Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.928
Filtrar
1.
J Clin Immunol ; 44(6): 131, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775840

RESUMEN

RHOH, an atypical small GTPase predominantly expressed in hematopoietic cells, plays a vital role in immune function. A deficiency in RHOH has been linked to epidermodysplasia verruciformis, lung disease, Burkitt lymphoma and T cell defects. Here, we report a novel germline homozygous RHOH c.245G > A (p.Cys82Tyr) variant in a 21-year-old male suffering from recurrent, invasive, opportunistic infections affecting the lungs, eyes, and brain. His sister also succumbed to a lung infection during early adulthood. The patient exhibited a persistent decrease in CD4+ T, B, and NK cell counts, and hypoimmunoglobulinemia. The patient's T cell showed impaired activation upon in vitro TCR stimulation. In Jurkat T cells transduced with RHOHC82Y, a similar reduction in activation marker CD69 up-regulation was observed. Furthermore, the C82Y variant showed reduced RHOH protein expression and impaired interaction with the TCR signaling molecule ZAP70. Together, these data suggest that the newly identified autosomal-recessive RHOH variant is associated with T cell dysfunction and recurrent opportunistic infections, functioning as a hypomorph by disrupting ZAP70-mediated TCR signaling.


Asunto(s)
Homocigoto , Infecciones Oportunistas , Humanos , Masculino , Adulto Joven , Infecciones Oportunistas/genética , Infecciones Oportunistas/inmunología , Linfocitos T/inmunología , Células Jurkat , Activación de Linfocitos/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Recurrencia , Linaje , Femenino , Proteína Tirosina Quinasa ZAP-70/genética , Proteína Tirosina Quinasa ZAP-70/metabolismo
2.
Front Immunol ; 15: 1310376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720887

RESUMEN

Introduction: Hypopharyngeal squamous cell carcinoma (HSCC) is one of the malignant tumors with the worst prognosis in head and neck cancers. The transformation from normal tissue through low-grade and high-grade intraepithelial neoplasia to cancerous tissue in HSCC is typically viewed as a progressive pathological sequence typical of tumorigenesis. Nonetheless, the alterations in diverse cell clusters within the tissue microenvironment (TME) throughout tumorigenesis and their impact on the development of HSCC are yet to be fully understood. Methods: We employed single-cell RNA sequencing and TCR/BCR sequencing to sequence 60,854 cells from nine tissue samples representing different stages during the progression of HSCC. This allowed us to construct dynamic transcriptomic maps of cells in diverse TME across various disease stages, and experimentally validated the key molecules within it. Results: We delineated the heterogeneity among tumor cells, immune cells (including T cells, B cells, and myeloid cells), and stromal cells (such as fibroblasts and endothelial cells) during the tumorigenesis of HSCC. We uncovered the alterations in function and state of distinct cell clusters at different stages of tumor development and identified specific clusters closely associated with the tumorigenesis of HSCC. Consequently, we discovered molecules like MAGEA3 and MMP3, pivotal for the diagnosis and treatment of HSCC. Discussion: Our research sheds light on the dynamic alterations within the TME during the tumorigenesis of HSCC, which will help to understand its mechanism of canceration, identify early diagnostic markers, and discover new therapeutic targets.


Asunto(s)
Neoplasias Hipofaríngeas , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patología , Neoplasias Hipofaríngeas/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Carcinogénesis/genética , Análisis de Secuencia de ARN , Transcriptoma , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Regulación Neoplásica de la Expresión Génica , Masculino
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38711371

