Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Front Immunol ; 13: 867924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35479068

RESUMEN

Infection with Orientia tsutsugamushi, an obligate intracellular bacterium, can cause mild or severe scrub typhus. Some patients develop acute lung injury, multi-organ failure, and fatal infection; however, little is known regarding key immune mediators that mediate infection control or disease pathogenesis. Using murine models of scrub typhus, we demonstrated in this study the requirement of TNF-TNFR signaling in protective immunity against this infection. Mice lacking both TNF receptors (TNFR1 and TNFR2) were highly susceptible to O. tsutsugamushi infection, displaying significantly increased tissue bacterial burdens and succumbing to infection by day 9, while most wild-type mice survived through day 20. This increased susceptibility correlated with poor activation of cellular immunity in inflamed tissues. Flow cytometry of lung- and spleen-derived cells revealed profound deficiencies in total numbers and activation status of NK cells, neutrophils, and macrophages, as well as CD4 and CD8 T cells. To define the role of individual receptors in O. tsutsugamushi infection, we used mice lacking either TNFR1 or TNFR2. While deficiency in either receptor alone was sufficient to increase host susceptibility to the infection, TNFR1 and TNFR2 played a distinct role in cellular responses. TNF signaling through TNFR1 promoted inflammatory responses and effector T cell expansion, while TNFR2 signaling was associated with anti-inflammatory action and tissue homeostasis. Moreover, TNFRs played an intrinsic role in CD8+ T cell activation, revealing an indispensable role of TNF in protective immunity against O. tsutsugamushi infection.


Asunto(s)
Orientia tsutsugamushi , Receptores Tipo II del Factor de Necrosis Tumoral , Receptores Tipo I de Factores de Necrosis Tumoral , Tifus por Ácaros , Animales , Ratones , Ratones Endogámicos C57BL , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Tifus por Ácaros/inmunología
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35121655

RESUMEN

The tumor microenvironment (TME) provides potential targets for cancer therapy. However, how signals originating in cancer cells affect tumor-directed immunity is largely unknown. Deletions in the CHUK locus, coding for IκB kinase α (IKKα), correlate with reduced lung adenocarcinoma (ADC) patient survival and promote KrasG12D-initiated ADC development in mice, but it is unknown how reduced IKKα expression affects the TME. Here, we report that low IKKα expression in human and mouse lung ADC cells correlates with increased monocyte-derived macrophage and regulatory T cell (Treg) scores and elevated transcription of genes coding for macrophage-recruiting and Treg-inducing cytokines (CSF1, CCL22, TNF, and IL-23A). By stimulating recruitment of monocyte-derived macrophages from the bone marrow and enforcing a TNF/TNFR2/c-Rel signaling cascade that stimulates Treg generation, these cytokines promote lung ADC progression. Depletion of TNFR2, c-Rel, or TNF in CD4+ T cells or monocyte-derived macrophages dampens Treg generation and lung tumorigenesis. Treg depletion also attenuates carcinogenesis. In conclusion, reduced cancer cell IKKα activity enhances formation of a protumorigenic TME through a pathway whose constituents may serve as therapeutic targets for KRAS-initiated lung ADC.


Asunto(s)
Adenocarcinoma del Pulmón/inmunología , Citocinas/inmunología , Quinasa I-kappa B/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Transformación Celular Neoplásica/inmunología , Humanos , Terapia de Inmunosupresión/métodos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología
3.
Int J Cancer ; 150(8): 1373-1391, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34766338

RESUMEN

TNFR2+ regulatory T cells preferentially accumulate in the tumor microenvironment, express high levels of immunosuppressive molecules and possess strong suppressive activity. Our study aimed to explore the characteristics and role of TNFR2+ Tregs in the microenvironment and progression of gastric cancer via polychromatic immunofluorescence, single-cell RNA sequencing and flow cytometry assays. The TNFR2+ Treg infiltration level in the tumor microenvironment increased significantly as gastric cancer progressed and was demonstrated to be a prognostic marker. Single-cell RNA sequencing revealed high levels of TNFR2 in tumor-infiltrating Tregs. The TNF-α/TNFR2 signaling pathway was activated, accompanied by the upregulation of costimulatory molecules. Unlike blood Tregs, tumor-infiltrating Tregs existed in activated and effector states. In addition to expressing costimulatory molecules such as TNFR2, 4-1BB, OX40 and GITR, tumor-infiltrating Tregs were also characterized by high expression levels of immune checkpoints such as CTLA-4 and TIGIT and chemokines such as CCR6. In vitro studies showed that the TNF-α/TNFR2 pathway increased the Foxp3 expression in CD4+ CD25+ T cells and the latent TGF-ß production in Tregs as well as enhanced the immunosuppressive function of Tregs. In summary, our study revealed high infiltration levels of TNFR2+ Tregs that were in activated and effector states in the tumor microenvironment. The infiltration level of TNFR2+ Tregs is a prognostic marker and an independent risk factor for gastric cancer. Activation of the TNF-α/TNFR2 pathway promotes the immunosuppressive phenotype and function of Tregs. Our study provides a new theoretical basis for TNFR2+ Tregs as a therapeutic target in gastric cancer.


Asunto(s)
Adenocarcinoma/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Gástricas/inmunología , Linfocitos T Reguladores/inmunología , Microambiente Tumoral/inmunología , Adenocarcinoma/patología , Adulto , Anciano , Progresión de la Enfermedad , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Neoplasias Gástricas/patología , Linfocitos T Reguladores/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
4.
Int Immunopharmacol ; 101(Pt A): 108345, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34794079

RESUMEN

Immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs) promote tumor immune evasion and thus targeting of Tregs has become an strategy in cancer immunotherapy. Tumor necrosis factor receptor 2 (TNFR2) is highly expressed and important for the immunosuppressive function of Tregs in humans and mice. Thus, the benefit of targeting TNFR2 in cancer immunotherapy merits more investigation. A previous report identified a new murine monoclonal anti-TNFR2 antibody (designated TY101), which showed therapeutic efficacy in murine cancer models, but its mechanism of action was less understood. In this study, the capacity of a combination of immunostimulants to enhance the effect of this inhibitor of Tregs was investigated. We examined the efficacy of TY101 as an anti-tumor immune reagent combined with HMGN1 (N1, a dendritic cell activating TLR4 agonist) and R848 (a synthetic TLR7/8 agonist). This immunotherapeutic combination exerted synergistic antitumor effects as compared with any single treatment. The antitumor response was mainly mediated by the depletion of Tregs and stimulation of cytotoxic CD8 T cell activation. The result also suggested that the effect of TY101 was similar to that of anti-PD-L1 when used in combination with these immunostimulants. Therefore, we propose that treatment strategies of antagonizing TNFR2 on Tregs would behave as potent checkpoint inhibitors and can potentially be utilized to develop a novel antitumor immunotherapy.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Anticuerpos/inmunología , Neoplasias del Colon/terapia , Proteína HMGN1/metabolismo , Imidazoles/uso terapéutico , Terapia de Inmunosupresión/métodos , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Animales , Neoplasias del Colon/inmunología , Femenino , Citometría de Flujo , Proteína HMGN1/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Linfocitos T Reguladores/inmunología
5.
Artículo en Inglés | MEDLINE | ID: mdl-34781108

RESUMEN

HS002 is the recombinant human tumor necrosis factor-α receptor Ⅱ: IgG Fc fusion protein licensed in China to treat rheumatism and psoriasis. The aim of this study was to isolate and characterize the hydrophobic freeze-dried powder injection (HS002) and ampoule injection (HS002A) variants derived from proteins of the same sequence and then to explore the structure-function relationship. Extensive physicochemical and structural testing was performed during a side-by-side comparison of the monomer peak and variant. Then the TNF-α-related binding activity, cell biological activity and affinity with FcRn were analyzed. Finally, a transformation study of the hydrophobic variant was performed under serum-like redox conditions. This research revealed that HS002A has similar physicochemical and structure-function relationship profiles to those of HS002. The hydrophobic variant exhibited the presence of new incorrect disulfide bridging. At the same time, this novel disulfide scrambled species structure-function relationship was found to be the molecular basis for reduced TNF-α binding and cell biological activities. In addition, incorrect disulfide bridging was found to be reversible under serum-like redox conditions, restoring TNF-α binding and cell biological activities to almost normal levels, all of which indicate that the variant is probably irrelevant to clinical efficacy once the drug enters the bloodstream.


Asunto(s)
Antiinflamatorios/química , Receptores Tipo II del Factor de Necrosis Tumoral/química , Factor de Necrosis Tumoral alfa/química , Antiinflamatorios/inmunología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Unión Proteica , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Relación Estructura-Actividad , Factor de Necrosis Tumoral alfa/inmunología
6.
Sci Immunol ; 6(65): eabf7235, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739338

