Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167125, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508477

RESUMEN

Scarring, a prevalent issue in clinical settings, is characterized by the excessive generation of extracellular matrix within the skin tissue. Among the numerous regulatory factors implicated in fibrosis across various organs, the apelin/APJ axis has emerged as a potential regulator of fibrosis. Given the shared attribute of heightened extracellular matrix production between organ fibrosis and scarring, we hypothesize that the apelin/APJ axis also plays a regulatory role in scar development. In this study, we examined the expression of apelin and APJ in scar tissue, normal skin, and fibroblasts derived from these tissues. We investigated the impact of the hypoxic microenvironment in scars on apelin/APJ expression to identify the transcription factors influencing apelin/APJ expression. Through overexpressing or knocking down apelin/APJ expression, we observed their effects on fibroblast secretion of extracellular matrix proteins. We further validated these effects in animal experiments while exploring the underlying mechanisms. Our findings demonstrated that the apelin/APJ axis is expressed in fibroblasts from keloid, hypertrophic scar, and normal skin. The regulation of apelin/APJ expression by the hypoxic environment in scars plays a significant role in hypertrophic scar and keloid development. This regulation promotes extracellular matrix secretion through upregulation of TGF-ß1 expression via the PI3K/Akt/CREB1 pathway.


Asunto(s)
Cicatriz Hipertrófica , Queloide , Animales , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Fibrosis , Queloide/metabolismo , Fosfatidilinositol 3-Quinasas , Humanos
2.
J Exp Zool A Ecol Integr Physiol ; 341(4): 450-457, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38390701

RESUMEN

The apelin receptor (APJ) belongs to the member of the G protein-coupled receptor family, and expression of APJ has been reported in the different cell types of testis. The seminiferous tubules in the testis can be identified as different stages (I-XII). It has been also suggested that different factors could be expressed in stage and cell-specific manner in the seminiferous tubules. Recently, we also shown that expression of APJ is developmentally regulated in the testis from PND1 to PND42. Therefore, we analyzed the expression of APJ in the testis of adult mice by immunohistochemistry. Immunohistochemistry showed that the APJ was highly specific for the round and elongated spermatids with stage-dependent changes. The seminiferous tubules at stages I-VII showed APJ immunostaining in the spermatid steps 1-8, not steps of 13-16. The seminiferous tubules at stages IX-XII showed APJ immunostaining in the spermatid steps 9-12. These results suggested the possible role of APJ in the spermiogenesis process. The intratesticular administration of APJ antagonist, ML221 showed a few round spermatids in the seminiferous tubules and some of the tubules with complete absence of round spermatid. Overall, we present evidence that APJ expression in spermatid is dependent on the stages of the seminiferous epithelium cycle and APJ could be involved in the differentiation of round spermatid to elongated spermatid.


Asunto(s)
Epitelio Seminífero , Testículo , Animales , Masculino , Ratones , Receptores de Apelina/metabolismo , Epitelio Seminífero/fisiología , Túbulos Seminíferos , Espermátides/metabolismo
3.
Sci Rep ; 14(1): 3718, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355946

RESUMEN

In contrast to adult mammals, zebrafish display a high capacity to heal injuries and repair damage to various organs. One of the earliest responses to injury in adult zebrafish is revascularization, followed by tissue morphogenesis. Tissue vascularization entails the formation of a blood vessel plexus that remodels into arteries and veins. The mechanisms that coordinate these processes during vessel regeneration are poorly understood. Hence, investigating and identifying the factors that promote revascularization and vessel remodeling have great therapeutic potential. Here, we revealed that fin vessel remodeling critically depends on Apela peptide. We found that Apela selectively accumulated in newly formed zebrafish fin tissue and vessels. The temporal expression of Apela, Apln, and their receptor Aplnr is different during the regenerative process. While morpholino-mediated knockdown of Apela (Mo-Apela) prevented vessel remodeling, exogenous Apela peptide mediated plexus repression and the development of arteries in regenerated fins. In contrast, Apela enhanced subintestinal venous plexus formation (SIVP). The use of sunitinib completely inhibited vascular plexus formation in zebrafish, which was not prevented by exogenous application. Furthermore, Apela regulates the expression of vessel remolding-related genes including VWF, IGFPB3, ESM1, VEGFR2, Apln, and Aplnr, thereby linking Apela to the vascular plexus factor network as generated by the STRING online database. Together, our findings reveal a new role for Apela in vessel regeneration and remodeling in fin zebrafish and provide a framework for further understanding the cellular and molecular mechanisms involved in vessel regeneration.