RESUMEN

T-cell receptor (TCR) recognition of antigens is fundamental to the adaptive immune response. With the expansion of experimental techniques, a substantial database of matched TCR-antigen pairs has emerged, presenting opportunities for computational prediction models. However, accurately forecasting the binding affinities of unseen antigen-TCR pairs remains a major challenge. Here, we present convolutional-self-attention TCR (CATCR), a novel framework tailored to enhance the prediction of epitope and TCR interactions. Our approach utilizes convolutional neural networks to extract peptide features from residue contact matrices, as generated by OpenFold, and a transformer to encode segment-based coded sequences. We introduce CATCR-D, a discriminator that can assess binding by analyzing the structural and sequence features of epitopes and CDR3-ß regions. Additionally, the framework comprises CATCR-G, a generative module designed for CDR3-ß sequences, which applies the pretrained encoder to deduce epitope characteristics and a transformer decoder for predicting matching CDR3-ß sequences. CATCR-D achieved an AUROC of 0.89 on previously unseen epitope-TCR pairs and outperformed four benchmark models by a margin of 17.4%. CATCR-G has demonstrated high precision, recall and F1 scores, surpassing 95% in bidirectional encoder representations from transformers score assessments. Our results indicate that CATCR is an effective tool for predicting unseen epitope-TCR interactions. Incorporating structural insights enhances our understanding of the general rules governing TCR-epitope recognition significantly. The ability to predict TCRs for novel epitopes using structural and sequence information is promising, and broadening the repository of experimental TCR-epitope data could further improve the precision of epitope-TCR binding predictions.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Humanos , Epítopos/química , Epítopos/inmunología , Biología Computacional/métodos , Redes Neurales de la Computación , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Antígenos/química , Antígenos/inmunología , Secuencia de Aminoácidos
4.
Cancer Immunol Immunother ; 73(7): 123, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727812

RESUMEN

Adoptively transferred T cell receptor-engineered T cells are a promising cancer treatment strategy, and the identification of tumour-specific TCRs is essential. Previous studies reported that tumour-reactive T cells and TCRs could be isolated based on the expression of activation markers. However, since T cells with different cell states could not respond uniformly to activation but show a heterogeneous expression profile of activation and effector molecules, isolation of tumour-reactive T cells based on single activation or effector molecules could result in the absence of tumour-reactive T cells; thus, combinations of multiple activation and effector molecules could improve the efficiency of isolating tumour-specific TCRs. We enrolled two patients with lung adenocarcinoma and obtained their tumour infiltrating lymphocytes (TILs) and autologous tumour cells (ATCs). TILs were cocultured with the corresponding ATCs for 12 h and subjected to single-cell RNA sequencing. First, we identified three TCRs with the highest expression levels of IFNG and TNFRSF9 mRNA for each patient, yet only the top one or two recognized the corresponding ATCs in each patient. Next, we defined the activation score based on normalized expression levels of IFNG, IL2, TNF, IL2RA, CD69, TNFRSF9, GZMB, GZMA, GZMK, and PRF1 mRNA for each T cell and then identified three TCRs with the highest activation score for each patient. We found that all three TCRs in each patient could specifically identify corresponding ATCs. In conclusion, we established an efficient approach to isolate tumour-reactive TCRs based on combinations of multiple activation and effector molecules through single-cell RNA sequencing.


Asunto(s)
Neoplasias Pulmonares , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor , Receptores de Antígenos de Linfocitos T , Análisis de la Célula Individual , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Activación de Linfocitos/inmunología , Análisis de la Célula Individual/métodos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética
5.
Database (Oxford) ; 20242024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713861

