Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Front Immunol ; 15: 1366841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711521

RESUMEN

Introduction: Age-related macular degeneration (AMD) is a prevalent, chronic and progressive retinal degenerative disease characterized by an inflammatory response mediated by activated microglia accumulating in the retina. In this study, we demonstrate the therapeutically effects and the underlying mechanisms of microglial repopulation in the laser-induced choroidal neovascularization (CNV) model of exudative AMD. Methods: The CSF1R inhibitor PLX3397 was used to establish a treatment paradigm for microglial repopulation in the retina. Neovascular leakage and neovascular area were examined by fundus fluorescein angiography (FFA) and immunostaining of whole-mount RPE-choroid-sclera complexes in CNV mice receiving PLX3397. Altered cellular senescence was measured by beta-galactosidase (SA-ß-gal) activity and p16INK4a expression. The effect and mechanisms of repopulated microglia on leukocyte infiltration and the inflammatory response in CNV lesions were analyzed. Results: We showed that ten days of the CSF1R inhibitor PLX3397 treatment followed by 11 days of drug withdrawal was sufficient to stimulate rapid repopulation of the retina with new microglia. Microglial repopulation attenuated pathological choroid neovascularization and dampened cellular senescence in CNV lesions. Repopulating microglia exhibited lower levels of activation markers, enhanced phagocytic function and produced fewer cytokines involved in the immune response, thereby ameliorating leukocyte infiltration and attenuating the inflammatory response in CNV lesions. Discussion: The microglial repopulation described herein are therefore a promising strategy for restricting inflammation and choroidal neovascularization, which are important players in the pathophysiology of AMD.


Asunto(s)
Aminopiridinas , Neovascularización Coroidal , Modelos Animales de Enfermedad , Microglía , Animales , Neovascularización Coroidal/etiología , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Microglía/metabolismo , Microglía/efectos de los fármacos , Ratones , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Ratones Endogámicos C57BL , Degeneración Macular/patología , Degeneración Macular/metabolismo , Degeneración Macular/tratamiento farmacológico , Inflamación , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pirroles/farmacología , Pirroles/uso terapéutico , Senescencia Celular/efectos de los fármacos
2.
Elife ; 122024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775664

RESUMEN

Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.


Asunto(s)
Macrófagos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Macrófagos/inmunología , Ratones , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Isquemia Miocárdica/inmunología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/inmunología , Masculino , Daño por Reperfusión Miocárdica/inmunología , Daño por Reperfusión Miocárdica/patología , Ratones Endogámicos C57BL , Miocardio/patología , Miocardio/inmunología , Modelos Animales de Enfermedad
3.
Glia ; 72(7): 1340-1355, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38597386

RESUMEN

Several in vivo studies have shown that systemic inflammation, mimicked by LPS, triggers an inflammatory response in the CNS, driven by microglia, characterized by an increase in inflammatory cytokines and associated sickness behavior. However, most studies induce relatively high systemic inflammation, not directly compared with the more common low-grade inflammatory events experienced in humans during the life course. Using mice, we investigated the effects of low-grade systemic inflammation during an otherwise healthy early life, and how this may precondition the onset and severity of Alzheimer's disease (AD)-like pathology. Our results indicate that low-grade systemic inflammation induces sub-threshold brain inflammation and promotes microglial proliferation driven by the CSF1R pathway, contrary to the effects caused by high systemic inflammation. In addition, repeated systemic challenges with low-grade LPS induce disease-associated microglia. Finally, using an inducible model of AD-like pathology (Line 102 mice), we observed that preconditioning with repeated doses of low-grade systemic inflammation, prior to APP induction, promotes a detrimental effect later in life, leading to an increase in Aß accumulation and disease-associated microglia. These results support the notion that episodic low-grade systemic inflammation has the potential to influence the onset and severity of age-related neurological disorders, such as AD.


Asunto(s)
Enfermedad de Alzheimer , Inflamación , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía , Animales , Microglía/metabolismo , Microglía/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Inflamación/patología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Ratones , Modelos Animales de Enfermedad , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Masculino , Femenino , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Encéfalo/patología , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Citocinas/metabolismo
4.
EMBO Rep ; 25(5): 2348-2374, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589666

RESUMEN

Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.