RESUMEN

Deficiency in X-linked inhibitor of apoptosis protein (XIAP) is the cause for X-linked lymphoproliferative syndrome 2 (XLP2). About one-third of these patients suffer from severe and therapy-refractory inflammatory bowel disease (IBD), but the exact cause of this pathogenesis remains undefined. Here, we used XIAP-deficient mice to characterize the mechanisms underlying intestinal inflammation. In Xiap−/− mice, we observed spontaneous terminal ileitis and microbial dysbiosis characterized by a reduction of Clostridia species. We showed that in inflamed mice, both TNF receptor 1 and 2 (TNFR1/2) cooperated in promoting ileitis by targeting TLR5-expressing Paneth cells (PCs) or dendritic cells (DCs). Using intestinal organoids and in vivo modeling, we demonstrated that TLR5 signaling triggered TNF production, which induced PC dysfunction mediated by TNFR1. TNFR2 acted upon lamina propria immune cells. scRNA-seq identified a DC population expressing TLR5, in which Tnfr2 expression was also elevated. Thus, the combined activity of TLR5 and TNFR2 signaling may be responsible for DC loss in lamina propria of Xiap−/− mice. Consequently, both Tnfr1−/−Xiap−/− and Tnfr2−/−Xiap−/− mice were rescued from dysbiosis and intestinal inflammation. Furthermore, RNA-seq of ileal crypts revealed that in inflamed Xiap−/− mice, TLR5 signaling was abrogated, linking aberrant TNF responses with the development of a dysbiosis. Evidence for TNFR2 signaling driving intestinal inflammation was detected in XLP2 patient samples. Together, these data point toward a key role of XIAP in mediating resilience of TLR5-expressing PCs and intestinal DCs, allowing them to maintain tissue integrity and microbiota homeostasis.


Asunto(s)
Inflamación/inmunología , Intestinos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptor Toll-Like 5/inmunología , Proteína Inhibidora de la Apoptosis Ligada a X/inmunología , Animales , Células Dendríticas/inmunología , Disbiosis/inmunología , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Noqueados , Células de Paneth/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Proteína Inhibidora de la Apoptosis Ligada a X/deficiencia
7.
J Immunol Methods ; 499: 113173, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34699840

RESUMEN

Tumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models. Here, we describe the generation, production, purification, and characterization of a panel of novel antibodies targeting mouse TNFR2. The antibodies display functional differences in binding affinity and potency to block TNFα. Furthermore, epitope binding showed that the anti-mTNFR2 antibodies target different domains on the TNFR2 protein, associated with varying capacity to enhance CD8+ T-cell activation and costimulation. Moreover, the anti-TNFR2 antibodies demonstrate binding to isolated splenic mouse Tregs ex vivo and activated CD8+ cells, reinforcing their potential use to establish TNFR2-dependent immune modulation in translational models of autoimmunity and cancer.


Asunto(s)
Anticuerpos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Animales , Células CHO , Cricetulus , Femenino , Ratones , Ratas , Ratas Sprague-Dawley
8.
J Leukoc Biol ; 110(6): 1047-1055, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34494306

RESUMEN

Tumor necrosis factor alpha (TNF) has been implicated in the pathogenesis of psoriasis and anti-TNF therapeutics are used in the treatment of psoriasis in the clinic. However, considerable proportion of patients fail to respond to anti-TNF treatment. Furthermore, anti-TNF therapy induces de novo development of psoriasis in some patients with other type of autoimmune disorders. Therefore, further understanding of the role of TNF-TNFR signaling in pathogenesis of psoriasis remains a critical to devise safer and more effective treatment. In this study, it is shown that in imiquimod-induced mouse psoriasis model, TNF receptor type 1 (TNFR1) deficiency inhibited the development of skin diseases. In sharp contrast, TNF receptor type 2 (TNFR2) deficiency led to more severe psoriasis that was associated with increased Th1 and Th17 responses and reduced number of CD4+ Foxp3+ regulatory T cells (Tregs). Importantly, adoptive transfer of WT Tregs was able to attenuate inflammatory responses in imiquimod-treated TNFR2-/- mice, suggestive of a role of malfunctioned Tregs in mice deficient in TNFR2. RNA sequencing data revealed that Tregs deficient in TNFR2 exhibited down-regulation of different biological processes linked to proliferative expansion. Taken together, our study clearly indicated that TNFR1 was pathogenic in mouse psoriasis. In contrast, through boosting the proliferative expansion of Tregs, TNFR2 was protective in this model. The data thus suggest that TNFR1-specific antagonist or TNFR2-specific agonist may be useful in the treatment of patients with psoriasis.