RESUMEN

Cancer immunotherapy has brought about a revolutionary breakthrough in the field of cancer treatment. Immunotherapy has changed the treatment landscape for a variety of solid and hematologic malignancies. To assist researchers in efficiently uncovering valuable information related to cancer immunotherapy, we have presented a manually curated comprehensive database called DIRMC, which focuses on molecular features involved in cancer immunotherapy. All the content was collected manually from published literature, authoritative clinical trial data submitted by clinicians, some databases for drug target prediction such as DrugBank, and some experimentally confirmed high-throughput data sets for the characterization of immune-related molecular interactions in cancer, such as a curated database of T-cell receptor sequences with known antigen specificity (VDJdb), a pathology-associated TCR database (McPAS-TCR) et al. By constructing a fully connected functional network, ranging from cancer-related gene mutations to target genes to translated target proteins to protein regions or sites that may specifically affect protein function, we aim to comprehensively characterize molecular features related to cancer immunotherapy. We have developed the scoring criteria to assess the reliability of each MHC-peptide-T-cell receptor (TCR) interaction item to provide a reference for users. The database provides a user-friendly interface to browse and retrieve data by genes, target proteins, diseases and more. DIRMC also provides a download and submission page for researchers to access data of interest for further investigation or submit new interactions related to cancer immunotherapy targets. Furthermore, DIRMC provides a graphical interface to help users predict the binding affinity between their own peptide of interest and MHC or TCR. This database will provide researchers with a one-stop resource to understand cancer immunotherapy-related targets as well as data on MHC-peptide-TCR interactions. It aims to offer reliable molecular characteristics support for both the analysis of the current status of cancer immunotherapy and the development of new immunotherapy. DIRMC is available at http://www.dirmc.tech/. Database URL: http://www.dirmc.tech/.


Asunto(s)
Inmunoterapia , Neoplasias , Inmunoterapia/métodos , Humanos , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Bases de Datos de Proteínas , Interfaz Usuario-Computador
6.
Front Immunol ; 15: 1368290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690288

RESUMEN

Background: NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15. Therefore, autonomous production of IL-15 by NK:TCR cells might improve functional persistence of NK cells. Here we present an optimized NK:TCR product harnessed with a construct encoding for soluble IL-15 (NK:TCR/IL-15), to support their proliferation, persistence and cytotoxic capabilities. Methods: Expression of tumor-specific TCRs in peripheral blood derived NK-cells was achieved following retroviral transduction. NK:TCR/IL-15 cells were compared with NK:TCR cells for autonomous cytokine production, proliferation and survival. NK:BOB1-TCR/IL-15 cells, expressing a HLA-B*07:02-restricted TCR against BOB1, a B-cell lineage specific transcription factor highly expressed in all B-cell malignancies, were compared with control NK:BOB1-TCR and NK:CMV-TCR/IL-15 cells for effector function against TCR antigen positive malignant B-cell lines in vitro and in vivo. Results: Viral incorporation of the interleukin-15 gene into engineered NK:TCR cells was feasible and high expression of the TCR was maintained, resulting in pure NK:TCR/IL-15 cell products generated from peripheral blood of multiple donors. Self-sufficient secretion of IL-15 by NK:TCR cells enables engineered NK cells to proliferate in vitro without addition of extra cytokines. NK:TCR/IL-15 demonstrated a marked enhancement of TCR-mediated cytotoxicity as well as enhanced NK-mediated cytotoxicity resulting in improved persistence and performance of NK:BOB1-TCR/IL-15 cells in an orthotopic multiple myeloma mouse model. However, in contrast to prolonged anti-tumor reactivity by NK:BOB1-TCR/IL-15, we observed in one of the experiments an accumulation of NK:BOB1-TCR/IL-15 cells in several organs of treated mice, leading to unexpected death 30 days post-NK infusion. Conclusion: This study showed that NK:TCR/IL-15 cells secrete low levels of IL-15 and can proliferate in an environment lacking cytokines. Repeated in vitro and in vivo experiments confirmed the effectiveness and target specificity of our product, in which addition of IL-15 supports TCR- and NK-mediated cytotoxicity.