Asunto(s)
Hipocampo , Microglía , Sinapsis , Animales , Microglía/metabolismo , Sinapsis/metabolismo , Ratones , Hipocampo/metabolismo , Hipocampo/citología , Espinas Dendríticas/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Plasticidad Neuronal , Neuronas/metabolismo , Ácido Glutámico/metabolismo
5.
Int Immunopharmacol ; 133: 112071, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636374

RESUMEN

Microglia play a pivotal role in the neuroinflammatory response after brain injury, and their proliferation is dependent on colony-stimulating factors. In the present study, we investigated the effect of inhibiting microglia proliferation on neurological damage post intracerebral hemorrhage (ICH) in a mouse model, an aspect that has never been studied before. Using a colony-stimulating factor-1 receptor antagonist (GW2580), we observed that inhibition of microglia proliferation significantly ameliorated neurobehavioral deficits, attenuated cerebral edema, and reduced hematoma volume after ICH. This intervention was associated with a decrease in pro-inflammatory factors in microglia and an increased infiltration of peripheral regulatory CD8 + CD122+ T cells into the injured brain tissue. The CXCR3/CXCL10 axis is the mechanism of brain homing of regulatory CD8 + CD122+ T cells, and the high expression of IL-10 is the hallmark of their synergistic anti-inflammatory effect with microglia. And activated astrocytes around the insult site are a prominent source of CXCL10. Thus, inhibition of microglial proliferation offers a new perspective for clinical translation. The cross-talk between multiple cells involved in the regulation of the inflammatory response highlights the comprehensive nature of neuroimmunomodulation.


Asunto(s)
Encéfalo , Proliferación Celular , Hemorragia Cerebral , Quimiocina CXCL10 , Ratones Endogámicos C57BL , Microglía , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Microglía/efectos de los fármacos , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/inmunología , Proliferación Celular/efectos de los fármacos , Masculino , Ratones , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/inmunología , Quimiocina CXCL10/metabolismo , Modelos Animales de Enfermedad , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Receptores CXCR3/metabolismo , Receptores CXCR3/antagonistas & inhibidores , Subunidad beta del Receptor de Interleucina-2/metabolismo , Interleucina-10/metabolismo , Anisoles , Pirimidinas
6.
J Neuroinflammation ; 21(1): 108, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664840

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS: CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS: Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.


Asunto(s)
Microglía , Ratas Endogámicas F344 , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , alfa-Sinucleína , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , alfa-Sinucleína/metabolismo , Ratas , Masculino , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pirroles/farmacología , Aminopiridinas/farmacología , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sustancia Negra/efectos de los fármacos , Modelos Animales de Enfermedad
7.
Cell Calcium ; 119: 102869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484433

RESUMEN

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic myelopoietic growth factor and proinflammatory cytokine, clinically used for multiple indications and serving as a promising target for treatment of many disorders, including cancer, multiple sclerosis, rheumatoid arthritis, psoriasis, asthma, COVID-19. We have previously shown that dimeric Ca2+-bound forms of S100A6 and S100P proteins, members of the multifunctional S100 protein family, are specific to GM-CSF. To probe selectivity of these interactions, the affinity of recombinant human GM-CSF to dimeric Ca2+-loaded forms of 18 recombinant human S100 proteins was studied by surface plasmon resonance spectroscopy. Of them, only S100A4 protein specifically binds to GM-CSF with equilibrium dissociation constant, Kd, values of 0.3-2 µM, as confirmed by intrinsic fluorescence and chemical crosslinking data. Calcium removal prevents S100A4 binding to GM-CSF, whereas monomerization of S100A4/A6/P proteins disrupts S100A4/A6 interaction with GM-CSF and induces a slight decrease in S100P affinity for GM-CSF. Structural modelling indicates the presence in the GM-CSF molecule of a conserved S100A4/A6/P-binding site, consisting of the residues from its termini, helices I and III, some of which are involved in the interaction with GM-CSF receptors. The predicted involvement of the 'hinge' region and F89 residue of S100P in GM-CSF recognition was confirmed by mutagenesis. Examination of S100A4/A6/P ability to affect GM-CSF signaling showed that S100A4/A6 inhibit GM-CSF-induced suppression of viability of monocytic THP-1 cells. The ability of the S100 proteins to modulate GM-CSF activity is relevant to progression of various neoplasms and other diseases, according to bioinformatics analysis. The direct regulation of GM-CSF signaling by extracellular forms of the S100 proteins should be taken into account in the clinical use of GM-CSF and development of the therapeutic interventions targeting GM-CSF or its receptors.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Proteínas S100 , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas S100/metabolismo , Proteínas Recombinantes/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Unión Proteica , Sitios de Unión
8.
Bioorg Med Chem ; 100: 117628, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330850