Asunto(s)
Imiquimod/toxicidad , Psoriasis/inducido químicamente , Psoriasis/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Inductores de Interferón/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Psoriasis/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores/inmunología
9.
Cells ; 10(7)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34359880

RESUMEN

An imbalance of TNF signalling in the inflammatory milieu generated by meningeal immune cell infiltrates in the subarachnoid space in multiple sclerosis (MS), and its animal model may lead to increased cortical pathology. In order to explore whether this feature may be present from the early stages of MS and may be associated with the clinical outcome, the protein levels of TNF, sTNF-R1 and sTNF-R2 were assayed in CSF collected from 122 treatment-naïve MS patients and 36 subjects with other neurological conditions at diagnosis. Potential correlations with other CSF cytokines/chemokines and with clinical and imaging parameters at diagnosis (T0) and after 2 years of follow-up (T24) were evaluated. Significantly increased levels of TNF (fold change: 7.739; p < 0.001), sTNF-R1 (fold change: 1.693; p < 0.001) and sTNF-R2 (fold change: 2.189; p < 0.001) were detected in CSF of MS patients compared to the control group at T0. Increased TNF levels in CSF were significantly (p < 0.01) associated with increased EDSS change (r = 0.43), relapses (r = 0.48) and the appearance of white matter lesions (r = 0.49). CSF levels of TNFR1 were associated with cortical lesion volume (r = 0.41) at T0, as well as with new cortical lesions (r = 0.56), whilst no correlation could be found between TNFR2 levels in CSF and clinical or MRI features. Combined correlation and pathway analysis (ingenuity) of the CSF protein pattern associated with TNF expression (encompassing elevated levels of BAFF, IFN-γ, IL-1ß, IL-10, IL-8, IL-16, CCL21, haptoglobin and fibrinogen) showed a particular relationship to the interaction between innate and adaptive immune response. The CSF sTNF-R1-associated pattern (encompassing high levels of CXCL13, TWEAK, LIGHT, IL-35, osteopontin, pentraxin-3, sCD163 and chitinase-3-L1) was mainly related to altered T cell and B cell signalling. Finally, the CSF TNFR2-associated pattern (encompassing high CSF levels of IFN-ß, IFN-λ2, sIL-6Rα) was linked to Th cell differentiation and regulatory cytokine signalling. In conclusion, dysregulation of TNF and TNF-R1/2 pathways associates with specific clinical/MRI profiles and can be identified at a very early stage in MS patients, at the time of diagnosis, contributing to the prediction of the disease outcome.


Asunto(s)
Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética , Inmunidad Adaptativa , Adulto , Antígenos CD/líquido cefalorraquídeo , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/líquido cefalorraquídeo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Linfocitos B/inmunología , Linfocitos B/patología , Proteína C-Reactiva/líquido cefalorraquídeo , Proteína C-Reactiva/genética , Proteína C-Reactiva/inmunología , Estudios de Casos y Controles , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/inmunología , Corteza Cerebral/patología , Quimiocina CXCL13/líquido cefalorraquídeo , Quimiocina CXCL13/genética , Quimiocina CXCL13/inmunología , Proteína 1 Similar a Quitinasa-3/líquido cefalorraquídeo , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/inmunología , Citocina TWEAK/líquido cefalorraquídeo , Citocina TWEAK/genética , Citocina TWEAK/inmunología , Diagnóstico Precoz , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Interleucinas/líquido cefalorraquídeo , Interleucinas/genética , Interleucinas/inmunología , Imagen por Resonancia Magnética , Masculino , Meninges/diagnóstico por imagen , Meninges/inmunología , Meninges/patología , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/patología , Osteopontina/líquido cefalorraquídeo , Osteopontina/genética , Osteopontina/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/líquido cefalorraquídeo , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/líquido cefalorraquídeo , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología
10.
Mol Immunol ; 137: 52-56, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34214829

RESUMEN

Tumor Necrosis Factor Receptor 2 (TNFR2) is one of the receptors of TNF-α, which is expressed on various cell types. TNFR2 signaling has a balancing role between regulatory and effector functions of T cells. Herein, we investigated the expression of TNFR2 on regulatory T cells (Tregs) and non-Tregs in breast tumor-draining lymph nodes. Mononuclear cells were isolated from 16 axillary lymph nodes, and the expressions of TNFR2, Foxp3 and CD25 were assessed in CD4+ T cells by flow cytometry. Our results showed that the majority of TNFR2+CD4+ T cells were Foxp3-CD25-. However, the percentage of TNFR2+ cells was significantly higher in Foxp3+CD25+CD4+ Tregs compared to Foxp3-CD25-CD4+, Foxp3+CD25-CD4+, and Foxp3-CD25+CD4+ T cell subsets. Among these subsets, Foxp3+CD25+TNFR2+CD4+ T cells were found to have the highest intensity of TNFR2 expression. The intensity of Foxp3 expression in Foxp3+CD25+TNFR2+CD4+ Treg cells was significantly higher than in their TNFR2- counterpart. Collectively, we showed that most of TNFR2+CD4+ T lymphocytes were Foxp3-CD25-, while the majority of Foxp3+CD25+CD4+ Tregs were TNFR2+, and they expressed TNFR2 with the highest intensity. This report highlights the importance of TNFR2 expression on Tregs and paves the way for further investigation of the effects of TNF-α on the suppressive activity of Tregs in the tumor microenvironment.