Asunto(s)
Interleucina-15 , Células Asesinas Naturales , Receptores de Antígenos de Linfocitos T , Interleucina-15/genética , Interleucina-15/inmunología , Interleucina-15/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Citotoxicidad Inmunológica , Proliferación Celular , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Ingeniería Genética
8.
Nat Commun ; 15(1): 4271, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769289

RESUMEN

T Cell Receptor (TCR) antigen binding underlies a key mechanism of the adaptive immune response yet the vast diversity of TCRs and the complexity of protein interactions limits our ability to build useful low dimensional representations of TCRs. To address the current limitations in TCR analysis we develop a capacity-controlled disentangling variational autoencoder trained using a dataset of approximately 100 million TCR sequences, that we name TCR-VALID. We design TCR-VALID such that the model representations are low-dimensional, continuous, disentangled, and sufficiently informative to provide high-quality TCR sequence de novo generation. We thoroughly quantify these properties of the representations, providing a framework for future protein representation learning in low dimensions. The continuity of TCR-VALID representations allows fast and accurate TCR clustering and is benchmarked against other state-of-the-art TCR clustering tools and pre-trained language models.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Humanos , Aprendizaje Profundo , Algoritmos , Análisis por Conglomerados , Biología Computacional/métodos , Secuencia de Aminoácidos
9.
Nat Immunol ; 25(5): 916-924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698238

RESUMEN

B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.


Asunto(s)
Linfocitos B , Neoplasias de la Mama , Vigilancia Inmunológica , Humanos , Femenino , Neoplasias de la Mama/inmunología , Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Linfocitos T/inmunología , Monitorización Inmunológica , Secuenciación del Exoma , Antígenos de Neoplasias/inmunología , Metástasis de la Neoplasia , Células Clonales
10.
Sci Adv ; 10(20): eadl0161, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748791

RESUMEN

Reliable prediction of T cell specificity against antigenic signatures is a formidable task, complicated by the immense diversity of T cell receptor and antigen sequence space and the resulting limited availability of training sets for inferential models. Recent modeling efforts have demonstrated the advantage of incorporating structural information to overcome the need for extensive training sequence data, yet disentangling the heterogeneous TCR-antigen interface to accurately predict MHC-allele-restricted TCR-peptide interactions has remained challenging. Here, we present RACER-m, a coarse-grained structural model leveraging key biophysical information from the diversity of publicly available TCR-antigen crystal structures. Explicit inclusion of structural content substantially reduces the required number of training examples and maintains reliable predictions of TCR-recognition specificity and sensitivity across diverse biological contexts. Our model capably identifies biophysically meaningful point-mutant peptides that affect binding affinity, distinguishing its ability in predicting TCR specificity of point-mutants from alternative sequence-based methods. Its application is broadly applicable to studies involving both closely related and structurally diverse TCR-peptide pairs.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Humanos , Unión Proteica , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T , Conformación Proteica
11.
Methods Mol Biol ; 2807: 287-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743236

RESUMEN

The inability of people living with HIV (PLWH) to eradicate human immunodeficiency virus (HIV) infection is due in part to the inadequate HIV-specific cellular immune response. The antiviral function of cytotoxic CD8+ T cells, which are crucial for HIV control, is impaired during chronic viral infection because of viral escape mutations, immune exhaustion, HIV antigen downregulation, inflammation, and apoptosis. In addition, some HIV-infected cells either localize to tissue sanctuaries inaccessible to CD8+ T cells or are intrinsically resistant to CD8+ T cell killing. The novel design of synthetic chimeric antigen receptors (CARs) that enable T cells to target specific antigens has led to the development of potent and effective CAR-T cell therapies. While initial clinical trials using anti-HIV CAR-T cells performed over 20 years ago showed limited anti-HIV effects, the improved CAR-T cell design, which enabled its success in treating cancer, has reinstated CAR-T cell therapy as a strategy for HIV cure with notable progress being made in the recent decade.Effective CAR-T cell therapy against HIV infection requires the generation of anti-HIV CAR-T cells with potent in vivo activity against HIV-infected cells. Preclinical evaluation of anti-HIV efficacy of CAR-T cells and their safety is fundamental for supporting the initiation of subsequent clinical trials in PLWH. For these preclinical studies, we developed a novel humanized mouse model supporting in vivo HIV infection, the development of viremia, and the evaluation of novel HIV therapeutics. Preclinical assessment of anti-HIV CAR-T cells using this mouse model involves a multistep process including peripheral blood mononuclear cells (PBMCs) harvested from human donors, T cell purification, ex vivo T cell activation, transduction with lentiviral vectors encoding an anti-HIV CAR, CAR-T cell expansion and infusion in mice intrasplenically injected with autologous PBMCs followed by the determination of CAR-T cell capacity for HIV suppression. Each of the steps described in the following protocol were optimized in the lab to maximize the quantity and quality of the final anti-HIV CAR-T cell products.