RESUMEN

Although neuroinflammation is a significant pathogenic feature of many neurologic disorders, its precise function in-vivo is still not completely known. PET imaging enables the longitudinal examination, quantification, and tracking of different neuroinflammation biomarkers in living subjects. Particularly, PET imaging of Microglia, specialised dynamic immune cells crucial for maintaining brain homeostasis in central nervous system (CNS), is crucial for staging the neuroinflammation. Colony Stimulating Factor- 1 Receptor (CSF-1R) PET imaging is a novel method for the quantification of neuroinflammation. CSF-1R is mainly expressed on microglia, and neurodegenerative disorders greatly up-regulate its expression. The present review primarily focuses on the development, pros and cons of all the CSF-1R PET tracers reported for neuroinflammation imaging. Apart from neuroinflammation imaging, CSF-1R inhibitors are also reported for the therapy of neurodegenerative diseases such as Alzheimer's disease (AD). AD is a prevalent, advancing, and fatal neurodegenerative condition that have the characteristic feature of persistent neuroinflammation and primarily affects the elderly. The aetiology of AD is profoundly influenced by amyloid-beta (Aß) plaques, intracellular neurofibrillary tangles, and microglial dysfunction. Increasing evidence suggests that CSF-1R inhibitors (CSF-1Ri) can be helpful in preclinical models of neurodegenerative diseases. This review article also summarises the most recent developments of CSF-1Ri-based therapy for AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Anciano , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Factores Estimulantes de Colonias/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias , Tomografía de Emisión de Positrones/métodos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
9.
Mol Biol Rep ; 51(1): 215, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281257

RESUMEN

BACKGROUND: Trigeminal neuralgia (TN) is the most severe type of neuropathic pain. The trigeminal ganglion (TG) is a crucial target for the pathogenesis and treatment of TN. The colony-stimulating factor 1 (CSF1) - colony-stimulating factor 1 receptor (CSF1R) pathway regulates lower limb pain development. However, the effect and mechanism of the CSF1-CSF1R pathway in TG on TN are unclear. METHODS: Partial transection of the infraorbital nerve (pT-ION) model was used to generate a mouse TN model. Mechanical and cold allodynia were used to measure pain behaviors. Pro-inflammatory factors (IL-6, TNF-a) were used to measure inflammatory responses in TG. PLX3397, an inhibitor of CSF1R, was applied to inhibit the CSF1-CSF1R pathway in TG. This pathway was activated in naïve mice by stereotactic injection of CSF1 into the TG. RESULTS: The TN model activated the CSF1-CSF1R pathway in the TG, leading to exacerbated mechanical and cold allodynia. TN activated inflammatory responses in the TG manifested as a significant increase in IL-6 and TNF-a levels. After using PLX3397 to inhibit CSF1R, CSF1R expression in the TG declined significantly. Inhibiting the CSF1-CSF1R pathway in the TG downregulated the expression of IL-6 and TNF-α to reduce allodynia-related behaviors. Finally, mechanical allodynia behaviors were exacerbated in naïve mice after activating the CSF1-CSF1R pathway in the TG. CONCLUSIONS: The CSF1-CSF1R pathway in the TG modulates TN by regulating neuroimmune responses. Our findings provide a theoretical basis for the development of treatments for TN in the TG.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Neuralgia , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neuralgia del Trigémino , Animales , Ratones , Aminopiridinas , Hiperalgesia , Interleucina-6/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Neuralgia/metabolismo , Pirroles , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/patología , Neuralgia del Trigémino/metabolismo , Neuralgia del Trigémino/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
10.
Glia ; 72(2): 375-395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37909242