Asunto(s)
Hormonas Peptídicas , Pez Cebra , Animales , Aletas de Animales/metabolismo , Receptores de Apelina/metabolismo , Mamíferos/metabolismo , Hormonas Peptídicas/metabolismo , Regeneración , Remodelación Vascular , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Neuroendocrinology ; 114(3): 234-249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37899035

RESUMEN

INTRODUCTION: Apelin is an endogenous peptide, whose expression has been shown in the hypothalamus, pituitary, and ovary; furthermore, it is also called a neuropeptide, binding to apelin receptor (APJ) for various functions. It has been suggested that the hypothalamus, pituitary, and ovarian (HPO) axis is tightly regulated and factors and functions of the HPO axis can be modulated during the estrous cycle to influence reproductive status. To the best of our knowledge, the status of apelin and its receptor, APJ has not been investigated in the HPO axis during the estrous cycle. METHODS: To explore the expression of apelin and APJ in the HPO axis of mice during the estrous cycle, mice were divided into four groups: proestrus (Pro), estrus (Est), metestrus (Met), and diestrus (Di), and apelin and APJ were checked. Further, to explore the role of apelin in gonadotropin secretion, an in vitro study of the pituitary was performed at the Pro and Est stages. RESULT: The expression apelin and APJ in the hypothalamus showed elevation during the estrous cycle of postovulatory phases, Met, and Di. The immunolocalization of apelin and APJ in the anterior pituitary showed more abundance in the Est and Di. Our in vitro results showed that gonadotropin-releasing hormone agonist stimulated luteinizing hormone secretion was suppressed by the apelin 13 peptide from the pituitary of Pro and Est phases. This suggests an inhibitory role of apelin on gonadotropin secretion. The ovary also showed conspicuous changes in the presence of apelin and APJ during the estrous cycle. The expression of apelin and APJ coincides with folliculogenesis and corpus luteum formation and the expression of the apelin system in the different cell types of the ovary suggests its cell-specific role. Previous studies also showed that apelin has a stimulatory role in ovarian steroid secretion, proliferation, and corpus luteum. CONCLUSION: Overall our results showed that the apelin system changes along the HPO axis during the estrous cycle and might have an inhibitory at level of hypothalamus and pituitary and a stimulatory role at ovarian level.


Asunto(s)
Ovario , Enfermedades de la Hipófisis , Animales , Femenino , Ratones , Apelina/metabolismo , Receptores de Apelina/metabolismo , Ciclo Estral , Gonadotropinas/metabolismo , Ovario/metabolismo
5.
Front Endocrinol (Lausanne) ; 14: 1285788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089606

RESUMEN

Apelin, a novel endogenous ligand of the G-protein-coupled receptor APJ, is encoded by the APLN gene and can be hydrolyzed into multiple subtypes, with Apelin-13 being one of the most active subtypes of the Apelin family. Recent studies have revealed that Apelin-13 functions as an adipokine that participates in the regulation of different biological processes, such as oxidative stress, inflammation, apoptosis, and energy metabolism, thereby playing an important role in the prevention and treatment of various metabolic diseases. However, the results of recent studies on the association between Apelin-13 and various metabolic states remain controversial. Furthermore, Apelin-13 is regulated or influenced by various forms of exercise and could therefore be categorized as a new type of exercise-sensitive factor that attenuates metabolic diseases. Thus, in this review, our purpose was to focus on the relationship between Apelin-13 and related metabolic diseases and the regulation of response movements, with particular reference to the establishment of a theoretical basis for improving and treating metabolic diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Enfermedades Metabólicas , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico
6.
Biochemistry (Mosc) ; 88(11): 1874-1889, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105205