Asunto(s)
Infecciones por VIH , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Animales , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Ratones , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Infecciones por VIH/virología , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T CD8-positivos/inmunología , VIH-1/inmunología , Linfocitos T/inmunología , Transducción Genética
12.
Pediatr Allergy Immunol ; 35(5): e14143, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745384

RESUMEN

BACKGROUND: Childhood allergies of asthma and atopic dermatitis (AD) involve an overactive T-cell immune response triggered by allergens. However, the impact of T-cell receptor (TCR) repertoires on allergen sensitization and their role in mediating different phenotypes of asthma and AD in early childhood remains unclear. METHODS: A total of 78 children, comprising 26 with asthma alone, 26 with AD alone, and 26 healthy controls (HC), were enrolled. TCR repertoire profiles were determined using a unique molecular identifier system for next-generation sequencing. Integrative analyses of their associations with allergen-specific IgE levels and allergies were performed. RESULTS: The diversity in TCR alpha variable region (TRAV) genes of TCR repertoires and complementarity determining region 3 (CDR3) clonality in TRAV/TRBV (beta) genes were significantly higher in children with AD compared with those with asthma and HC (p < .05). Compared with HC, the expression of TRAV13-1 and TRAV4 genes was significantly higher in both asthma and AD (p < .05), with a significant positive correlation with mite-specific IgE levels (p < .01). In contrast, TRBV7-9 gene expression was significantly lower in both asthma and AD (p < .01), with this gene showing a significant negative correlation with mite-specific IgE levels (p < .01). Furthermore, significantly higher TRAV8-3 gene expression, positively correlated with food-specific IgE levels, was found in children with AD compared with those with asthma (p < .05). CONCLUSION: Integrated TCR repertoires analysis provides clinical insights into the diverse TCR genes linked to antigen specificity, offering potential for precision immunotherapy in childhood allergies.


Asunto(s)
Alérgenos , Asma , Dermatitis Atópica , Inmunoglobulina E , Humanos , Asma/inmunología , Asma/genética , Dermatitis Atópica/inmunología , Dermatitis Atópica/genética , Masculino , Femenino , Alérgenos/inmunología , Niño , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Preescolar , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Estudios de Casos y Controles , Animales
13.
Cancer Immunol Res ; 12(4): 385-386, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38562081

RESUMEN

All chimeric antigen receptor (CAR) T-cell products currently approved by the FDA are autologous, which poses several challenges for widespread use. In this issue, Degagné and colleagues present their preclinical research on creating off-the-shelf CAR T cells for multiple myeloma. They utilized the CRISPR/Cas12a genome editing platform and gene knock-in techniques to eliminate alloreactivity and decrease susceptibility to natural killer (NK)-cell elimination. This work has led to an ongoing phase I trial of off-the-shelf CAR T cells for multiple myeloma treatment. See related article by Degagné et al., p. 462 (2).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Inmunoterapia Adoptiva/métodos
14.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580329

RESUMEN

BACKGROUND: Hematopoietic cell transplantation (HCT) is an effective treatment for pediatric patients with high-risk, refractory, or relapsed acute myeloid leukemia (AML). However, a large proportion of transplanted patients eventually die due to relapse. To improve overall survival, we propose a combined strategy based on cord blood (CB)-HCT with the application of AML-specific T cell receptor (TCR)-engineered T cell therapy derived from the same CB graft. METHODS: We produced CB-CD8+ T cells expressing a recombinant TCR (rTCR) against Wilms tumor 1 (WT1) while lacking endogenous TCR (eTCR) expression to avoid mispairing and competition. CRISPR-Cas9 multiplexing was used to target the constant region of the endogenous TCRα (TRAC) and TCRß (TRBC) chains. Next, an optimized method for lentiviral transduction was used to introduce recombinant WT1-TCR. The cytotoxic and migration capacity of the product was evaluated in coculture assays for both cell lines and primary pediatric AML blasts. RESULTS: The gene editing and transduction procedures achieved high efficiency, with up to 95% of cells lacking eTCR and over 70% of T cells expressing rWT1-TCR. WT1-TCR-engineered T cells lacking the expression of their eTCR (eTCR-/- WT1-TCR) showed increased cell surface expression of the rTCR and production of cytotoxic cytokines, such as granzyme A and B, perforin, interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), on antigen recognition when compared with WT1-TCR-engineered T cells still expressing their eTCR (eTCR+/+ WT1-TCR). CRISPR-Cas9 editing did not affect immunophenotypic characteristics or T cell activation and did not induce increased expression of inhibitory molecules. eTCR-/- WT1-TCR CD8+ CB-T cells showed effective migratory and killing capacity in cocultures with neoplastic cell lines and primary AML blasts, but did not show toxicity toward healthy cells. CONCLUSIONS: In summary, we show the feasibility of developing a potent CB-derived CD8+ T cell product targeting WT1, providing an option for post-transplant allogeneic immune cell therapy or as an off-the-shelf product, to prevent relapse and improve the clinical outcome of children with AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Niño , Linfocitos T CD8-positivos , Sistemas CRISPR-Cas/genética , Sangre Fetal , Receptores de Antígenos de Linfocitos T/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Línea Celular Tumoral , Recurrencia
15.
Front Immunol ; 15: 1362133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558812

RESUMEN

Chimeric antigen receptor (CAR) -T cell therapy has achieved tremendous efficacy in the treatment of hematologic malignancies and represents a promising treatment regimen for cancer. Despite the striking response in patients with hematologic malignancies, most patients with solid tumors treated with CAR-T cells have a low response rate and experience major adverse effects, which indicates the need for biomarkers that can predict and improve clinical outcomes with future CAR-T cell treatments. Recently, the role of the gut microbiota in cancer therapy has been established, and growing evidence has suggested that gut microbiota signatures may be harnessed to personally predict therapeutic response or adverse effects in optimizing CAR-T cell therapy. In this review, we discuss current understanding of CAR-T cell therapy and the gut microbiota, and the interplay between the gut microbiota and CAR-T cell therapy. Above all, we highlight potential strategies and challenges in harnessing the gut microbiota as a predictor and modifier of CAR-T cell therapy efficacy while attenuating toxicity.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Hematológicas , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Neoplasias/terapia , Neoplasias Hematológicas/terapia , Tratamiento Basado en Trasplante de Células y Tejidos
16.
Elife ; 122024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591522