RESUMEN

White matter abnormalities, related to poor cerebral perfusion, are a core feature of small vessel cerebrovascular disease, and critical determinants of vascular cognitive impairment and dementia. Despite this importance there is a lack of treatment options. Proliferation of microglia producing an expanded, reactive population and associated neuroinflammatory alterations have been implicated in the onset and progression of cerebrovascular white matter disease, in patients and in animal models, suggesting that targeting microglial proliferation may exert protection. Colony-stimulating factor-1 receptor (CSF1R) is a key regulator of microglial proliferation. We found that the expression of CSF1R/Csf1r and other markers indicative of increased microglial abundance are significantly elevated in damaged white matter in human cerebrovascular disease and in a clinically relevant mouse model of chronic cerebral hypoperfusion and vascular cognitive impairment. Using the mouse model, we investigated long-term pharmacological CSF1R inhibition, via GW2580, and demonstrated that the expansion of microglial numbers in chronic hypoperfused white matter is prevented. Transcriptomic analysis of hypoperfused white matter tissue showed enrichment of microglial and inflammatory gene sets, including phagocytic genes that were the predominant expression modules modified by CSF1R inhibition. Further, CSF1R inhibition attenuated hypoperfusion-induced white matter pathology and rescued spatial learning impairments and to a lesser extent cognitive flexibility. Overall, this work suggests that inhibition of CSF1R and microglial proliferation mediates protection against chronic cerebrovascular white matter pathology and cognitive deficits. Our study nominates CSF1R as a target for the treatment of vascular cognitive disorders with broader implications for treatment of other chronic white matter diseases.


Asunto(s)
Trastornos Cerebrovasculares , Trastornos del Conocimiento , Disfunción Cognitiva , Leucoencefalopatías , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Sustancia Blanca , Animales , Ratones , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Receptores del Factor Estimulante de Colonias/metabolismo , Sustancia Blanca/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
11.
BMC Med ; 21(1): 286, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542262

RESUMEN

BACKGROUND: Microglia are known to regulate stress and anxiety in both humans and animal models. Psychosocial stress is the most common risk factor for the development of schizophrenia. However, how microglia/brain macrophages contribute to schizophrenia is not well established. We hypothesized that effector molecules expressed in microglia/macrophages were involved in schizophrenia via regulating stress susceptibility. METHODS: We recruited a cohort of first episode schizophrenia (FES) patients (n = 51) and age- and sex-paired healthy controls (HCs) (n = 46) with evaluated stress perception. We performed blood RNA-sequencing (RNA-seq) and brain magnetic resonance imaging, and measured plasma level of colony stimulating factor 1 receptor (CSF1R). Furthermore, we studied a mouse model of chronic unpredictable stress (CUS) combined with a CSF1R inhibitor (CSF1Ri) (n = 9 ~ 10/group) on anxiety behaviours and microglial biology. RESULTS: FES patients showed higher scores of perceived stress scale (PSS, p < 0.05), lower blood CSF1R mRNA (FDR = 0.003) and protein (p < 0.05) levels, and smaller volumes of the superior frontal gyrus and parahippocampal gyrus (both FDR < 0.05) than HCs. In blood RNA-seq, CSF1R-associated differentially expressed blood genes were related to brain development. Importantly, CSF1R facilitated a negative association of the superior frontal gyrus with PSS (p < 0.01) in HCs but not FES patients. In mouse CUS+CSF1Ri model, similarly as CUS, CSF1Ri enhanced anxiety (both p < 0.001). Genes for brain angiogenesis and intensity of CD31+-blood vessels were dampened after CUS-CSF1Ri treatment. Furthermore, CSF1Ri preferentially diminished juxta-vascular microglia/macrophages and induced microglia/macrophages morphological changes (all p < 0.05). CONCLUSION: Microglial/macrophagic CSF1R regulated schizophrenia-associated stress and brain angiogenesis.


Asunto(s)
Microglía , Esquizofrenia , Animales , Humanos , Ratones , Encéfalo/patología , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
12.
PLoS One ; 18(7): e0288134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37410787

RESUMEN

In biology, homeostasis is a central cellular phenomenon that plays a crucial role in survival. The central nervous system (CNS) is controlled by exquisitely sensitive homeostatic mechanisms when facing inflammatory or pathological insults. Mast cells and microglia play a crucial role in CNS homeostasis by eliminating damaged or unnecessary neurons and synapses. Therefore, decoding molecular circuits that regulate CNS homeostasis may lead to more effective therapeutic strategies that specifically target particular subsets for better therapy of Alzheimer's disease (AD). Based on a computational analysis of a microarray dataset related to AD, the H2-Ob gene was previously identified as a potential modulator of the homeostatic balance between mast cells and microglia. Specifically, it plays such a role in the presence of a three-way gene interaction in which the H2-Ob gene acts as a switch in the co-expression relationship of two genes, Csf1r and Milr1. Therefore, the importance of the H2-Ob gene as a potential therapeutic target for AD has led us to experimentally validate this relationship using the quantitative real-time PCR technique. In the experimental investigation, we confirmed that a change in the expression levels of the RT1-DOb gene (the rat ortholog of murine H2-Ob) can switch the co-expression relationship between Csf1r and Milr1. Furthermore, since the RT1-DOb gene is up-regulated in AD, the mentioned triplets might be related to triggering AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Ratas , Animales , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Genes de Cambio , Mastocitos/metabolismo , Sistema Nervioso Central/metabolismo , Receptores del Factor Estimulante de Colonias/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
13.
J Neuroinflammation ; 20(1): 134, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259140

RESUMEN

BACKGROUND: Mutations in colony-stimulating factor 1 receptor (CSF1R) are known to cause adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), which has been recently demonstrated as a primary microgliopathy characterized by cognitive impairment. Although the molecular mechanism underlying CSF1R-mediated microgliopathy remains unclear, therapeutic strategies have generally targeted modulation of microglial function. In particular, the microglial inhibitor, minocycline, has been shown to attenuate learning and memory deficits in several neurodegenerative diseases. The objectives of this study were to investigate the pathogenic mechanisms underlying ALSP and to explore the therapeutic effects of minocycline in an in vivo model of ALSP. We hypothesized that inhibiting microglial activation via minocycline could reverse the behavior and pathological defects in ALSP model mice. METHODS: We generated a Csf1r haploinsufficiency mouse model of ALSP using CRISPR/Cas9 genome editing and conducted electrophysiological recordings of long-term potentiation (LTP) and behavioral tests to validate the recapitulation of clinical ALSP characteristics in 8- to 11-month-old mice. RNA-sequencing was used to explore enriched gene expression in the molecular pathogenesis of ALSP. Microglial activation was assessed by immunofluorescent detection of Iba1 and CD68 in brain sections of male ALSP mice and pro-inflammatory activation and phagocytosis were assessed in Csf1r+/- microglia. Therapeutic effects were assessed by behavioral tests, histological analysis, and morphological examination after four weeks of intraperitoneal injection with minocycline or vehicle control in Csf1r+/- mice and wild-type control littermates. RESULTS: We found that synaptic function was reduced in LTP recordings of neurons in the hippocampal CA1 region, while behavioral tests showed impaired spatial and cognitive memory specifically in male Csf1r+/- mice. Increased activation, pro-inflammatory cytokine production, and enhanced phagocytic capacity were also observed in Csf1r+/- microglia. Treatment with minocycline could suppress the activation of Csf1r+/- microglia both in vitro and in vivo. Notably, the behavioral and pathological deficits in Csf1r+/- mice were partially rescued by minocycline administration, potentially due to inhibition of microglial inflammation and phagocytosis in Csf1r+/- mice. CONCLUSIONS: Our study shows that CSF1R deficiency results in aberrant microglial activation, characterized by a pro-inflammatory phenotype and enhanced phagocytosis of myelin. Our results also indicate that microglial inhibition by minocycline can ameliorate behavioral impairment and ALSP pathogenesis in CSF1R-deficient male mice, suggesting a potential therapeutic target for CSF1R-related leukoencephalopathy. Collectively, these data support that minocycline confers protective effects against CSF1R-related microgliopathy in male ALSP model mice.


