Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.706
Filtrar
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749544

RESUMEN

Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.


Asunto(s)
Señalización del Calcio , Calcio , Neuronas , Biosíntesis de Proteínas , Receptores de Glutamato Metabotrópico , Receptores de N-Metil-D-Aspartato , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones , Calcio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Humanos , Neuronas/metabolismo , Ratones Transgénicos , Enfermedad de Alzheimer/metabolismo , Plasticidad Neuronal , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología
2.
Proc Natl Acad Sci U S A ; 121(21): e2401079121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739800

RESUMEN

Homomeric dimerization of metabotropic glutamate receptors (mGlus) is essential for the modulation of their functions and represents a promising avenue for the development of novel therapeutic approaches to address central nervous system diseases. Yet, the scarcity of detailed molecular and energetic data on mGlu2 impedes our in-depth comprehension of their activation process. Here, we employ computational simulation methods to elucidate the activation process and key events associated with the mGlu2, including a detailed analysis of its conformational transitions, the binding of agonists, Gi protein coupling, and the guanosine diphosphate (GDP) release. Our results demonstrate that the activation of mGlu2 is a stepwise process and several energy barriers need to be overcome. Moreover, we also identify the rate-determining step of the mGlu2's transition from the agonist-bound state to its active state. From the perspective of free-energy analysis, we find that the conformational dynamics of mGlu2's subunit follow coupled rather than discrete, independent actions. Asymmetric dimerization is critical for receptor activation. Our calculation results are consistent with the observation of cross-linking and fluorescent-labeled blot experiments, thus illustrating the reliability of our calculations. Besides, we also identify potential key residues in the Gi protein binding position on mGlu2, mGlu2 dimer's TM6-TM6 interface, and Gi α5 helix by the change of energy barriers after mutation. The implications of our findings could lead to a more comprehensive grasp of class C G protein-coupled receptor activation.


Asunto(s)
Receptores de Glutamato Metabotrópico , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/química , Humanos , Multimerización de Proteína , Simulación de Dinámica Molecular , Conformación Proteica , Unión Proteica
3.
Pharmacol Biochem Behav ; 239: 173767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608960

RESUMEN

RATIONALE: The subjective effects of alcohol are associated with alcohol use disorder (AUD) vulnerability and treatment outcomes. The interoceptive effects of alcohol are part of these subjective effects and can be measured in animal models using drug discrimination procedures. The newly developed mGlu2 and mGlu3 negative allosteric modulators (NAMs) are potential therapeutics for AUD and may alter interoceptive sensitivity to alcohol. OBJECTIVES: To determine the effects of mGlu2 and mGlu3 NAMs on the interoceptive effects of alcohol in rats. METHODS: Long-Evans rats were trained to discriminate the interoceptive stimulus effects of alcohol (2.0 g/kg, i.g.) from water using both operant (males only) and Pavlovian (male and female) drug discrimination techniques. Following acquisition training, an alcohol dose-response (0, 0.5, 1.0, 2.0 g/kg) experiment was conducted to confirm stimulus control over behavior. Next, to test the involvement of mGlu2 and mGlu3, rats were pretreated with the mGlu2-NAM (VU6001966; 0, 3, 6, 12 mg/kg, i.p.) or the mGlu3-NAM (VU6010572; 0, 3, 6, 12 mg/kg, i.p.) before alcohol administration (2.0 g/kg, i.g.). RESULTS: In Pavlovian discrimination, male rats showed greater interoceptive sensitivity to 1.0 and 2.0 g/kg alcohol compared to female rats. Both mGlu2-NAM and mGlu3-NAM attenuated the interoceptive effects of alcohol in male and female rats using Pavlovian and operant discrimination. There may be a potential sex difference in response to the mGlu2-NAM at the highest dose tested. CONCLUSIONS: Male rats may be more sensitive to the interoceptive effects of the 2.0 g/kg alcohol training dose compared to female rats. Both mGlu2-and mGlu3-NAM attenuate the interoceptive effects of alcohol in male and female rats. These drugs may have potential for treatment of AUD in part by blunting the subjective effects of alcohol.


Asunto(s)
Etanol , Ratas Long-Evans , Receptores de Glutamato Metabotrópico , Animales , Masculino , Femenino , Receptores de Glutamato Metabotrópico/metabolismo , Ratas , Etanol/farmacología , Etanol/administración & dosificación , Regulación Alostérica/efectos de los fármacos , Interocepción/efectos de los fármacos , Relación Dosis-Respuesta a Droga
4.
CNS Neurosci Ther ; 30(4): e14723, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38676295

RESUMEN

AIMS: This study aimed to investigate the relationship between ulcerative colitis (UC) and anxiety and explore its central mechanisms using colitis mice. METHODS: Anxiety-like behavior was assessed in mice induced by 3% dextran sodium sulfate (DSS) using the elevated plus maze and open-field test. The spatial transcriptome of the hippocampus was analyzed to assess the distribution of excitatory and inhibitory synapses, and Toll-like receptor 4 (TLR4) inhibitor TAK-242 (10 mg/kg) and AAV virus interference were used to examine the role of peripheral inflammation and central molecules such as Glutamate Receptor Metabotropic 1 (GRM1) in mediating anxiety behavior in colitis mice. RESULTS: DSS-induced colitis increased anxiety-like behaviors, which was reduced by TAK-242. Spatial transcriptome analysis of the hippocampus showed an excitatory-inhibitory imbalance mediated by glutamatergic synapses, and GRM1 in hippocampus was identified as a critical mediator of anxiety behavior in colitis mice via differential gene screening and AAV virus interference. CONCLUSION: Our work suggests that the hippocampus plays an important role in brain anxiety caused by peripheral inflammation, and over-excitation of hippocampal glutamate synapses by GRM1 activation induces anxiety-like behavior in colitis mice. These findings provide new insights into the central mechanisms underlying anxiety in UC and may contribute to the development of novel therapeutic strategies for UC-associated anxiety.


Asunto(s)
Ansiedad , Hipocampo , Inflamación , Receptores de Glutamato Metabotrópico , Animales , Masculino , Ratones , Ansiedad/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Sulfato de Dextran , Hipocampo/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética
5.
Nat Commun ; 15(1): 3514, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664401

RESUMEN

Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.


Asunto(s)
Ingestión de Alimentos , Células Enteroendocrinas , Ácido Glutámico , Neuropéptidos , Péptido YY , Animales , Células Enteroendocrinas/metabolismo , Femenino , Neuropéptidos/metabolismo , Neuropéptidos/genética , Ingestión de Alimentos/fisiología , Péptido YY/metabolismo , Ácido Glutámico/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Conducta Alimentaria/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Neuronas Dopaminérgicas/metabolismo , Dieta
6.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657042

RESUMEN

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Asunto(s)
Endocitosis , Depresión Sináptica a Largo Plazo , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Receptores AMPA , Receptores de Glutamato Metabotrópico , Receptores AMPA/metabolismo , Animales , Fosforilación , Endocitosis/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Ratas , Tirosina/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Sinapsis/metabolismo , Ratones , Humanos , Neuronas/metabolismo
7.
Behav Pharmacol ; 35(4): 185-192, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563661

RESUMEN

LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P  < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P  < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Oxidopamina , Trastornos Parkinsonianos , Receptores de Glutamato Metabotrópico , Animales , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Ratas , Trastornos Parkinsonianos/tratamiento farmacológico , Masculino , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Oxidopamina/farmacología , Levodopa/farmacología , Antiparkinsonianos/farmacología , Aminoácidos/farmacología , Relación Dosis-Respuesta a Droga , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Compuestos Bicíclicos con Puentes/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Ratas Wistar
8.
J Clin Invest ; 134(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426491

RESUMEN

Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and the single-gene cause of autism, is caused by decreased expression of the fragile X messenger ribonucleoprotein protein (FMRP), a ribosomal-associated RNA-binding protein involved in translational repression. Extensive preclinical work in several FXS animal models supported the therapeutic potential of decreasing metabotropic glutamate receptor (mGluR) signaling to correct translation of proteins related to synaptic plasticity; however, multiple clinical trials failed to show conclusive evidence of efficacy. In this issue of the JCI, Berry-Kravis and colleagues conducted the FXLEARN clinical trial to address experimental design concerns from previous trials. Unfortunately, despite treatment of young children with combined pharmacological and learning interventions for a prolonged period, no efficacy of blocking mGluR activity was observed. Future systematic evaluation of potential therapeutic approaches should evaluate consistency between human and animal pathophysiological mechanisms, utilize innovative clinical trial design from FXLEARN, and incorporate translatable biomarkers.


Asunto(s)
Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Receptores de Glutamato Metabotrópico , Animales , Niño , Humanos , Preescolar , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/uso terapéutico , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Plasticidad Neuronal
9.
J Biol Chem ; 300(4): 107119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428819

RESUMEN

Synaptic transmission from retinal photoreceptors to downstream ON-type bipolar cells (BCs) depends on the postsynaptic metabotropic glutamate receptor mGluR6, located at the BC dendritic tips. Glutamate binding to mGluR6 initiates G-protein signaling that ultimately leads to BC depolarization in response to light. The mGluR6 receptor also engages in trans-synaptic interactions with presynaptic ELFN adhesion proteins. The roles of post-translational modifications in mGluR6 trafficking and function are unknown. Treatment with glycosidase enzymes PNGase F and Endo H demonstrated that both endogenous and heterologously expressed mGluR6 contain complex N-glycosylation acquired in the Golgi. Pull-down experiments with ELFN1 and ELFN2 extracellular domains revealed that these proteins interact exclusively with the complex glycosylated form of mGluR6. Mutation of the four predicted N-glycosylation sites, either singly or in combination, revealed that all four sites are glycosylated. Single mutations partially reduced, but did not abolish, surface expression in heterologous cells, while triple mutants had little or no surface expression, indicating that no single glycosylation site is necessary or sufficient for plasma membrane trafficking. Mutation at N445 severely impaired both ELFN1 and ELFN2 binding. All single mutants exhibited dendritic tip enrichment in rod BCs, as did the triple mutant with N445 as the sole N-glycosylation site, demonstrating that glycosylation at N445 is sufficient but not necessary for dendritic tip localization. The quadruple mutant was completely mislocalized. These results reveal a key role for complex N-glycosylation in regulating mGluR6 trafficking and ELFN binding, and by extension, function of the photoreceptor synapses.


Asunto(s)
Receptores de Glutamato Metabotrópico , Animales , Humanos , Ratones , Glicosilación , Células HEK293 , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Células Bipolares de la Retina/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
10.
Neurosci Lett ; 823: 137664, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38309326

RESUMEN

Calcium mobilization from the endoplasmic reticulum (ER) induced by, for example, IP3 receptor (IP3R) stimulation, and its subsequent crosstalk with extracellular Ca2+ influx mediated through voltage-gated calcium channels (VGCCs) and neuronal store-operated calcium entry (nSOCE), is essential for normal neuronal signaling and cellular homeostasis. However, several studies suggest that chronic calcium dysregulation may play a key role in the onset and/or progression of neurodegenerative conditions, particularly Alzheimer's disease (AD). Here, using early postnatal hippocampal tissue from two transgenic murine models of AD, we provide further evidence that not only are crucial calcium signaling pathways dysregulated, but also that such dysregulation occurs at very early stages of development. Utilizing epifluorescence calcium imaging, we investigated ER-, nSOCE- and VGCC-mediated calcium signaling in cultured primary hippocampal neurons from two transgenic rodent models of AD: 3xTg-AD mice (PS1M146V/APPSWE/TauP301L) and TgF344-AD rats (APPSWE/PS1ΔE9) between 2 and 9 days old. Our results reveal that, in comparison to control hippocampal neurons, those from 3xTg-AD mice possessed significantly greater basal ER calcium levels, as measured by larger responses to I-mGluR-mediated ER Ca2+ mobilization (amplitude; 4 (0-19) vs 21(12-36) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = 14 a.u. (11-18); p = 0.004)) but reduced nSOCE (15 (4-22) vs 8(5-11) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = -7 a.u. (-3- -10 a.u.); p < 0.0001). Furthermore, unlike non-Tg neurons, where depolarization enhanced the amplitude, duration and area under the curve (A.U.C.) of I-mGluR-evoked ER-mediated calcium signals when compared with basal conditions, this was not apparent in 3xTg-AD neurons. Whilst the amplitude of depolarization-enhanced I-mGluR-evoked ER-mediated calcium signals from both non-Tg F344 and TgF344-AD neurons was significantly enhanced relative to basal conditions, the A.U.C. and duration of responses were enhanced significantly upon depolarization in non-Tg F344, but not in TgF344-AD, neurons. Overall, the nature of basal I-mGluR-mediated calcium responses did not differ significantly between non-Tg F344 and TgF344-AD neurons. In summary, our results characterizing ER- and nSOCE-mediated calcium signaling in neurons demonstrate that ER Ca2+ dyshomeostasis is an early and potentially pathogenic event in familial AD.


Asunto(s)
Enfermedad de Alzheimer , Receptores de Glutamato Metabotrópico , Ratones , Ratas , Animales , Enfermedad de Alzheimer/metabolismo , Roedores/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Calcio/metabolismo , Ratas Endogámicas F344 , Neuronas/metabolismo , Retículo Endoplásmico/metabolismo , Señalización del Calcio/fisiología
11.
Cells ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391904

RESUMEN

Acting as GTPase activating proteins promoting the silencing of activated G-proteins, regulators of G protein signaling (RGSs) are generally considered negative modulators of cell signaling. In the CNS, the expression of RGS4 is altered in diverse pathologies and its upregulation was reported in astrocytes exposed to an inflammatory environment. In a model of cultured cortical astrocytes, we herein investigate the influence of RGS4 on intracellular calcium signaling mediated by type 5 metabotropic glutamate receptor (mGluR5), which is known to support the bidirectional communication between neurons and glial cells. RGS4 activity was manipulated by exposure to the inhibitor CCG 63802 or by infecting the cells with lentiviruses designed to achieve the silencing or overexpression of RGS4. The pharmacological inhibition or silencing of RGS4 resulted in a decrease in the percentage of cells responding to the mGluR5 agonist DHPG and in the proportion of cells showing typical calcium oscillations. Conversely, RGS4-lentivirus infection increased the percentage of cells showing calcium oscillations. While the physiological implication of cytosolic calcium oscillations in astrocytes is still under investigation, the fine-tuning of calcium signaling likely determines the coding of diverse biological events. Indirect signaling modulators such as RGS4 inhibitors, used in combination with receptor ligands, could pave the way for new therapeutic approaches for diverse neurological disorders with improved efficacy and selectivity.


Asunto(s)
Proteínas RGS , Receptores de Glutamato Metabotrópico , Ratas , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Calcio/metabolismo , Astrocitos/metabolismo , Ratas Sprague-Dawley , Proteínas RGS/metabolismo , Proteínas de Unión al GTP/metabolismo , Señalización del Calcio
12.
EMBO Mol Med ; 16(3): 506-522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374465

RESUMEN

Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.


Asunto(s)
Compuestos de Bencidrilo , Síndrome del Cromosoma X Frágil , Receptores de Glutamato Metabotrópico , Ratones , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Receptores de Glutamato Metabotrópico/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados
13.
Dev Cell ; 59(5): 579-594.e6, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38309264

RESUMEN

There are limited methods to stably analyze the interactions between cancer cells and glial cells in vitro, which hinders our molecular understanding. Here, we develop a simple and stable culture method of mouse glial cells, termed mixed-glial culture on/in soft substrate (MGS), which serves well as a platform to study cancer-glia interactions. Using this method, we find that human lung cancer cells become overly dependent on metabotropic glutamate receptor 1 (mGluR1) signaling in the brain microenvironment. Mechanistically, interactions with astrocytes induce mGluR1 in cancer cells through the Wnt-5a/prickle planar cell polarity protein 1 (PRICKLE1)/RE1 silencing transcription factor (REST) axis. Induced mGluR1 directly interacts with and stabilizes the epidermal growth factor receptor (EGFR) in a glutamate-dependent manner, and these cells then become responsive to mGluR1 inhibition. Our results highlight increased dependence on mGluR1 signaling as an adaptive strategy and vulnerability of human lung cancer brain metastasis.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Receptores de Glutamato Metabotrópico , Ratones , Animales , Humanos , Ácido Glutámico , Astrocitos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores ErbB , Microambiente Tumoral
14.
Mol Pharmacol ; 105(5): 348-358, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38423750

RESUMEN

Metabotropic glutamate receptor 7 (mGlu7) is the most highly conserved and abundantly expressed mGlu receptor in the human brain. The presynaptic localization of mGlu7, coupled with its low affinity for its endogenous agonist, glutamate, are features that contribute to the receptor's role in modulating neuronal excitation and inhibition patterns, including long-term potentiation, in various brain regions. These characteristics suggest that mGlu7 modulation may serve as a novel therapeutic strategy in disorders of cognitive dysfunction, including neurodevelopmental disorders that cause impairments in learning, memory, and attention. Primary mutations in the GRM7 gene have recently been identified as novel causes of neurodevelopmental disorders, and these patients exhibit profound intellectual and cognitive disability. Pharmacological tools, such as agonists, antagonists, and allosteric modulators, have been the mainstay for targeting mGlu7 in its endogenous homodimeric form to probe effects of its function and modulation in disease models. However, recent research has identified diversity in dimerization, as well as trans-synaptic interacting proteins, that also play a role in mGlu7 signaling and pharmacological properties. These novel findings represent exciting opportunities in the field of mGlu receptor drug discovery and highlight the importance of further understanding the functions of mGlu7 in complex neurologic conditions at both the molecular and physiologic levels. SIGNIFICANCE STATEMENT: Proper expression and function of mGlu7 is essential for learning, attention, and memory formation at the molecular level within neural circuits. The pharmacological targeting of mGlu7 is undergoing a paradigm shift by incorporating an understanding of receptor interaction with other cis- and trans- acting synaptic proteins, as well as various intracellular signaling pathways. Based upon these new findings, mGlu7's potential as a drug target in the treatment of cognitive disorders and learning impairments is primed for exploration.


Asunto(s)
Disfunción Cognitiva , Receptores de Glutamato Metabotrópico , Humanos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Potenciación a Largo Plazo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal
15.
Acta Cytol ; 68(1): 66-72, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38281480

RESUMEN

INTRODUCTION: Chondromyxoid fibroma (CMF) is a rare, benign bone tumor that occurs predominantly in the second and third decades of life, more frequently in males. Overexpression of GRM1 as a consequence of tumor-specific gene rearrangement of GRM1 has recently been reported as a useful immunohistochemical marker for histopathological diagnosis of CMF. However, the usefulness of GRM1 staining of cytology specimens has not yet been evaluated. In this report, the cytological findings and GRM1 immunocytochemistry of two cases of CMF are described. CASE PRESENTATIONS: Case 1 was a 15-year-old girl with a rib tumor. Imaging findings suggested a benign neurogenic tumor such as schwannoma. The tumor had increased in size over a 2-year period and was resected. Case 2 was a 14-year-old boy with a metatarsal tumor involving his left first toe. Imaging findings were suspicious of a benign neoplastic lesion. Biopsy findings suggested a benign tumor, and the patient underwent tumor resection. Cytologically, in both cases the tumor cells were predominantly spindle-shaped or stellate, with a myxoid to chondromyxoid background matrix and multinucleated giant cells, and these matrices were metachromatic with Giemsa staining. Cellular atypia was more accentuated in case 2 than in case 1. Immunocytochemical staining for GRM1 was positive in both cases. CONCLUSION: Due to the overlap in cytological findings, it is often difficult to differentiate CMF from chondroblastoma and chondrosarcoma grade 2. Immunocytochemical staining for GRM1 may support the diagnosis of CMF, and the reuse of Papanicolaou-stained specimens is applicable. The present cases further demonstrated the difficulty of differentiating CMF from other mimicking tumors such as chondroblastoma and chondrosarcoma grade 2. In such instances, immunocytochemistry for GRM1 is applicable to the diagnostic process, the value of which is strengthened by reusing Papanicolaou-stained specimens.


Asunto(s)
Neoplasias Óseas , Condroblastoma , Condrosarcoma , Fibroma , Adolescente , Femenino , Humanos , Masculino , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/cirugía , Neoplasias Óseas/patología , Condroblastoma/diagnóstico , Condroblastoma/cirugía , Condroblastoma/metabolismo , Condrosarcoma/patología , Citología , Fibroma/diagnóstico , Fibroma/cirugía , Fibroma/patología , Receptores de Glutamato Metabotrópico/inmunología , Receptores de Glutamato Metabotrópico/metabolismo
16.
J Med Chem ; 67(2): 1314-1326, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38170918

RESUMEN

Metabotropic glutamate (Glu) receptors (mGlu receptors) play a key role in modulating excitatory neurotransmission in the central nervous system (CNS). In this study, we report the structure-based design and pharmacological evaluation of densely functionalized, conformationally restricted glutamate analogue (1S,2S,3S)-2-((S)-amino(carboxy)methyl)-3-(carboxymethyl)cyclopropane-1-carboxylic acid (LBG30300). LBG30300 was synthesized in a stereocontrolled fashion in nine steps from a commercially available optically active epoxide. Functional characterization of all eight mGlu receptor subtypes showed that LBG30300 is a picomolar agonist at mGlu2 with excellent selectivity over mGlu3 and the other six mGlu receptor subtypes. Bioavailability studies on mice (IV administration) confirm CNS exposure, and an in silico study predicts a binding mode of LBG30300 which induces a flipping of Tyr144 to allow for a salt bridge interaction of the acetate group with Arg271. The Tyr144 residue now prevents Arg271 from interacting with Asp146, which is a residue of differentiation between mGlu2 and mGlu3 and thus could explain the observed subtype selectivity.


Asunto(s)
Sistema Nervioso Central , Receptores de Glutamato Metabotrópico , Ratones , Animales , Sistema Nervioso Central/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Ciclopropanos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Glutamatos , Ácidos Carboxílicos
17.
Exp Physiol ; 109(1): 81-99, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656490

RESUMEN

A metabotropic glutamate receptor coupled to phospholipase D (PLD-mGluR) was discovered in the hippocampus over three decades ago. Its pharmacology and direct linkage to PLD activation are well established and indicate it is a highly atypical glutamate receptor. A receptor with the same pharmacology is present in spindle primary sensory terminals where its blockade can totally abolish, and its activation can double, the normal stretch-evoked firing. We report here the first identification of this PLD-mGluR protein, by capitalizing on its expression in primary mechanosensory terminals, developing an enriched source, pharmacological profiling to identify an optimal ligand, and then functionalizing it as a molecular tool. Evidence from immunofluorescence, western and far-western blotting indicates PLD-mGluR is homomeric GluK2, since GluK2 is the only glutamate receptor protein/receptor subunit present in spindle mechanosensory terminals. Its expression was also found in the lanceolate palisade ending of hair follicle, also known to contain the PLD-mGluR. Finally, in a mouse model with ionotropic function ablated in the GluK2 subunit, spindle glutamatergic responses were still present, confirming it acts purely metabotropically. We conclude the PLD-mGluR is a homomeric GluK2 kainate receptor signalling purely metabotropically and it is common to other, perhaps all, primary mechanosensory endings.


Asunto(s)
Fosfolipasa D , Receptores de Glutamato Metabotrópico , Animales , Ratones , Hipocampo/metabolismo , Terminaciones Nerviosas/metabolismo , Fosfolipasa D/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
18.
Nat Commun ; 14(1): 8288, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092773

RESUMEN

Metabotropic glutamate receptors (mGluRs) are dimeric class C G-protein-coupled receptors that operate in glia and neurons. Glutamate affinity and efficacy vary greatly between the eight mGluRs. The molecular basis of this diversity is not understood. We used single-molecule fluorescence energy transfer to monitor the structural rearrangements of activation in the mGluR ligand binding domain (LBD). In saturating glutamate, group II homodimers fully occupy the activated LBD conformation (full efficacy) but homodimers of group III mGluRs do not. Strikingly, the reduced efficacy of Group III homodimers does not arise from differences in the glutamate binding pocket but, instead, from interactions within the extracellular dimerization interface that impede active state occupancy. By contrast, the functionally boosted mGluR II/III heterodimers lack these interface 'brakes' to activation and heterodimer asymmetry in the flexibility of a disulfide loop connecting LBDs greatly favors occupancy of the activated conformation. Our results suggest that dimerization interface interactions generate substantial functional diversity by differentially stabilizing the activated conformation. This diversity may optimize mGluR responsiveness for the distinct spatio-temporal profiles of synaptic versus extrasynaptic glutamate.


Asunto(s)
Receptores de Glutamato Metabotrópico , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dimerización , Ácido Glutámico/metabolismo , Transferencia Resonante de Energía de Fluorescencia
19.
Sci Adv ; 9(49): eadi8076, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38055809

RESUMEN

The metabotropic glutamate receptors (mGluRs) are family C, dimeric G protein-coupled receptors (GPCRs), which play critical roles in synaptic transmission. Despite an increasing appreciation of the molecular diversity of this family, how distinct mGluR subtypes are regulated remains poorly understood. We reveal that different group II/III mGluR subtypes show markedly different beta-arrestin (ß-arr) coupling and endocytic trafficking. While mGluR2 is resistant to internalization and mGluR3 shows transient ß-arr coupling, which enables endocytosis and recycling, mGluR8 and ß-arr form stable complexes, which leads to efficient lysosomal targeting and degradation. Using chimeras and mutagenesis, we pinpoint carboxyl-terminal domain regions that control ß-arr coupling and trafficking, including the identification of an mGluR8 splice variant with impaired internalization. We then use a battery of high-resolution fluorescence assays to find that heterodimerization further expands the diversity of mGluR regulation. Together, this work provides insight into the relationship between GPCR/ß-arr complex formation and trafficking while revealing diversity and intricacy in the regulation of mGluRs.


Asunto(s)
Receptores de Glutamato Metabotrópico , beta-Arrestinas/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
20.
Sheng Li Xue Bao ; 75(5): 629-635, 2023 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-37909134

RESUMEN

The purpose of the present study was to explore the role of carotid body metabotropic glutamate receptor 1 (mGluR1) in chronic intermittent hypoxia (CIH)-induced carotid body plasticity. Sprague Dawley (SD) rats were exposed to CIH (6%-21% O2, 4 min/cycle, 8 h/day) for 4 weeks. The blood pressure of rats was monitored non-invasively by tail-cuff method under consciousness. RT-qPCR was used to examine the mRNA expression level of mGluR1 in rat carotid body. Western blot was used to detect the protein expression level of mGluR1 in rat carotid body. The role of mGluR1 in CIH-induced carotid body sensory long-term facilitation (sLTF) was investigated by ex vivo carotid sinus nerve discharge recording, and the carotid body sLTF was evoked by a 10-episode of repetitive acute intermittent hypoxia (AIH: 1 min of 5% O2 interspersed with 5 min of 95% O2). The results showed that: 1) CIH increased the systolic blood pressure (P < 0.001), diastolic blood pressure (P < 0.005) and mean arterial blood pressure (P < 0.001) of rats; 2) CIH decreased the mRNA and protein levels of mGluR1 in the rat carotid body (P < 0.01); 3) 4 weeks of CIH induced carotid body sLTF significantly, exhibiting as an increasing baseline sensory activity during post-AIH, which was inhibited by application of an agonist of group I metabotropic glutamate receptors, (S)-3,5-dihydroxyphenylglycine (DHPG), during sLTF induction (P < 0.005). In summary, these results suggest that activation of mGluR1 inhibits CIH-induced carotid body plasticity in rats.


Asunto(s)
Cuerpo Carotídeo , Receptores de Glutamato Metabotrópico , Ratas , Animales , Cuerpo Carotídeo/metabolismo , Ratas Sprague-Dawley , Hipoxia , Receptores de Glutamato Metabotrópico/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...