RESUMEN

Suppressive function of regulatory T cells (Treg) is dependent on signaling of their antigen receptors triggered by cognate self, dietary, or microbial peptides presented on MHC II. However, it remains largely unknown whether distinct or shared repertoires of Treg TCRs are mobilized in response to different challenges in the same tissue or the same challenge in different tissues. Here we use a fixed TCRß chain FoxP3-GFP mouse model to analyze conventional (eCD4) and regulatory (eTreg) effector TCRα repertoires in response to six distinct antigenic challenges to the lung and skin. This model shows highly 'digital' repertoire behavior with easy-to-track challenge-specific TCRα CDR3 clusters. For both eCD4 and eTreg subsets, we observe challenge-specific clonal expansions yielding homologous TCRα clusters within and across animals and exposure sites, which are also reflected in the draining lymph nodes but not systemically. Some CDR3 clusters are shared across cancer challenges, suggesting a response to common tumor-associated antigens. For most challenges, eCD4 and eTreg clonal response does not overlap. Such overlap is exclusively observed at the sites of certain tumor challenges, and not systematically, suggesting transient and local tumor-induced eCD4=>eTreg plasticity. This transition includes a dominant tumor-responding eCD4 CDR3 motif, as well as characteristic iNKT TCRα CDR3. In addition, we examine the homeostatic tissue residency of clonal eTreg populations by excluding the site of challenge from our analysis. We demonstrate that distinct CDR3 motifs are characteristic of eTreg cells residing in particular lymphatic tissues, regardless of the challenge. This observation reveals the tissue-resident, antigen-specific clonal Treg populations.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T Reguladores , Ratones , Animales , Receptores de Antígenos de Linfocitos T/genética , Péptidos , Células Clonales
17.
Front Immunol ; 15: 1302031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571941

RESUMEN

Introduction: Atherosclerosis is a major pathological condition that underlies many cardiovascular diseases (CVDs). Its etiology involves breach of tolerance to self, leading to clonal expansion of autoreactive apolipoprotein B (APOB)-reactive CD4+T cells that correlates with clinical CVD. The T-cell receptor (TCR) sequences that mediate activation of APOB-specific CD4+T cells are unknown. Methods: In a previous study, we had profiled the hypervariable complementarity determining region 3 (CDR3) of CD4+T cells that respond to six immunodominant APOB epitopes in most donors. Here, we comprehensively analyze this dataset of 149,065 APOB-reactive and 199,211 non-reactive control CDR3s from six human leukocyte antigen-typed donors. Results: We identified 672 highly expanded (frequency threshold > 1.39E-03) clones that were significantly enriched in the APOB-reactive group as compared to the controls (log10 odds ratio ≥1, Fisher's test p < 0.01). Analysis of 114,755 naïve, 91,001 central memory (TCM) and 29,839 effector memory (TEM) CDR3 sequences from the same donors revealed that APOB+ clones can be traced to the complex repertoire of unenriched blood T cells. The fraction of APOB+ clones that overlapped with memory CDR3s ranged from 2.2% to 46% (average 16.4%). This was significantly higher than their overlap with the naïve pool, which ranged from 0.7% to 2% (average 1.36%). CDR3 motif analysis with the machine learning-based in-silico tool, GLIPHs (grouping of lymphocyte interactions by paratope hotspots), identified 532 APOB+ motifs. Analysis of naïve and memory CDR3 sequences with GLIPH revealed that ~40% (209 of 532) of these APOB+ motifs were enriched in the memory pool. Network analysis with Cytoscape revealed extensive sharing of the memory-affiliated APOB+ motifs across multiple donors. We identified six motifs that were present in TCM and TEM CDR3 sequences from >80% of the donors and were highly enriched in the APOB-reactive TCR repertoire. Discussion: The identified APOB-reactive expanded CD4+T cell clones and conserved motifs can be used to annotate and track human atherosclerosis-related autoreactive CD4+T cells and measure their clonal expansion.


Asunto(s)
Aterosclerosis , Linfocitos T , Humanos , Regiones Determinantes de Complementariedad/genética , Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T/genética , Apolipoproteínas B , Epítopos Inmunodominantes
18.
J Clin Immunol ; 44(4): 93, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578360