Asunto(s)
Leucoencefalopatías , Minociclina , Masculino , Animales , Ratones , Minociclina/farmacología , Minociclina/uso terapéutico , Neuroglía/metabolismo , Leucoencefalopatías/etiología , Leucoencefalopatías/genética , Encéfalo/metabolismo , Microglía/metabolismo , Receptores del Factor Estimulante de Colonias/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
14.
J Anat ; 243(3): 394-403, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37038887

RESUMEN

Pexidartinib (PLX3397), a colony-stimulating factor-1 receptor (CSF1R) inhibitor, is currently in phase 1-3 clinical trials as a treatment for a variety of tumours. CSF1R signalling regulates the development, survival and maintenance of microglia, the resident brain innate immune cells. In this study, we examined the effects of PLX3397 in the drinking water of mice on microglia in the hippocampus using ionized calcium-binding adapter molecule 1 (Iba1, a microglial marker) immunocytochemistry. A high concentration of PLX3397 (1 mg/mL) significantly decreased the density of Iba1-immunoreactive cells after 7 days of exposure, but a low concentration of PLX3397 (0.5 mg/mL) did not. In addition, both low and high concentrations of PLX3397 significantly increased the intersection number, total length and maximum length of microglial processes in male mice. PLX3397 administered for 21 days eliminated microglia with 78% efficiency in males and 84% efficiency in females. Significant increases in microglial processes were found after both seven and 21 days of PLX3397 exposure in males, whereas decreases in microglial processes were observed after both 14 and 21 days of exposure in females. After PLX3397 withdrawal following its administration for 14 days in males, the soma size quickly returned to normal levels within a week. However, the microglial density, intersection number and total length of microglial processes after 3 days of recovery stabilized to untreated levels. In summary, these findings provide detailed insight into the dynamic changes in microglial number and morphology in the hippocampus in a dose- and time-dependent manner after PLX3397 treatment and withdrawal.


Asunto(s)
Microglía , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Femenino , Ratones , Masculino , Animales , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
15.
J Virol ; 97(4): e0188922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022174

RESUMEN

African swine fever (ASF) is a highly infectious disease caused by the African swine fever virus (ASFV) in swine. It is characterized by the death of cells in infected tissues. However, the molecular mechanism of ASFV-induced cell death in porcine alveolar macrophages (PAMs) remains largely unknown. In this study, transcriptome sequencing of ASFV-infected PAMs found that ASFV activated the JAK2-STAT3 pathway in the early stages and apoptosis in the late stages of infection. Meanwhile, the JAK2-STAT3 pathway was confirmed to be essential for ASFV replication. AG490 and andrographolide (AND) inhibited the JAK2-STAT3 pathway, promoted ASFV-induced apoptosis, and exerted antiviral effects. Additionally, CD2v promoted STAT3 transcription and phosphorylation as well as translocation into the nucleus. CD2v is the main envelope glycoprotein of the ASFV, and further investigations showed that CD2v deletion downregulates the JAK2-STAT3 pathway and promotes apoptosis to inhibit ASFV replication. Furthermore, we discovered that CD2v interacts with CSF2RA, which is a hematopoietic receptor superfamily member in myeloid cells and a key receptor protein that activates receptor-associated JAK and STAT proteins. In this study, CSF2RA small interfering RNA (siRNA) downregulated the JAK2-STAT3 pathway and promoted apoptosis to inhibit ASFV replication. Taken together, ASFV replication requires the JAK2-STAT3 pathway, while CD2v interacts with CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication. These results provide a theoretical basis for the escape mechanism and pathogenesis of ASFV. IMPORTANCE African swine fever is a hemorrhagic disease caused by the African swine fever virus (ASFV), which infects pigs of different breeds and ages, with a fatality rate of up to 100%. It is one of the key diseases affecting the global livestock industry. Currently, no commercial vaccines or antiviral drugs are available. Here, we show that ASFV replicates via the JAK2-STAT3 pathway. More specifically, ASFV CD2v interacts with CSF2RA to activate the JAK2-STAT3 pathway and inhibit apoptosis, thereby maintaining the survival of infected cells and promoting viral replication. This study revealed an important implication of the JAK2-STAT3 pathway in ASFV infection and identified a novel mechanism by which CD2v has evolved to interact with CSF2RA and maintain JAK2-STAT3 pathway activation to inhibit apoptosis, thus elucidating new information regarding the signal reprogramming of host cells by ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Proteínas del Envoltorio Viral , Replicación Viral , Animales , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Apoptosis/genética , Porcinos , Replicación Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Interacciones Microbiota-Huesped , Regulación hacia Abajo
16.
Front Immunol ; 14: 1158859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081870