RESUMEN

Creation of bioactive molecules for treatment of cardiovascular diseases based on natural peptides is the focus of intensive experimental research. In the recent years, it has been established that C-terminal fragments of apelin, an endogenous ligand of the APJ receptor, reduce metabolic and functional disorders in experimental heart damage. The review presents literature data and generalized results of our own experiments on the effect of apelin-13, [Pyr]apelin-13, apelin-12, and their chemically modified analogues on the heart under normal and pathophysiological conditions in vitro and in vivo. It has been shown that the spectrum of action of apelin peptides on the damaged myocardium includes decrease in the death of cardiomyocytes from necrosis, reduction of damage to cardiomyocyte membranes, improvement in myocardial metabolic state, and decrease in formation of reactive oxygen species and lipid peroxidation products. The mechanisms of protective action of these peptides associated with activation of the APJ receptor and manifestation of antioxidant properties are discussed. The data presented in the review show promise of the molecular design of APJ receptor peptide agonists, which can serve as the basis for the development of cardioprotectors that affect the processes of free radical oxidation and metabolic adaptation.


Asunto(s)
Enfermedades Cardiovasculares , Miocardio , Humanos , Apelina/farmacología , Apelina/metabolismo , Receptores de Apelina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos , Enfermedades Cardiovasculares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Cardiovasc Res ; 119(17): 2683-2696, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-37956047

RESUMEN

Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.


Asunto(s)
Apelina , Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Corazón
8.
Int J Oncol ; 63(6)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37921070

RESUMEN

Cancer­associated fibroblasts (CAFs) are pivotal in tumor progression. TP53­deficiency in cancer cells is associated with robust stromal activation. The apelin­apelin receptor (APJ) system has been implicated in suppressing fibroblast­to­myofibroblast transition in non­neoplastic organ fibrosis. The present study aimed to elucidate the oncogenic role of the apelin­APJ system in tumor fibroblasts. APJ expression and the effect of APJ suppression in fibroblasts were investigated for p53 status in cancer cells using human cell lines (TP53­wild colon cancer, HCT116, and Caco­2; TP53­mutant colon cancer, SW480, and DLD­1; and colon fibroblasts, CCD­18Co), resected human tissue samples of colorectal cancers, and immune­deficient nude mouse xenograft models. The role of exosomes collected by ultracentrifugation were also analyzed as mediators of p53 expression in cancer cells and APJ expression in fibroblasts. APJ expression in fibroblasts co­cultured with p53­suppressed colon cancer cells (HCT116sh p53 cells) was significantly lower than in control colon cancer cells (HCT116sh control cells). APJ­suppressed fibroblasts treated with an antagonist or small interfering RNA showed myofibroblast­like properties, including increased proliferation and migratory abilities, via accelerated phosphorylation of Sma­ and Mad­related protein 2/3 (Smad2/3). In addition, xenografts of HCT116 cells with APJ­suppressed fibroblasts showed accelerated tumor growth. By contrast, apelin suppressed the upregulation of phosphorylated Smad2/3 in fibroblasts. MicroRNA 5703 enriched in exosomes derived from HCT116sh p53 cells inhibited APJ expression, and inhibition of miR­5703 diminished APJ suppression in fibroblasts caused by cancer cells. APJ suppression from a specific microRNA in cancer cell­derived exosomes induced CAF­like properties in fibroblasts. Thus, the APJ system in fibroblasts in the tumor microenvironment may be a promising therapeutic target.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias del Colon , MicroARNs , Ratones , Animales , Humanos , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Células CACO-2 , Apelina/genética , Apelina/metabolismo , Fibroblastos/metabolismo , MicroARNs/genética , Neoplasias del Colon/patología , Transducción de Señal , Fibroblastos Asociados al Cáncer/metabolismo , Proliferación Celular , Microambiente Tumoral
9.
Int J Dev Biol ; 67(3): 91-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937415