RESUMEN

Newborn screening (NBS) for severe inborn errors of immunity (IEI), affecting T lymphocytes, and implementing measurements of T cell receptor excision circles (TREC) has been shown to be effective in early diagnosis and improved prognosis of patients with these genetic disorders. Few studies conducted on smaller groups of newborns report results of NBS that also include measurement of kappa-deleting recombination excision circles (KREC) for IEI affecting B lymphocytes. A pilot NBS study utilizing TREC/KREC detection was conducted on 202,908 infants born in 8 regions of Russia over a 14-month period. One hundred thirty-four newborns (0.66‰) were NBS positive after the first test and subsequent retest, 41% of whom were born preterm. After lymphocyte subsets were assessed via flow cytometry, samples of 18 infants (0.09‰) were sent for whole exome sequencing. Confirmed genetic defects were consistent with autosomal recessive agammaglobulinemia in 1/18, severe combined immunodeficiency - in 7/18, 22q11.2DS syndrome - in 4/18, combined immunodeficiency - in 1/18 and trisomy 21 syndrome - in 1/18. Two patients in whom no genetic defect was found met criteria of (severe) combined immunodeficiency with syndromic features. Three patients appeared to have transient lymphopenia. Our findings demonstrate the value of implementing combined TREC/KREC NBS screening and inform the development of policies and guidelines for its integration into routine newborn screening programs.


Asunto(s)
Linfopenia , Inmunodeficiencia Combinada Grave , Lactante , Recién Nacido , Humanos , Tamizaje Neonatal/métodos , Proyectos Piloto , Linfopenia/diagnóstico , Linfocitos T , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/genética , ADN , Receptores de Antígenos de Linfocitos T/genética
20.
Arterioscler Thromb Vasc Biol ; 44(5): 1135-1143, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572648

RESUMEN

BACKGROUND: Acute coronary syndrome (ACS) involves plaque-related thrombosis, causing primary ischemic cardiomyopathy or lethal arrhythmia. We previously demonstrated a unique immune landscape of myeloid cells in the culprit plaques causing ACS by using single-cell RNA sequencing. Here, we aimed to characterize T cells in a single-cell level, assess clonal expansion of T cells, and find a therapeutic target to prevent ACS. METHODS: We obtained the culprit lesion plaques from 4 patients with chronic coronary syndrome (chronic coronary syndrome plaques) and the culprit lesion plaques from 3 patients with ACS (ACS plaques) who were candidates for percutaneous coronary intervention with directional coronary atherectomy. Live CD45+ immune cells were sorted from each pooled plaque samples and applied to the 10× platform for single-cell RNA sequencing analysis. We also extracted RNA from other 3 ACS plaque samples and conducted unbiased TCR (T-cell receptor) repertoire analysis. RESULTS: CD4+ T cells were divided into 5 distinct clusters: effector, naive, cytotoxic, CCR7+ (C-C chemokine receptor type 7) central memory, and FOXP3 (forkhead box P3)+ regulatory CD4+ T cells. The proportion of central memory CD4+ T cells was higher in the ACS plaques. Correspondingly, dendritic cells also tended to express more HLAs (human leukocyte antigens) and costimulatory molecules in the ACS plaques. The velocity analysis suggested the differentiation flow from central memory CD4+ T cells into effector CD4+ T cells and that from naive CD4+ T cells into central memory CD4+ T cells in the ACS plaques, which were not observed in the chronic coronary syndrome plaques. The bulk repertoire analysis revealed clonal expansion of TCRs in each patient with ACS and suggested that several peptides in the ACS plaques work as antigens and induced clonal expansion of CD4+ T cells. CONCLUSIONS: For the first time, we revealed single cell-level characteristics of CD4+ T cells in patients with ACS. CD4+ T cells could be therapeutic targets of ACS. REGISTRATION: URL: https://upload.umin.ac.jp/cgi-open-bin/icdr_e/ctr_view.cgi?recptno=R000046521; Unique identifier: UMIN000040747.


Asunto(s)
Síndrome Coronario Agudo , Linfocitos T CD4-Positivos , Placa Aterosclerótica , Análisis de la Célula Individual , Humanos , Síndrome Coronario Agudo/inmunología , Síndrome Coronario Agudo/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Anciano , RNA-Seq , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Vasos Coronarios/inmunología , Vasos Coronarios/patología , Análisis de Secuencia de ARN , Enfermedad de la Arteria Coronaria/inmunología , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...