Asunto(s)
Neoplasias de la Mama/inmunología , Linfocitos T CD4-Positivos/inmunología , Ganglios Linfáticos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Femenino , Factores de Transcripción Forkhead/inmunología , Humanos , Subunidad alfa del Receptor de Interleucina-2/inmunología , Leucocitos Mononucleares/inmunología , Persona de Mediana Edad , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología
11.
J Clin Invest ; 131(16)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34185706

RESUMEN

TNFR1 and TNFR2 have received prominent attention because of their dominance in the pathogenesis of inflammation and autoimmunity. TNFR1 has been extensively studied and primarily mediates inflammation. TNFR2 remains far less studied, although emerging evidence demonstrates that TNFR2 plays an antiinflammatory and immunoregulatory role in various conditions and diseases. Herein, we report that TNFR2 regulates macrophage polarization, a highly dynamic process controlled by largely unidentified intracellular regulators. Using biochemical copurification and mass spectrometry approaches, we isolated the signaling molecule 14-3-3ε as a component of TNFR2 complexes in response to progranulin stimulation in macrophages. In addition, 14-3-3ε was essential for TNFR2 signaling-mediated regulation of macrophage polarization and switch. Both global and myeloid-specific deletion of 14-3-3ε resulted in exacerbated inflammatory arthritis and counteracted the protective effects of progranulin-mediated TNFR2 activation against inflammation and autoimmunity. TNFR2/14-3-3ε signaled through PI3K/Akt/mTOR to restrict NF-κB activation while simultaneously stimulating C/EBPß activation, thereby instructing macrophage plasticity. Collectively, this study identifies 14-3-3ε as a previously unrecognized vital component of the TNFR2 receptor complex and provides new insights into the TNFR2 signaling, particularly its role in macrophage polarization with therapeutic implications for various inflammatory and autoimmune diseases with activation of the TNFR2/14-3-3ε antiinflammatory pathway.


Asunto(s)
Proteínas 14-3-3/inmunología , Macrófagos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Proteínas 14-3-3/química , Proteínas 14-3-3/deficiencia , Proteínas 14-3-3/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Experimental/patología , Autoinmunidad , Humanos , Inflamación/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Complejos Multiproteicos/química , Complejos Multiproteicos/inmunología , Complejos Multiproteicos/metabolismo , Progranulinas/inmunología , Progranulinas/metabolismo , Células RAW 264.7 , Receptores Tipo II del Factor de Necrosis Tumoral/química , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/inmunología
12.
Lupus ; 30(9): 1449-1458, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34080911

RESUMEN

BACKGROUND: Many genes have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). Tumor necrosis factor (TNF) is a potent cytokine stimulator acting through 2 cell surface receptors (TNFR I and II). TNFRII gene which controls expression of these receptors has been linked to SLE susceptibility through promoting apoptosis. Also; Protein tyrosine phosphatase non receptor 22 (PTPN22) gene enhances intrinsic phosphatase activity of T lymphocytes leading to their dysregulation and stimulates autoimmune process of lupus and its rs2476601 has been linked to susceptibility to thyroiditis in SLE patients in few studies. OBJECTIVES: (i) to investigate the correlation between 2 SNPs of TNFR II and PTPN22 genes and SLE susceptibility in a cohort of Egyptian children compared to controls (ii) and to investigate their possible association with different clinical presentations of the disease in children. SUBJECTS AND METHODS: Typing of TNFR II rs1061622 and PTPN22 rs2476601 SNPs were done using polymerase chain reaction-restriction fragment length polymorphism for 74 children with SLE and 100 matched healthy controls. RESULTS: Children with SLE had more frequent G allele and GG genotype of TNFR II rs1061622 (p < 0.001) and more T allele and TT genotype of PTPN22 rs2476601 (p = 0.012 and <0.001, respectively) compared to controls. Only 6 patients (8%) had thyroiditis (hypothyroidism) with T allele and TT genotype of PTPN22 1858 T more prevalent in those patients versus those without thyroiditis (p ≤ 0.001). Apart from, thyroiditis, no significant association was found between genotypes and alleles frequencies of the 2 studied SNPs and other clinical manifestations of the disease. CONCLUSION: The G allele and GG genotype of TNFR II rs1061622 and T allele and TT genotype of PTPN22 rs2476601 genes polymorphism can be considered as risk factors for the development of SLE. The presence of the T allele of PTPN22 rs2476601 may increase the risk of concomitant thyroiditis in Egyptian children with SLE but further studies are required to confirm this finding as thyroiditis was reported only in few cases in this study.


Asunto(s)
Lupus Eritematoso Sistémico/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Adolescente , Estudios de Casos y Controles , Niño , Egipto/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/epidemiología , Lupus Eritematoso Sistémico/inmunología , Masculino , Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 22/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Riesgo , Linfocitos T/inmunología
13.
Cell Commun Signal ; 19(1): 1, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397378

RESUMEN

BACKGROUND: Bone marrow derived endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) involved in neo-angiogenesis and endothelial homeostasis and are considered as a circulating reservoir for endothelial repair. Many studies showed that EPCs from patients with cardiovascular pathologies are impaired and insufficient; hence, allogenic sources of EPCs from adult or cord blood are considered as good choices for cell therapy applications. However, allogenic condition increases the chance of immune rejection, especially by T cells, before exerting the desired regenerative functions. TNFα is one of the main mediators of EPC activation that recognizes two distinct receptors, TNFR1 and TNFR2. We have recently reported that human EPCs are immunosuppressive and this effect was TNFα-TNFR2 dependent. Here, we aimed to investigate if an adequate TNFα pre-conditioning could increase TNFR2 expression and prime EPCs towards more immunoregulatory functions. METHODS: EPCs were pre-treated with several doses of TNFα to find the proper dose to up-regulate TNFR2 while keeping the TNFR1 expression stable. Then, co-cultures of human EPCs and human T cells were performed to assess whether TNFα priming would increase EPC immunosuppressive and immunomodulatory effect. RESULTS: Treating EPCs with 1 ng/ml TNFα significantly up-regulated TNFR2 expression without unrestrained increase of TNFR1 and other endothelial injury markers. Moreover, TNFα priming through its interaction with TNFR2 remarkably enhanced EPC immunosuppressive and anti-inflammatory effects. Conversely, blocking TNFR2 using anti-TNFR2 mAb followed by 1 ng/ml of TNFα treatment led to the TNFα-TNFR1 interaction and polarized EPCs towards pro-inflammatory and immunogenic functions. CONCLUSIONS: We report for the first time the crucial impact of inflammation notably the TNFα-TNFR signaling pathway on EPC immunological function. Our work unveils the pro-inflammatory role of the TNFα-TNFR1 axis and, inversely the anti-inflammatory implication of the TNFα-TNFR2 axis in EPC immunoregulatory functions. Priming EPCs with 1 ng/ml of TNFα prior to their administration could boost them toward a more immunosuppressive phenotype. This could potentially lead to EPCs' longer presence in vivo after their allogenic administration resulting in their better contribution to angiogenesis and vascular regeneration. Video Abstract.


Asunto(s)
Células Progenitoras Endoteliales/efectos de los fármacos , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Factor de Necrosis Tumoral alfa/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Células Progenitoras Endoteliales/inmunología , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Inmunomodulación , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
14.
Immunology ; 162(2): 220-234, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33020922

RESUMEN

TNF signalling through TNFRp55 and TNFRp75, and receptor shedding is important for immune activation and regulation. TNFRp75 deficiency leads to improved control of Mycobacterium tuberculosis (M. tuberculosis) infection, but the effects of early innate immune events in this process are unclear. We investigated the role of TNFRp75 on cell activation and apoptosis of alveolar macrophages and neutrophils during M. tuberculosis and M. bovis BCG infection. We found increased microbicidal activity against M. tuberculosis occurred independently of IFNy and NO generation, and displayed an inverse correlation with alveolar macrophages (AMs) apoptosis. Both M. tuberculosis and M. bovis BCG induced higher expression of MHC-II in TNFRp75-/- AMs; however, M bovis BCG infection did not alter AM apoptosis in the absence of TNFRp75. Pulmonary concentrations of CCL2, CCL3 and IL-1ß were increased in TNFRp75-/- mice during M, bovis BCG infection, but had no effect on neutrophil responses. Thus, TNFRp75-dependent regulation of mycobacterial replication is virulence dependent and occurs independently of early alveolar macrophage apoptosis and neutrophil responses.


Asunto(s)
Vacuna BCG/inmunología , Macrófagos Alveolares/inmunología , Neutrófilos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Tuberculosis Bovina/inmunología , Tuberculosis/inmunología , Animales , Apoptosis/inmunología , Bovinos , Células Cultivadas , Femenino , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología , Receptores Señuelo del Factor de Necrosis Tumoral/inmunología , Virulencia/inmunología
15.
Sci Signal ; 13(661)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293464

RESUMEN

Regulatory T cells (Treg cells) restrict immune system activity, such as in response to self-antigens, and are switched on by tumor necrosis factor receptor 2 (TNFR2). Therapeutic activation of TNFR2, thereby expanding Treg cells and suppressing immune activity, may be beneficial to patients with various inflammatory diseases. Here, we characterized a new human TNFR2-directed antibody agonist isolated from mice. We found that the antibody agonist expanded the number of Treg cells within cultures of primary human CD4+ T cells from healthy donors and patients with type 1 diabetes or Sézary syndrome. These Treg cells had increased metabolic gene expression and intracellular itaconate concentrations, characteristics associated with maximally suppressive, anti-inflammatory Treg cells. Furthermore, antibody-expanded Treg cells repressed the activity of primary human CD8+ effector T cells (Teff cells). Epitope mapping suggested that the antibody bound to TNFR2 through a natural cross-linking surface and that Treg cell expansion was independent of the antibody Fc region. In addition, Treg cell expansion was not increased by adding either supplemental TNF ligand or a cross-linking reagent, suggesting that the antibody agonist by itself can elicit maximal activity, a notion that was confirmed by increased secretion of soluble TNFR2. Pending in vivo tests, these features indicate that this TNFR2 antibody agonist has the potential to safely and effectively treat various inflammatory disorders.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Proteínas de Neoplasias , Receptores Tipo II del Factor de Necrosis Tumoral , Síndrome de Sézary/inmunología , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Linfocitos T Reguladores
16.
Front Immunol ; 11: 585880, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324405

RESUMEN

Since its discovery in 1975, TNFα has been a subject of intense study as it plays significant roles in both immunity and cancer. Such attention is well deserved as TNFα is unique in its engagement of pleiotropic signaling via its two receptors: TNFR1 and TNFR2. Extensive research has yielded mechanistic insights into how a single cytokine can provoke a disparate range of cellular responses, from proliferation and survival to apoptosis and necrosis. Understanding the intracellular signaling pathways induced by this single cytokine via its two receptors is key to further revelation of its exact functions in the many disease states and immune responses in which it plays a role. In this review, we describe the signaling complexes formed by TNFR1 and TNFR2 that lead to each potential cellular response, namely, canonical and non-canonical NF-κB activation, apoptosis and necrosis. This is followed by a discussion of data from in vivo mouse and human studies to examine the differential impacts of TNFR1 versus TNFR2 signaling.


Asunto(s)
Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/inmunología , Animales , Humanos
17.
Viruses ; 12(10)2020 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-33080861

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in infants and young children. Although some clinical studies have speculated that tumor necrosis factor (TNF)-α is a major contributor of RSV-mediated airway disease, experimental evidence remains unclear or conflicting. TNF-α initiates inflammation and cell death through two distinct receptors: TNF-receptor (TNFR)1 and TNFR2. Here we delineate the function of TNF-α by short-lasting blockade of either receptor in an experimental BALB/c mouse model of RSV infection. We demonstrate that antibody-mediated blockade of TNFR1, but not TNFR2, results in significantly improved clinical disease and bronchoconstriction as well as significant reductions of several inflammatory cytokines and chemokines, including IL-1α, IL-1ß, IL-6, Ccl3, Ccl4, and Ccl5. Additionally, TNFR1 blockade was found to significantly reduce neutrophil number and activation status, consistent with the concomitant reduction of pro-neutrophilic chemokines Cxcl1 and Cxcl2. Similar protective activity was also observed when a single-dose of TNFR1 blockade was administered to mice following RSV inoculation, although this treatment resulted in improved alveolar macrophage survival rather than reduced neutrophil activation. Importantly, short-lasting blockade of TNFR1 did not affect RSV peak replication in the lung. This study suggests a potential therapeutic approach for RSV bronchiolitis based on selective blockade of TNFR1.


Asunto(s)
Broncoconstricción , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/terapia , Animales , Anticuerpos/administración & dosificación , Quimiocinas/inmunología , Citocinas/inmunología , Femenino , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Neutrófilos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/antagonistas & inhibidores , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Factor de Necrosis Tumoral alfa/inmunología
18.
Sci Adv ; 6(40)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32998896

RESUMEN

CD4+Foxp3+ regulatory T cells (Tregs) are pivotal for the inhibition of autoimmune inflammatory responses. One way to therapeutically harness the immunosuppressive actions of Tregs is to stimulate the proliferative expansion of TNFR2-expressing CD4+Foxp3+ Tregs via transmembrane TNF (tmTNF). Here, we report that two-pore channel (TPC) inhibitors markedly enhance tmTNF expression on antigen-presenting cells. Furthermore, injection of TPC inhibitors including tetrandrine, or TPC-specific siRNAs in mice, increases the number of Tregs in a tmTNF/TNFR2-dependent manner. In a mouse colitis model, inhibition of TPCs by tetrandrine markedly attenuates colon inflammation by expansion of Tregs Mechanistically, we show that TPC inhibitors enhance tmTNF levels by disrupting surface expression of TNF-α-converting enzyme by regulating vesicle trafficking. These results suggest that the therapeutic potential of TPC inhibitors is mediated by expansion of TNFR2-expressing Tregs and elucidate the basis of clinical use in the treatment of autoimmune and other inflammatory diseases.