RESUMEN

Although preterm birth is among the preventable causes of maternal and infant death, its mechanism has not yet been clarified. When evaluated in terms of the results, the psycho-social burden of mother-infant losses and the costs of rehabilitation, care, and treatment for postpartum sequelae are high. When evaluated in terms of its causes, infection/inflammation has an important place. Therefore, it is essential to understand the role of pro- and anti-inflammatory proteins in the process. In our study, apelin and apelin receptor (APJ) expression in the cervix-uterus and placental axis were evaluated at tissue and protein levels in pregnant and non-pregnant control, sham, PBS, and LPS groups in the infection model in which LPS induction was performed by midline laparotomy, in CD-1 mice. The evaluation of this axis regarding apelin and apelin receptor in the preterm birth model is new in the literature. Apelin is expressed more intensely in uterine epithelial cells than in the cervix. In the placenta, expression is more intense in the junctional zone compared to other zones. Apelin protein levels decrease significantly in the cervix and placenta whereas it increases in the uterus. While no change was observed in the expression of the apelin receptor at the tissue and protein level in the cervix and uterus, it increased in both aspects in the placenta in the invasive procedure groups. We propose that the decrease in apelin protein due to LPS in the preterm delivery model may be related to the effort to compensate for the balance deteriorated in the pro-inflammatory direction with post-transitional modification at the tissue level. The tendency of apelin to increase with pregnancy has led to the conclusion that it is necessary for a healthy pregnancy. Although the apelin receptor does not change with inflammation, it is necessary to investigate the mechanisms associated with its stress and trauma-induced increase, since it increases in the invasive procedure group.


Asunto(s)
Trabajo de Parto Prematuro , Nacimiento Prematuro , Humanos , Femenino , Embarazo , Ratones , Animales , Placenta/metabolismo , Receptores de Apelina/metabolismo , Apelina/metabolismo , Cuello del Útero/metabolismo , Lipopolisacáridos/metabolismo , Nacimiento Prematuro/metabolismo , Útero/metabolismo , Trabajo de Parto Prematuro/metabolismo , Inflamación
10.
Ageing Res Rev ; 91: 102076, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776977

RESUMEN

Elabela (ELA), Apela or Toddler peptide is a hormone peptide belonging to the adipokine group and a component of apelinergic system, discovered in 2013-2014. Given its high homology with apelin, the first ligand of APJ receptor, ELA likely mediates similar effects. Increasing evidence shows that ELA has a critical function not only in embryonic development, but also in adulthood, contributing to physiological and pathological conditions, such as the onset of age-related diseases (ARD). However, still little is known about the mechanisms and molecular pathways of ELA, as well as its precise functions in ARD pathophysiology. Here, we report the mechanisms by which ELA/APJ signaling acts in a very complex network of pathways for the maintenance of physiological functions of human tissue and organs, as well as in the onset of some ARD, where it appears to play a central role. Therefore, we describe the possibility to use the ELA/APJ pathway, as novel biomarker (predictive and diagnostic) and target for personalized treatments of ARD. Its potentiality as an optimal peptide candidate for therapeutic ARD treatments is largely described, also detailing potential current limitations.


Asunto(s)
Hormonas Peptídicas , Embarazo , Femenino , Humanos , Hormonas Peptídicas/química , Hormonas Peptídicas/metabolismo , Receptores de Apelina/metabolismo , Transducción de Señal , Envejecimiento
11.
Biomed Pharmacother ; 166: 115268, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562237

RESUMEN

Apelin and Elabela (Ela) are peptides encoded by APLN and APELA, respectively, which act on their receptor APJ and play crucial roles in the body. Recent research has shown that they not only have important effects on the endocrine system, but also promote vascular development and maintain the homeostasis of myocardial cells. From a molecular biology perspective, we explored the roles of Ela and apelin in the cardiovascular system and summarized the mechanisms of apelin-APJ signaling in the progression of myocardial infarction, ischemia-reperfusion injury, atherosclerosis, pulmonary arterial hypertension, preeclampsia, and congenital heart disease. Evidences indicated that apelin and Ela play important roles in cardiovascular diseases, and there are many studies focused on developing apelin, Ela, and their analogues for clinical treatments. However, the literature on the therapeutic potential of apelin, Ela and their analogues and other APJ agonists in the cardiovascular system is still limited. This review summarized the regulatory pathways of apelin/ELA-APJ axis in cardiovascular function and cardiovascular-related diseases, and the therapeutic effects of their analogues in cardiovascular diseases were also included.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Femenino , Humanos , Embarazo , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Hormonas Peptídicas/uso terapéutico , Transducción de Señal
12.
Front Endocrinol (Lausanne) ; 14: 1193150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424869

RESUMEN

Lifestyle changes have made metabolic disorders as one of the major threats to life. Growing evidence demonstrates that obesity and diabetes disrupt the reproductive system by affecting the gonads and the hypothalamus-pituitary-gonadal (HPG) axis. Apelin, an adipocytokine, and its receptor (APJ) are broadly expressed in the hypothalamus nuclei, such as paraventricular and supraoptic, where gonadotropin-releasing hormone (GnRH) is released, and all three lobes of the pituitary, indicating that apelin is involved in the control of reproductive function. Moreover, apelin affects food intake, insulin sensitivity, fluid homeostasis, and glucose and lipid metabolisms. This review outlined the physiological effects of the apelinergic system, the relationship between apelin and metabolic disorders such as diabetes and obesity, as well as the effect of apelin on the reproductive system in both gender. The apelin-APJ system can be considered a potential therapeutic target in the management of obesity-associated metabolic dysfunction and reproductive disorders.


Asunto(s)
Enfermedades Metabólicas , Obesidad , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , Gónadas/metabolismo , Hormona Liberadora de Gonadotropina/química , Hormona Liberadora de Gonadotropina/metabolismo
13.
Neuropeptides ; 101: 102354, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37379791

RESUMEN

The expression of apelin and its receptor (APJ) has been shown in the hypothalamus-pituitary-testicular axis. It has also been suggested apelin and APJ are neuropeptide factors. The presence of apelin and APJ in the seminiferous tubules and interstitium might be predicted to act as a local regulator of testicular activity, although the function is not well known in the mice testis. In the present study, we have investigated the effects of APJ, antagonist, ML221 on the gonadotropin levels, testicular steroidogenesis, proliferation, apoptosis and antioxidant system. Our results showed that inhibition of APJ by ML221 increased the sperm concentration, circulating testosterone, FSH, LH levels and intra-testicular testosterone concentration. Furthermore, ML221 treatment stimulates the germ cell proliferation and antioxidant system in the testis. The expression of BCL2, AR was up-regulated whereas, the expression of BAX and active caspase3 was down-regulated after ML221 treatment. Immunohistocehmical analysis of AR also showed increase abundance in the spermatogonia, primary spermatocytes and Leydig cells of 150 µg/kg dose group. These findings suggest that in adult testis, the apelin system might have an inhibitory role in germ cell proliferation and a stimulatory role in apoptosis. It might also be suggested that the apelin system could be involved in the disposal mechanism for damaged germ cells during spermatogenesis via the down-regulation of AR.