RESUMEN

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor originally identified as a stimulus that induces the differentiation of bone marrow progenitor cells into granulocytes and macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to promoting the metabolism of pulmonary surfactant and the maturation and differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial lung disease, allergic lung disease, alcoholic lung disease, and pulmonary bacterial, fungal, and viral infections. This article reviews the latest knowledge on the relationship between GM-CSF and lung balance and lung disease, and indicates that there is much more to GM-CSF than its name suggests.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Pulmón , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pulmón/metabolismo , Enfermedades Pulmonares Intersticiales , Macrófagos Alveolares , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
17.
Glia ; 71(5): 1278-1293, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36680780

RESUMEN

Efforts to understand microglia function in health and diseases have been hindered by the lack of culture models that recapitulate in situ cellular properties. In recent years, the use of serum-free media with brain-derived growth factors (colony stimulating factor 1 receptor [CSF1R] ligands and TGF-ß1/2) have been favored for the maintenance of rodent microglia as they promote morphological features observed in situ. Here we study the functional and transcriptomic impacts of such media on human microglia (hMGL). Media formulation had little impact on microglia transcriptome assessed by RNA sequencing which was sufficient to significantly alter microglia capacity to phagocytose myelin debris and to elicit an inflammatory response to lipopolysaccharide. When compared to immediately ex vivo microglia from the same donors, the addition of fetal bovine serum to culture media, but not growth factors, was found to aid in the maintenance of key signature genes including those involved in phagocytic processes. A phenotypic shift characterized by CSF1R downregulation in culture correlated with a lack of reliance on CSF1R signaling for survival. Consequently, no improvement in cell survival was observed following culture supplementation with CSF1R ligands. Our study provides better understanding of hMGL in culture, with observations that diverge from those previously made in rodent microglia.


Asunto(s)
Microglía , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Microglía/metabolismo , Medios de Cultivo/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Receptores del Factor Estimulante de Colonias/metabolismo
18.
Glia ; 71(3): 775-794, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36433736

RESUMEN

Colony stimulating factor (CSF) receptor-1 (CSF-1R)-related leukoencephalopathy (CRL) is an adult-onset, demyelinating and neurodegenerative disease caused by autosomal dominant mutations in CSF1R, modeled by the Csf1r+/- mouse. The expression of Csf2, encoding granulocyte-macrophage CSF (GM-CSF) and of Csf3, encoding granulocyte CSF (G-CSF), are elevated in both mouse and human CRL brains. While monoallelic targeting of Csf2 has been shown to attenuate many behavioral and histological deficits of Csf1r+/- mice, including cognitive dysfunction and demyelination, the contribution of Csf3 has not been explored. In the present study, we investigate the behavioral, electrophysiological and histopathological phenotypes of Csf1r+/- mice following monoallelic targeting of Csf3. We show that Csf3 heterozygosity normalized the Csf3 levels in Csf1r+/- mouse brains and ameliorated anxiety-like behavior, motor coordination and social interaction deficits, but not the cognitive impairment of Csf1r+/- mice. Csf3 heterozygosity failed to prevent callosal demyelination. However, consistent with its effects on behavior, Csf3 heterozygosity normalized microglial morphology in the cerebellum and in the ventral, but not in the dorsal hippocampus. Csf1r+/- mice exhibited altered firing activity in the deep cerebellar nuclei (DCN) associated with increased engulfment of glutamatergic synapses by DCN microglia and increased deposition of the complement factor C1q on glutamatergic synapses. These phenotypes were significantly ameliorated by monoallelic deletion of Csf3. Our current and earlier findings indicate that G-CSF and GM-CSF play largely non-overlapping roles in CRL-like disease development in Csf1r+/- mice.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades Neurodegenerativas , Humanos , Adulto , Ratones , Animales , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ansiedad/genética , Factor Estimulante de Colonias de Granulocitos/metabolismo , Cerebelo/metabolismo
19.
J Exp Med ; 220(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36584406

RESUMEN

Hematopoietic stem cell transplantation (HSCT) can replace endogenous microglia with circulation-derived macrophages but has high mortality. To mitigate the risks of HSCT and expand the potential for microglia replacement, we engineered an inhibitor-resistant CSF1R that enables robust microglia replacement. A glycine to alanine substitution at position 795 of human CSF1R (G795A) confers resistance to multiple CSF1R inhibitors, including PLX3397 and PLX5622. Biochemical and cell-based assays show no discernable gain or loss of function. G795A- but not wildtype-CSF1R expressing macrophages efficiently engraft the brain of PLX3397-treated mice and persist after cessation of inhibitor treatment. To gauge translational potential, we CRISPR engineered human-induced pluripotent stem cell-derived microglia (iMG) to express G795A. Xenotransplantation studies demonstrate that G795A-iMG exhibit nearly identical gene expression to wildtype iMG, respond to inflammatory stimuli, and progressively expand in the presence of PLX3397, replacing endogenous microglia to fully occupy the brain. In sum, we engineered a human CSF1R variant that enables nontoxic, cell type, and tissue-specific replacement of microglia.


Asunto(s)
Microglía , Ingeniería de Proteínas , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Humanos , Ratones , Aminopiridinas/farmacología , Encéfalo/metabolismo , Microglía/metabolismo , Ingeniería de Proteínas/métodos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos
20.
J Neurosci ; 42(40): 7673-7688, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36333098

RESUMEN

As the CNS-resident macrophages and member of the myeloid lineage, microglia fulfill manifold functions important for brain development and homeostasis. In the context of neurodegenerative diseases, they have been implicated in degenerative and regenerative processes. The discovery of distinct activation patterns, including increased phagocytosis, indicated a damaging role of myeloid cells in multiple system atrophy (MSA), a devastating, rapidly progressing atypical parkinsonian disorder. Here, we analyzed the gene expression profile of microglia in a mouse model of MSA (MBP29-hα-syn) and identified a disease-associated expression profile and upregulation of the colony-stimulating factor 1 (Csf1). Thus, we hypothesized that CSF1 receptor-mediated depletion of myeloid cells using PLX5622 modifies the disease progression and neuropathological phenotype in this mouse model. Intriguingly, sex-balanced analysis of myeloid cell depletion in MBP29-hα-syn mice revealed a two-faced outcome comprising an improved survival rate accompanied by a delayed onset of neurological symptoms in contrast to severely impaired motor functions. Furthermore, PLX5622 reversed gene expression profiles related to myeloid cell activation but reduced gene expression associated with transsynaptic signaling and signal release. While transcriptional changes were accompanied by a reduction of dopaminergic neurons in the SNpc, striatal neuritic density was increased upon myeloid cell depletion in MBP29-hα-syn mice. Together, our findings provide insight into the complex, two-faced role of myeloid cells in the context of MSA emphasizing the importance to carefully balance the beneficial and adverse effects of CSF1R inhibition in different models of neurodegenerative disorders before its clinical translation.SIGNIFICANCE STATEMENT Myeloid cells have been implicated as detrimental in the disease pathogenesis of multiple system atrophy. However, long-term CSF1R-dependent depletion of these cells in a mouse model of multiple system atrophy demonstrates a two-faced effect involving an improved survival associated with a delayed onset of disease and reduced inflammation which was contrasted by severely impaired motor functions, synaptic signaling, and neuronal circuitries. Thus, this study unraveled a complex role of myeloid cells in multiple system atrophy, which indicates important functions beyond the previously described disease-associated, destructive phenotype and emphasized the need of further investigation to carefully and individually fine-tune immunologic processes in different neurodegenerative diseases.


Asunto(s)
Atrofia de Múltiples Sistemas , Animales , Ratones , Atrofia de Múltiples Sistemas/genética , Longevidad , Compuestos Orgánicos/farmacología , Microglía/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Modelos Animales de Enfermedad , Células Mieloides/metabolismo , Receptores del Factor Estimulante de Colonias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...