanos , Factor Inhibidor de Leucemia/fisiología , Ratones , Datos de Secuencia Molecular , Conejos , Receptores OSM-LIF/genética , Alineación de Secuencia , Transducción de Señal
7.
J Neurochem ; 106(4): 1941-51, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18624908

RESUMEN

The cytokines that signal through the leukemia inhibitory factor (LIF) receptor are members of the neuropoietic cytokine family and have varied and numerous roles in the nervous system. In this report, we have determined the effects of growth factor stimulation on LIF receptor (LIFR) expression and signal transduction in the human neuroblastoma cell line NBFL. We show here that stimulation of NBFL cells with either epidermal growth factor or fibroblast growth factor decreases the level of LIFR in an extracellular signal-regulated kinase (Erk)1/2-dependent manner and that this down-regulation is due to an increase in the apparent rate of lysosomal LIFR degradation. Growth factor-induced decreases in LIFR level inhibit both LIF-stimulated phosphorylation of signal transducers and activators of transcription 3 and LIFR-mediated gene induction. We also show that Ser1044 of LIFR, which we have previously shown to be phosphorylated by Erk1/2, is required for the inhibitory effects of growth factors. Neurons are exposed to varying combinations and concentrations of growth factors and cytokines that influence their growth, development, differentiation, and repair in vivo. These findings demonstrate that LIFR expression and signaling in neuroblastoma cells can be regulated by growth factors that are potent activators of the mitogen-activated protein kinase pathway, and thus illustrate a fundamental mechanism that underlies crosstalk between receptor tyrosine kinase and neuropoietic cytokine signaling pathways.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Neuroblastoma/metabolismo , Receptores OSM-LIF/biosíntesis , Receptores OSM-LIF/genética , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratas , Receptor Cross-Talk/fisiología , Receptores OSM-LIF/metabolismo , Receptores OSM-LIF/fisiología , Transducción de Señal/efectos de los fármacos , Activación Transcripcional
8.
Mol Cancer Res ; 6(3): 458-67, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18337452

RESUMEN

How diverse stimuli control hemopoietic lineage development is unknown. An early event during induction of macrophage differentiation in the myeloblastic leukemia M1 cell line by different stimuli, such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), is expression of the colony-stimulating factor-1 receptor (CSF-1R). We report that expression of active CSF-1R in M1 cells accelerated their subsequent terminal differentiation into macrophages in response to LIF and IL-6 when compared with cells lacking the CSF-1R or expressing the receptor with compromised kinase activity; however, there was no requirement for signaling through the CSF-1R, for example, via endogenous CSF-1, during the actual LIF-induced and IL-6-induced differentiation stage. Differences were noted in the signaling pathways downstream of the LIF receptor depending on the presence of the CSF-1R. Both LIF and IL-6 gave an additive response with CSF-1, consistent with LIF and IL-6 acting via a different signaling pathway (signal transducer and activator of transcription 3 dependent) than CSF-1 (extracellular signal-regulated kinase dependent). Based at least on this cell model, we propose that terminal macrophage differentiation involves a critical priming or deterministic phase in which signaling by the CSF-1R prepares a precursor population for subsequent rapid terminal macrophage differentiation by diverse stimuli. We also propose that expression and activation of the CSF-1R explain much prior literature on macrophage lineage commitment in M1 leukemic cells and may be important in controlling the progression of certain myeloid leukemias.


Asunto(s)
Receptor de Factor Estimulante de Colonias de Macrófagos/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Interleucina-6/farmacología , Factor Inhibidor de Leucemia/farmacología , Leucemia Mieloide Aguda/patología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Receptores OSM-LIF/efectos de los fármacos , Receptores OSM-LIF/fisiología
9.
J Biol Chem ; 281(48): 36673-82, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17028186

RESUMEN

Activation of the signaling transduction pathways mediated by oncostatin M (OSM) requires the binding of the cytokine to either type I OSM receptor (leukemia inhibitory factor receptor/gp130) or to type II OSM receptor (OSMR/gp130). In the present work we have developed an enzyme-linked immunosorbent assay detecting a soluble form of OSMR (sOSMR) secreted by glioblastoma, hepatoma, and melanoma tumor cell lines. sOSMR was also present in sera of healthy individuals, with increased levels in multiple myeloma. Molecular cloning of a corresponding cDNA was carried out, and it encoded for a 70-kDa protein consisting of a half cytokine binding domain containing the canonical WSXWS motif, an immunoglobulin-like domain, and the first half of a second cytokine binding domain with cysteines in fixed positions. Analysis of the soluble receptor distribution revealed a preferential expression in lung, liver, pancreas, and placenta. sOSMR was able to bind OSM and interleukin-31 when associated to soluble gp130 or soluble interleukin-31R, respectively, and to neutralize both cytokine properties. We have also shown that OSM could positively regulate the synthesis of its own soluble receptor in tumor cells.


Asunto(s)
Receptor gp130 de Citocinas/fisiología , Interleucinas/fisiología , Oncostatina M/fisiología , Receptores OSM-LIF/fisiología , Empalme Alternativo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular Tumoral , Receptor gp130 de Citocinas/química , Glicósido Hidrolasas/metabolismo , Humanos , Interleucinas/química , Datos de Secuencia Molecular , Oncostatina M/química , Unión Proteica , Estructura Terciaria de Proteína , Receptores OSM-LIF/química , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...