Asunto(s)
Antioxidantes , Testículo , Ratones , Masculino , Animales , Testículo/metabolismo , Antioxidantes/farmacología , Receptores de Apelina/metabolismo , Apelina/metabolismo , Semen/metabolismo , Testosterona , Proliferación Celular
14.
Placenta ; 138: 33-43, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37167781

RESUMEN

INTRODUCTION: Proliferation, migration and invasion of extravillous trophoblasts (EVTs) play an important role in the progression of preeclampsia (PE). The purpose of this study was to investigate the molecular mechanism by which DNA methylase regulates the transcription level of APLNR and affects the phenotypic function of EVTs. MATERIALS AND METHODS: PE mice model and H/R model in HTR8/Svneo cells were constructed. Clinical samples of normal pregnant women and PE patients were collected. Expression and methylation level of APLNR in vivo and in vitro were detected. ChIP-qPCR was used to detect the binding of DNA methyltransferase at the APLNR promoter. The expression of DNA methyltransferase 1 (DNMT1), NO and eNOS in vitro were detected. EVTs proliferation, migration and invasion in vitro were detected. RESULTS: In placental tissues or HTR8/Svneo cells of the PE model group, the expression of APLNR was reduced and APLNR methylation level was up-regulated. There was no significant difference in the APLNR expression in placental tissues between normal pregnant women and PE patients. H/R conditions only promote the binding of DNMT1 at the APLNR promoter. DNMT1 interference decreased the enrichment degree of DNMT1 in APLNR promoter region and up-regulated the mRNA and protein levels of APLNR in vivo and in vitro. The activation of APLNR by Elabela (ELA) can promote eNOS transcription, thereby promoting cell proliferation and NO level, while eNOS inhibitor can reverse this effect. DNMT1 down-regulation inhibted APLNR methylation level, promoted eNOS transcription, and promoted EVTs proliferation, migration and invasion, which could be revised by the interference of APLNR. DISCUSSION: DNMT1 promotes eNOS transcription by inhibting APLNR methylation level, and promotes EVTs proliferation, migration and invasion, thus providing a new and broad application prospect for PE treatment.


Asunto(s)
Placenta , Preeclampsia , Animales , Femenino , Humanos , Ratones , Embarazo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , ADN/metabolismo , Metilación de ADN , Metiltransferasas/genética , Placenta/metabolismo , Preeclampsia/metabolismo , Trofoblastos/metabolismo
15.
Med Oncol ; 40(6): 179, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188900

RESUMEN

Apelin/APJ axis plays a critical role in cancer progression, thus its targeting inhibits tumor growth. However, blocking of Apelin/APJ axis in combination with immunotherapeutic approaches may be more effective. This study aimed to investigate the effects of APJ antagonist ML221 in combination with a DC vaccine on angiogenic, metastatic and apoptotic-related factors in a breast cancer (BC) model. Four groups of female BALB/c mice with 4T1-induced BC were treated with PBS, APJ antagonist ML221, DC vaccine, and "ML221 + DC vaccine". After completion of the treatment, the mice were sacrificed and the serum levels of IL-9 and IL-35 as well as the mRNA expression of angiogenesis (including VEGF, FGF-2, and TGF-ß), metastasis (including MMP-2, MMP-9, CXCR4) and apoptosis-related markers (Bcl-2, Bax, Caspase-3) in tumor tissues were determined using ELISA and real-time PCR, respectively. Angiogenesis was also evaluated by co-immunostaining of tumor tissues with CD31 and DAPI. Primary tumor metastasis to the liver was analyzed using hematoxylin-eosin staining. The efficiency of combination therapy with "ML221 + DC vaccine" was remarkably higher than single therapies in preventing liver metastasis compared to the control group. In comparison with the control group, combination therapy could significantly reduce the expression of MMP-2, MMP-9, CXCR4, VEGF, FGF-2, and TGF-ß in tumor tissues (P < 0.05). It also decreased the serum level of IL-9 and IL-35 compared with the control group (P < 0.0001). Moreover, vascular density and vessel diameter were significantly reduced in the combination therapy group compared with the control group (P < 0.0001). Overall, our findings demonstrate that combination therapy using a blocker of the apelin/APJ axis and DC vaccine can be considered a promising therapeutic program in cancers.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hepáticas , Animales , Femenino , Ratones , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Neoplasias de la Mama/terapia , Células Dendríticas/metabolismo , Factor 2 de Crecimiento de Fibroblastos , Interleucina-9 , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Factor de Crecimiento Transformador beta , Eficacia de las Vacunas , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Peptides ; 166: 171027, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37245722

RESUMEN

The apelinergic system widely expressed and regulates hormone-enzyme secretion, motility, and protective mechanisms of the stomach. This system consists of the apelin receptor (APJ) and two peptides known as apela and apelin. The IR-induced experimental gastric ulcer model is a well-known and commonly used one that induces hypoxia and causes the release of proinflammatory cytokines. Expressions of apelin and its receptor APJ are induced by hypoxia and inflammation in the gastrointestinal tract. Apelin has been shown to affect angiogenesis positively, considered the most critical component of the healing process. Although it is known that apelin and AJP expressions are induced by inflammatory stimuli and hypoxia, stimulate endothelial cell proliferation and have a role in regenerative angiogenesis, no information or has been found in the literature regarding the role of APJ in the formation and healing of gastric mucosal lesions induced by I/R. So, we conducted a study to clarify the role of APJ in formation and healing mechanisms of IR-induced gastric lesions. Male Wistar rats were divided into five groups; control, sham-operated, IR, APJ antagonist treated-IR group (F13A+IR), and the healing groups. F13A was intravenously given to the animals. Gastric lesion index, mucosal blood flow, PGE2, NOx, 4-HNE-MDA, HO activity, and protein expressions of VEGF and HO-1 were measured. F13A application before the IR increased the mucosal injury, F13A application following the ischemia delayed the mucosal healing during the reperfusion period. Consequently, blocking apelin receptors may worsen gastric injury due to the IR and delay mucosal healing.


Asunto(s)
Hormonas Peptídicas , Úlcera Gástrica , Animales , Masculino , Ratas , Apelina/genética , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Isquemia , Ratas Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Reperfusión , Úlcera Gástrica/tratamiento farmacológico
17.
J Nutr Biochem ; 117: 109350, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37044135

RESUMEN

Several studies have shown the beneficial effects of (-)-epicatechin (Epi) in metabolic profile and that this flavanol is a biased ligand of the apelin receptor. The apelinergic system is expressed in adipocytes and has been related to obesity and metabolic disorders. The study aim was to evaluate the effect of Epi on apelin, on its receptor and on proteins involved in lipolysis, lipogenesis, and adipogenesis in the retroperitoneal adipose tissue of male rats descended from obese mothers. We evaluated the effect of Epi in the retroperitoneal adipose tissue of four groups of male offspring, analyzing mRNA expression and protein levels of apelin and its Apj receptor. We also analyzed, by Western Blot, the levels of AMPKα, ACC, C/EBPα, ATGL, Fas, and FABP4 of the AP2 proteins. Epi significantly elevated apelin mRNA expression and protein levels as well as its Apj receptor. Besides, the flavanol significantly promoted AMPKα phosphorylation with the concomitant reduction of Fas, and the increase of the ATGL protein. In contrast, there was an increase in the inactive phosphorylated form of ACC and a decrease in the phosphorylated active form of C/EBPα. Similarly, Epi treatment induced a reduction in the fatty acid-binding protein 4 in the C+Epi and MO+Epi groups. In conclusion, Epi increases the expression of the apelinergic system and the active phosphorylated form of AMPKα; likewise, it modifies the expression level or active form of proteins involved in lipolysis, lipogenesis and adipogenesis in the retroperitoneal adipose tissue of male offspring of obese mothers.


Asunto(s)
Catequina , Obesidad Materna , Ratas , Masculino , Femenino , Animales , Humanos , Embarazo , Receptores de Apelina/metabolismo , Apelina/metabolismo , Metabolismo de los Lípidos , Catequina/farmacología , Obesidad/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
J Cell Biochem ; 124(4): 586-605, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36855998

RESUMEN

The elabela-apelin/angiotensin domain type 1 receptor-associated protein (APJ) system is an important regulator in certain thrombosis-related diseases such as atherosclerosis, myocardial infarction, and cerebral infarction. Our previous reports have revealed that apelin exacerbates atherosclerotic lesions. However, the relationship between the elabela-apelin/APJ system and platelet aggregation and atherothrombosis is unclear. The results of the present study demonstrate that elabela and other endogenous ligands such as apelin-12, -17, and -36 induce platelet aggregation and thrombosis by activating the pannexin1(PANX1)-P2X7 signaling pathway. Interestingly, the diuretic, spironolactone, a novel PANX1 inhibitor, alleviated elabela- and apelin isoforms-induced platelet aggregation and thrombosis. Significantly, two potential antithrombotic drugs were screened out by targeting APJ receptors, including the anti-HIV ancillary drug cobicistat and the traditional Chinese medicine monomer Schisandrin A. Both cobicistat and Schisandrin A abolished the effects of elabela and apelin isoforms on platelet aggregation, thrombosis, and cerebral infarction. In addition, cobicistat significantly attenuated thrombosis in a ponatinib-induced zebrafish trunk model. Overall, the elabela-apelin/APJ axis mediated platelet aggregation and thrombosis via the PANX1-P2X7 signaling pathway in vitro and in vivo. Blocking the APJ receptor with cobicistat/Schisandrin A or inhibiting PANX1 with spironolactone may provide novel therapeutic strategies against thrombosis.


Asunto(s)
Hormonas Peptídicas , Trombosis , Animales , Apelina , Pez Cebra/metabolismo , Espironolactona , Agregación Plaquetaria , Hormonas Peptídicas/metabolismo , Transducción de Señal , Receptores de Apelina/metabolismo , Trombosis/tratamiento farmacológico , Infarto Cerebral
19.
Front Endocrinol (Lausanne) ; 14: 1139121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967803

RESUMEN

Introduction: The apelin receptor binds two distinct endogenous peptides, apelin and ELA, which act in an autocrine/paracrine manner to regulate the human cardiovascular system. As a class A GPCR, targeting the apelin receptor is an attractive therapeutic strategy. With improvements in imaging techniques, and the stability and brightness of dyes, fluorescent ligands are becoming increasingly useful in studying protein targets. Here, we describe the design and validation of four novel fluorescent ligands; two based on [Pyr1]apelin-13 (apelin488 and apelin647), and two based on ELA-14 (ELA488 and ELA647). Methods: Fluorescent ligands were pharmacologically assessed using radioligand and functional in vitro assays. Apelin647 was validated in high content imaging and internalisation studies, and in a clinically relevant human embryonic stem cell-derived cardiomyocyte model. Apelin488 and ELA488 were used to visualise apelin receptor binding in human renal tissue. Results: All four fluorescent ligands retained the ability to bind and activate the apelin receptor and, crucially, triggered receptor internalisation. In high content imaging studies, apelin647 bound specifically to CHO-K1 cells stably expressing apelin receptor, providing proof-of-principle for a platform that could screen novel hits targeting this GPCR. The ligand also bound specifically to endogenous apelin receptor in stem cell-derived cardiomyocytes. Apelin488 and ELA488 bound specifically to apelin receptor, localising to blood vessels and tubules of the renal cortex. Discussion: Our data indicate that the described novel fluorescent ligands expand the pharmacological toolbox for studying the apelin receptor across multiple platforms to facilitate drug discovery.


Asunto(s)
Hormonas Peptídicas , Cricetinae , Animales , Humanos , Receptores de Apelina/metabolismo , Ligandos , Hormonas Peptídicas/metabolismo , Cricetulus , Unión Proteica
20.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902176

RESUMEN

Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer's and Parkinson's diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile.


Asunto(s)
Receptores de Apelina , Apelina , Estrés Oxidativo , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...