Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Behav ; 284: 114644, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39043357

RESUMEN

This study investigated whether ghrelin mimetics, namely anamorelin and ipamorelin, can alleviate weight loss and inhibition of feeding observed during acute and delayed phases of cisplatin-induced emesis in ferrets. The potential of anamorelin to inhibit electrical field stimulation (EFS)-induced contractions of isolated ferret ileum was compared with ipamorelin. In other experiments, ferrets were administered anamorelin (1-3 mg/kg), ipamorelin (1-3 mg/kg), or vehicle intraperitoneally (i.p.) 30 s before cisplatin (5 mg/kg, i.p.) and then every 24 h, and their behaviour was recorded for up to 72 h. Food and water consumption was measured every 24 h. The effect of anamorelin (10 µg) was also assessed following intracerebroventricular administration. Anamorelin and ipamorelin inhibited EFS-induced contractions of isolated ileum by 94.4 % (half-maximal inhibitory concentration [IC50]=14.0 µM) and 54.4 % (IC50=11.7 µM), respectively. Neither of compounds administered i.p. had any effect on cisplatin-induced acute or delayed emesis, but both inhibited associated cisplatin-induced weight loss on the last day of delayed phase (48-72 h) by approximately 24 %. Anamorelin (10 µg) administered intracerebroventricularly reduced cisplatin-induced acute emesis by 60 % but did not affect delayed emesis. It also improved food and water consumption by approximately 20 %-40 % during acute phase, but not delayed phase, and reduced associated cisplatin-induced weight loss during delayed phase by ∼23 %. In conclusion, anamorelin and ipamorelin administered i.p. had beneficial effects in alleviating cisplatin-induced weight loss during delayed phase, and these effects were seen when centrally administered anamorelin. Anamorelin inhibited cisplatin-induced acute emesis following intracerebroventricular but not intraperitoneal administration, suggesting that brain penetration is important for its anti-emetic mechanism of action.


Asunto(s)
Cisplatino , Hurones , Pérdida de Peso , Animales , Pérdida de Peso/efectos de los fármacos , Masculino , Ingestión de Alimentos/efectos de los fármacos , Receptores de Ghrelina/agonistas , Receptores de Ghrelina/antagonistas & inhibidores , Vómitos/inducido químicamente , Vómitos/prevención & control , Vómitos/tratamiento farmacológico , Antieméticos/farmacología , Oligopéptidos/farmacología , Íleon/efectos de los fármacos , Ingestión de Líquidos/efectos de los fármacos , Relación Dosis-Respuesta a Droga
2.
J Chem Inf Model ; 64(12): 4863-4876, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38836743

RESUMEN

With recent large-scale applications and validations, the relative binding free energy (RBFE) calculated using alchemical free energy methods has been proven to be an accurate measure to probe the binding of small-molecule drug candidates. On the other hand, given the flexibility of peptides, it is of great interest to find out whether sufficient sampling could be achieved within the typical time scale of such calculation, and a similar level of accuracy could be reached for peptide drugs. However, the systematic evaluation of such calculations on protein-peptide systems has been less reported. Most reported studies of peptides were restricted to a limited number of data points or lacking experimental support. To demonstrate the applicability of the alchemical free energy method for protein-peptide systems in a typical real-world drug discovery project, we report an application of the thermodynamic integration (TI) method to the RBFE calculation of ghrelin receptor and its peptide agonists. Along with the calculation, the synthesis and in vitro EC50 activity of relamorelin and 17 new peptide derivatives were also reported. A cost-effective criterion to determine the data collection time was proposed for peptides in the TI simulation. The average of three TI repeats yielded a mean absolute error of 0.98 kcal/mol and Pearson's correlation coefficient (R) of 0.77 against the experimental free energy derived from the in vitro EC50 activity, showing good repeatability of the proposed method and a slightly better agreement than the results obtained from the arbitrary time frames up to 20 ns. Although it is limited by having one target and a deduced binding pose, we hope that this study can add some insights into alchemical free energy calculation of protein-peptide systems, providing theoretical assistance to the development of peptide drugs.