Asunto(s)
Colitis , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Animales , Células Presentadoras de Antígenos/metabolismo , Colitis/metabolismo , Factores de Transcripción Forkhead/genética , Activación de Linfocitos , Ratones , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Linfocitos T Reguladores , Factor de Necrosis Tumoral alfa/metabolismo
19.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32690635

RESUMEN

Stealthy intracellular bacterial pathogens are known to establish persistent and sometimes lifelong infections. Some of these pathogens also have a tropism for the reproductive system, thereby increasing the risk of reproductive disease and infertility. To date, the pathogenic mechanism involved remains poorly understood. Here, we demonstrate that Brucella abortus, a notorious reproductive pathogen, has the ability to infect the nonpregnant uterus, sustain infection, and induce inflammatory changes during both acute and chronic stages of infection. In addition, we demonstrated that chronically infected mice had a significantly reduced number of pregnancies compared to naive controls. To investigate the immunologic mechanism responsible for uterine tropism, we explored the role of regulatory T cells (Tregs) in the pathogenesis of Brucella abortus infection. We show that highly suppressive CD4+FOXP3+TNFR2+ Tregs contribute to the persistence of Brucella abortus infection and that inactivation of Tregs with tumor necrosis factor receptor II (TNFR2) antagonistic antibody protected mice by significantly reducing bacterial burden both systemically and within reproductive tissues. These findings support a critical role of Tregs in the pathogenesis of persistence induced by intracellular bacterial pathogens, including B. abortus Results from this study indicate that adverse reproductive outcomes can occur as sequelae of chronic infection in nonpregnant animals and that fine-tuning Treg activity may provide novel immunotherapeutic and prevention strategies against intracellular bacterial infections such as brucellosis.


Asunto(s)
Brucella abortus/patogenicidad , Brucelosis/inmunología , Fertilidad/fisiología , Complicaciones Infecciosas del Embarazo/inmunología , Linfocitos T Reguladores/inmunología , Enfermedad Aguda , Animales , Carga Bacteriana , Brucelosis/microbiología , Enfermedad Crónica , Femenino , Ratones , Ratones Endogámicos ICR , Embarazo , Complicaciones Infecciosas del Embarazo/microbiología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Bazo/inmunología , Bazo/microbiología , Bazo/patología , Útero/inmunología , Útero/microbiología , Útero/patología
20.
Cell Commun Signal ; 18(1): 94, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546175

RESUMEN

BACKGROUND: Endothelial progenitor cells (EPCs) are non-differentiated endothelial cells (ECs) present in blood circulation that are involved in neo-vascularization and correction of damaged endothelial sites. Since EPCs from patients with vascular disorders are impaired and inefficient, allogenic sources from adult or cord blood are considered as good alternatives. However, due to the reaction of immune system against allogenic cells which usually lead to their elimination, we focused on the exact role of EPCs on immune cells, particularly, T cells which are the most important cells applied in immune rejection. TNFα is one of the main activators of EPCs that recognizes two distinct receptors. TNFR1 is expressed ubiquitously and its interaction with TNFα leads to differentiation and apoptosis, whereas, TNFR2 is expressed predominantly on ECs, immune cells and neural cells and is involved in cell survival and proliferation. Interestingly, it has been shown that different immunosuppressive cells express TNFR2 and this is directly related to their immunosuppressive efficiency. However, little is known about immunological profile and function of TNFR2 in EPCs. METHODS: Using different in-vitro combinations, we performed co-cultures of ECs and T cells to investigate the immunological effect of EPCs on T cells. We interrupted in the TNFα/TNFR2 axis either by blocking the receptor using TNFR2 antagonist or blocking the ligand using T cells derived from TNFα KO mice. RESULTS: We demonstrated that EPCs are able to suppress T cell proliferation and modulate them towards less pro-inflammatory and active phenotypes. Moreover, we showed that TNFα/TNFR2 immune-checkpoint pathway is critical in EPC immunomodulatory effect. CONCLUSIONS: Our results reveal for the first time a mechanism that EPCs use to suppress immune cells, therefore, enabling them to form new immunosuppressive vessels. Furthermore, we have shown the importance of TNFα/TNFR2 axis in EPCs as an immune checkpoint pathway. We believe that targeting TNFR2 is especially crucial in cancer immune therapy since it controls two crucial aspects of tumor microenvironment: 1) Immunosuppression and 2) Angiogenesis. Video Abstract. (MP4 46355 kb).


Asunto(s)
Células Progenitoras Endoteliales , Terapia de Inmunosupresión , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Linfocitos T/citología , Factor de Necrosis Tumoral alfa/inmunología , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Técnicas de Cocultivo , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/inmunología , Femenino , Voluntarios Sanos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...