Asunto(s)
Diseño de Fármacos , Péptidos , Receptores de Ghrelina , Termodinámica , Receptores de Ghrelina/agonistas , Receptores de Ghrelina/metabolismo , Péptidos/química , Péptidos/farmacología , Humanos , Unión Proteica , Simulación de Dinámica Molecular , Conformación Proteica
3.
Int J Clin Oncol ; 29(8): 1115-1121, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38722487

RESUMEN

BACKGROUND: Anamorelin is a selective ghrelin receptor agonist approved for cancer cachexia in Japan. Little is known about predictors of anamorelin efficacy. This study aimed to assess the effect of diabetes on the efficacy and safety of anamorelin in patients with cancer cachexia. METHODS: Medical records of patients with advanced non-small-cell lung, gastric, pancreatic, or colorectal cancer who received anamorelin between January 2021 and March 2023 were retrospectively reviewed. The diabetic (DM) group included patients with a confirmed diagnosis of type 2 diabetes mellitus, random plasma glucose of ≥ 200 mg/dL, or hemoglobin A1c of ≥ 6.5%. The maximum body weight gain and adverse events during anamorelin administration were compared between the DM and non-DM groups. Patients with a maximum body weight gain ≥ 0 kg were classified as the responders. RESULTS: Of 103 eligible patients, 31 (30.1%) were assigned to the DM group. The DM group gained less weight (median of -0.53% vs. + 3.00%, p < 0.01) and had fewer responders (45.2% vs. 81.9%, p < 0.01) than the non-DM group. The odds ratio for non-response in the DM group was 6.55 (95% confidential interval 2.37-18.06, p < 0.01), adjusted by age and performance status. The DM group had a higher cumulative incidence of hyperglycaemic adverse events (72.2% vs. 6.3%, p < 0.01) and more discontinuations due to hyperglycaemic adverse events (25.8% vs. 4.2%, p < 0.01) than the non-DM group. CONCLUSIONS: Patients with diabetes and cancer cachexia are less likely to gain weight with anamorelin despite a high risk of hyperglycaemic adverse events.


Asunto(s)
Caquexia , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Caquexia/tratamiento farmacológico , Caquexia/etiología , Oligopéptidos/uso terapéutico , Oligopéptidos/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/complicaciones , Anciano de 80 o más Años , Hemoglobina Glucada/análisis , Glucemia/análisis , Aumento de Peso/efectos de los fármacos , Receptores de Ghrelina/agonistas , Resultado del Tratamiento , Hidrazinas
4.
J Am Assoc Lab Anim Sci ; 63(3): 268-278, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423529

RESUMEN

Nonhuman primates used in biomedical research may experience clinically significant weight loss for a variety of reasons. Episodes of anorexia (complete loss of appetite) or hyporexia (decreased appetite) can result in significant weight loss, potentially altering animal welfare and scientific studies. The FDA has approved several appetite stimulants for use in domestic species, but currently none are approved for use in NHP. Treatment of inappetence and weight loss in NHP often relies on the extralabel use of these compounds. Capromorelin is a ghrelin receptor agonist. As a growth hormone secretagogue, capromorelin increases appetite, leading to weight gain. Studies in several species have shown a positive correlation between capromorelin administration and weight gain; in 2017, an oral solution of capromorelin received FDA approval for use in dogs. We tested this solution in healthy adult rhesus macaques (n = 3 males and 3 females) for its effects on body weight and insulin like growth factor-1 (IGF-1). A control group (n = 2 males and 2 females) was used for comparison. Treated macaques received a 3mg/kg oral dose daily for 7 d. Clinical signs were observed daily. Weights were collected before, during and at the end of treatment. Blood was drawn before, during and after treatment for measurement of IGF-1 levels and standard hematology and biochemistry parameters. Baseline-adjusted mean body weights and IGF-1 levels were significantly higher in treated as compared with control monkeys after 7 d of beginning treatment (body weight of 10.5±0.1kg (mean ± SEM) and 10.1±0.1kg, respectively; IGF-1 of 758±43ng/mL and 639±22ng/mL, respectively). Capromorelin administration was not associated with appreciable changes in hematologic and biochemical values in treated macaques. These findings suggest that capromorelin may be useful for treating inappetence and weight loss in NHP, and based on blood analysis, a 7-d course of treatment does not appear to cause acute toxicity.


Asunto(s)
Macaca mulatta , Animales , Masculino , Femenino , Factor I del Crecimiento Similar a la Insulina/análisis , Estimulantes del Apetito/uso terapéutico , Estimulantes del Apetito/administración & dosificación , Estimulantes del Apetito/farmacología , Peso Corporal/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Receptores de Ghrelina/agonistas , Piperidinas , Pirazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA