Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.938
Filtrar
1.
J Agric Food Chem ; 72(19): 10805-10813, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712504

RESUMEN

Aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mediate the responses of adaptive metabolism to various xenobiotics. Here, we found that BoAhR and BoARNT are highly expressed in the midgut of Bradysia odoriphaga larvae. The expression of BoAhR and BoARNT was significantly increased after exposure to imidacloprid and phoxim. The knockdown of BoAhR and BoARNT significantly decreased the expression of CYP6SX1 and CYP3828A1 as well as P450 enzyme activity and caused a significant increase in the sensitivity of larvae to imidacloprid and phoxim. Exposure to ß-naphthoflavone (BNF) significantly increased the expression of BoAhR, BoARNT, CYP6SX1, and CYP3828A1 as well as P450 activity and decreased larval sensitivity to imidacloprid and phoxim. Furthermore, CYP6SX1 and CYP3828A1 were significantly induced by imidacloprid and phoxim, and the silencing of these two genes significantly reduced larval tolerance to imidacloprid and phoxim. Taken together, the BoAhR/BoARNT pathway plays key roles in larval tolerance to imidacloprid and phoxim by regulating the expression of CYP6SX1 and CYP3828A1.


Asunto(s)
Proteínas de Insectos , Insecticidas , Larva , Neonicotinoides , Nitrocompuestos , Receptores de Hidrocarburo de Aril , Animales , Insecticidas/farmacología , Larva/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Dípteros/metabolismo , Dípteros/genética , Dípteros/efectos de los fármacos , Dípteros/crecimiento & desarrollo , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Inactivación Metabólica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Biochem Mol Toxicol ; 38(6): e23736, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769691

RESUMEN

Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. We previously reported spontaneous ileocecal tumorigenesis in AhR-deficient mice after the age of 10 weeks, which originated in the confined area between ileum and cecum. This study aimed to investigate the underlying mechanism that causes tumor development at this particular location. To observe mucosal architecture in detail, tissues of ileocecal region were stained with methylene blue. Gene expression profile in the ileocecal tissue was compared with cecum. Immunohistochemical analysis was performed with ileocecal tissues using antibodies against ileum-specific Reg3ß or cecum-specific Pitx2. In AhR+/+ mice and AhR+/- mice, that do not develop lesions, methylene blue staining revealed the gradually changing shape and arrangement of villi from ileum to cecum. It was also observed in AhR-deficient mice before developing lesions. Microarray-based analysis revealed abundant antimicrobial genes, such as Reg3, in the ileocecal tissue while FGFR2 and Pitx2 were specific to cecum. Immunohistochemical analysis of AhR-deficient mice indicated that lesions originated from the ileocecal junction, a boundary area between different epithelial types. Site-specific gene expression analysis revealed higher expression of IL-1ß at the ileocecal junction compared with the ileum or cecum of 9-11-week-old AhR-deficient mice. These findings indicate that AhR plays a vital function in the ileocecal junction. Regulating AhR activity can potentially manage the stability of ileocecal tissue possessing cancer-prone characteristics. This investigation contributes to understanding homeostasis in different epithelial transitional tissues, frequently associated with pathological states.


Asunto(s)
Interleucina-1beta , Receptores de Hidrocarburo de Aril , Regulación hacia Arriba , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/deficiencia , Ratones , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Ciego/metabolismo , Íleon/metabolismo , Íleon/patología , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731818

RESUMEN

Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.


Asunto(s)
Enfermedades Cardiovasculares , Efectos Tardíos de la Exposición Prenatal , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Humanos , Embarazo , Animales , Femenino , Efectos Tardíos de la Exposición Prenatal/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología , Exposición Materna/efectos adversos , Transducción de Señal/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Desarrollo Fetal/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/efectos adversos , Reprogramación Metabólica
4.
Gut Microbes ; 16(1): 2347722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706205

RESUMEN

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Asunto(s)
Microbioma Gastrointestinal , Indoles , Ratones Endogámicos C57BL , Probióticos , Receptores de Hidrocarburo de Aril , Vía de Señalización Wnt , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Humanos , Probióticos/administración & dosificación , Probióticos/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Indoles/metabolismo , Indoles/farmacología , Protectores contra Radiación/farmacología , Organoides/metabolismo , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/prevención & control , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/efectos de la radiación , Intestinos/microbiología , Intestinos/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
5.
Birth Defects Res ; 116(5): e2350, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38761027

RESUMEN

BACKGROUND: Cyprodinil is a widely used fungicide with broad-spectrum activity, but it has been associated with cardiac abnormalities. (-)-Epicatechin gallate (ECG), a natural polyphenolic compound, has been shown to possess protective properties in cardiac development. METHODS: In this study, we investigated whether ECG could mitigate cyprodinil-induced heart defects using zebrafish embryos as a model. Zebrafish embryos were exposed to cyprodinil with or without ECG. RESULTS: Our results demonstrated that ECG significantly improved the survival rate, embryo movement, and hatching delay induced by cyprodinil. Furthermore, ECG effectively ameliorated cyprodinil-induced cardiac developmental toxicity, including pericardial anomaly and impairment of cardiac function. Mechanistically, ECG attenuated the cyprodinil-induced alterations in mRNA expression related to cardiac development, such as amhc, vmhc, tbx5, and gata4, as well as calcium ion channels, such as ncx1h, atp2a2a, and cdh2. Additionally, ECG was found to inhibit the activity of the aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. CONCLUSIONS: In conclusion, our findings provide evidence for the protective effects of ECG against cyprodinil-induced cardiac developmental toxicity, mediated through the inhibition of AhR activity. These findings contribute to a better understanding of the regulatory mechanisms and safe utilization of pesticide, such as cyprodinil.


Asunto(s)
Catequina , Corazón , Receptores de Hidrocarburo de Aril , Pez Cebra , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Corazón/efectos de los fármacos , Catequina/análogos & derivados , Catequina/farmacología , Cardiopatías Congénitas/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Transducción de Señal/efectos de los fármacos , Fungicidas Industriales/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 121(22): e2402159121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739836

RESUMEN

The aryl hydrocarbon receptor (AHR) is a transcription factor that has many functions in mammals. Its best known function is that it binds aromatic hydrocarbons and induces the expression of cytochrome P450 genes, which encode enzymes that metabolize aromatic hydrocarbons and other substrates. All present-day humans carry an amino acid substitution at position 381 in the AHR that occurred after the divergence of modern humans from Neandertals and Denisovans. Previous studies that have expressed the ancestral and modern versions of AHR from expression vectors have yielded conflicting results with regard to their activities. Here, we use genome editing to modify the endogenous AHR gene so that it encodes to the ancestral, Neandertal-like AHR protein in human cells. In the absence of exogenous ligands, the expression of AHR target genes is higher in cells expressing the ancestral AHR than in cells expressing the modern AHR, and similar to the expression in chimpanzee cells. Furthermore, the modern human AHR needs higher doses of three ligands than the ancestral AHR to induce the expression of target genes. Thus, the ability of AHR to induce the expression of many of its target genes is reduced in modern humans.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Edición Génica , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Humanos , Edición Génica/métodos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Evolución Molecular , Pan troglodytes/genética , Hombre de Neandertal/genética , Ligandos
7.
Ecotoxicol Environ Saf ; 275: 116262, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569320

RESUMEN

The aryl hydrocarbon receptor (AHR) is a key ligand-dependent transcription factor that mediates the toxic effects of compounds such as dioxin. Recently, natural ligands of AHR, including flavonoids, have been attracting physiological and toxicological attention as they have been reported to regulate major biological functions such as inflammation and anti-cancer by reducing the toxic effects of dioxin. Additionally, it is known that natural AHR ligands can accumulate in wildlife tissues, such as fish. However, studies in fish have investigated only a few ligands in experimental fish species, and the AHR response of marine fish to natural AHR ligands of various other structures has not been thoroughly investigated. To explore various natural AHR ligands in marine fish, which make up the most fish, it is necessary to develop new screening methods that consider the specificity of marine fish. In this study, we investigated the response of natural ligands by constructing in vitro and in silico experimental systems using red seabream as a model species. We attempted to develop a new predictive model to screen potential ligands that can induce transcriptional activation of red seabream AHR1 and AHR2 (rsAHR1 and rsAHR2). This was achieved through multiple analyses using in silico/ in vitro data and Tox21 big data. First, we constructed an in vitro reporter gene assay of rsAHR1 and rsAHR2 and measured the response of 10 representatives natural AHR ligands in COS-7 cells. The results showed that FICZ, Genistein, Daidzein, I3C, DIM, Quercetin and Baicalin induced the transcriptional activity of rsAHR1 and rsAHR2, while Resveratrol and Retinol did not induce the transcriptional activity of rsAHR isoforms. Comparing the EC50 values of the respective compounds in rsAHR1 and rsAHR2, FICZ, Genistein, and Daidzein exhibited similar isoform responses, but I3C, Baicalin, DIM and Quercetin show the isoform-specific responses. These results suggest that natural AHR ligands have specific profiling and transcriptional activity for each rsAHR isoform. In silico analysis, we constructed homology models of the ligand binding domains (LBDs) of rsAHR1 and rsAHR2 and calculated the docking energies (U_dock values) of natural ligands with measured in vitro transcriptional activity and dioxins reported in previous studies. The results showed a significant correlation (R2=0.74(rsAHR1), R2=0.83(rsAHR2)) between docking energy and transcriptional activity (EC50) value, suggesting that the homology model of rsAHR1 and rsAHR2 can be utilized to predict the potential transactivation of ligands. To broaden the applicability of the homology model to diverse compound structures and validate the correlation with transcriptional activity, we conducted additional analyses utilizing Tox21 big data. We calculated the docking energy values for 1860 chemicals in both rsAHR1 and rsAHR2, which were tested for transcriptional activation in Tox21 data against human AHR. By comparing the U_dock energy values between 775 active compounds and 1085 inactive compounds, a significant difference (p<0.001) was observed between the U_dock energy values in the two groups, suggesting that the U_dock value can be applied to distinguish the activation of compounds. Furthermore, we observed a significant correlation (R2=0.45) between the AC50 of Tox21 database and U_dock values of human AHR model. In conclusion, we calculated equations to translate the results of an in silico prediction model for ligand screening of rsAHR1 and rsAHR2 transactivation. This ligand screening model can be a powerful tool to quantitatively estimate AHR transactivation of major marine agents to which red seabream may be exposed. The study introduces a new screening approach for potential natural AHR ligands in marine fish, based on homology model-docking energy values of rsAHR1 and rsAHR2, with implications for future agonist development and applications bridging in silico and in vitro data.


Asunto(s)
Dioxinas , Dibenzodioxinas Policloradas , Dorada , Animales , Humanos , Dorada/genética , Dorada/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Dioxinas/metabolismo , Ligandos , Quercetina , Genisteína/toxicidad , Genisteína/metabolismo , Dibenzodioxinas Policloradas/metabolismo , Isoformas de Proteínas/genética
8.
Egypt J Immunol ; 31(2): 87-92, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38615265

RESUMEN

Breast cancer is the most malignant tumor among women in the world. Single nucleotide polymorphisms (SNPs) might better predict breast cancer prognosis. PvuII (T/C substitution), XbaI (A/G substitution), and aryl hydrocarbon (AhR) (G/A substitution) were evaluated as possible genetic prognostic factors for breast cancer. The aim of the current study was to assess the relation between PvuII (rs2234693), XbaI (rs9340799), and aryl hydrocarbon receptor gene polymorphisms AhR (rs2066853) in breast cancer prognosis. This was a case-control study that included 120 breast cancer patients classified into two groups. The first group included 60 patients with good prognostic factors, and the second group included 60 patients with poor prognostic factors. Blood samples were taken from all study participants to perform the genotyping assay. We found that positive genotypes of PvuII, XbaI, and AhR polymorphisms were strongly associated with better prognostic factors for breast cancer patients, while negative genotypes of PvuII and XbaI were more and significantly prevalent in poor prognostic breast cancer patients. We conclude that PvuII T/C, XbaI G/A, and AhR G/A alleles may be prognostic for breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Receptores de Hidrocarburo de Aril , Femenino , Humanos , Neoplasias de la Mama/genética , Estudios de Casos y Controles , Egipto/epidemiología , Receptor alfa de Estrógeno/genética , Polimorfismo de Nucleótido Simple , Pronóstico , Receptores de Hidrocarburo de Aril/genética , Pueblo Norteafricano/genética
9.
PLoS One ; 19(4): e0301239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635505

RESUMEN

The retinal pigment epithelium (RPE) is essential to maintain retinal function, and RPE cell death represents a key pathogenic stage in the progression of several blinding ocular diseases, including age-related macular degeneration (AMD). To identify pathways and compounds able to prevent RPE cell death, we developed a phenotypic screening pipeline utilizing a compound library and high-throughput screening compatible assays on the human RPE cell line, ARPE-19, in response to different disease relevant cytotoxic stimuli. We show that the metabolic by-product of the visual cycle all-trans-retinal (atRAL) induces RPE apoptosis, while the lipid peroxidation by-product 4-hydroxynonenal (4-HNE) promotes necrotic cell death. Using these distinct stimuli for screening, we identified agonists of the aryl hydrocarbon receptor (AhR) as a consensus target able to prevent both atRAL mediated apoptosis and 4-HNE-induced necrotic cell death. This works serves as a framework for future studies dedicated to screening for inhibitors of cell death, as well as support for the discussion of AhR agonism in RPE pathology.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Apoptosis , Muerte Celular , Estrés Oxidativo
10.
Commun Biol ; 7(1): 442, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600349

RESUMEN

Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.


Asunto(s)
Citocromo P-450 CYP1A1 , Receptores de Hidrocarburo de Aril , Ratones , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Luciferasas/genética , Hígado/metabolismo , Pulmón/metabolismo
11.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672460

RESUMEN

A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.


Asunto(s)
Antioxidantes , Edaravona , Receptores de Hidrocarburo de Aril , Transducción de Señal , Animales , Humanos , Ratones , Antioxidantes/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Edaravona/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo
12.
Sci Total Environ ; 930: 172615, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38657801

RESUMEN

Benz[a]anthracene (BaA), a prevalent environmental contaminant within the polycyclic aromatic hydrocarbon class, poses risks to both human health and aquatic ecosystems. The impact of BaA on neural development and subsequent social behavior patterns remains inadequately explored. In this investigation, we employed the zebrafish as a model to examine the persisting effects of BaA exposure on social behaviors across various developmental stages, from larvae, juveniles to adults, following embryonic exposure. Our findings indicate that BaA exposure during embryogenesis yields lasting neurobehavioral deficits into adulthood. Proteomic analysis highlights that BaA may impair neuro-immune crosstalk in zebrafish larvae. Remarkably, our proteomic data also hint at the activation of the aryl hydrocarbon receptor (AHR) and cytochrome P450 1A (CYP1A) pathway by BaA, leading to the hypothesis that this pathway may be implicated in the disruption of neuro-immune interactions, contributing to observable behavioral disruptions. In summary, our findings suggest that early exposure to BaA disrupts social behaviors, such as social ability and shoaling behaviors, from the larval stage through to maturity in zebrafish, potentially through the detrimental effects on neuro-immune processes mediated by the AHR-CYP1A pathway.


Asunto(s)
Benzo(a)Antracenos , Conducta Social , Contaminantes Químicos del Agua , Pez Cebra , Animales , Contaminantes Químicos del Agua/toxicidad , Benzo(a)Antracenos/toxicidad , Conducta Animal/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Embrión no Mamífero/efectos de los fármacos
13.
Chemosphere ; 357: 142108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657698

RESUMEN

Numerous studies reported the concentration of agonists of aryl hydrocarbon receptor (AhR) in indoor dust by target chemical analysis or the biological effects of activating the AhR by indoor extracts, but the major AhR agonists identification in indoor dust were rarely researched. In the present study, the indoor dust samples were collected for 7-ethoxyresorufin O-deethylase (EROD) assay and both non-targeted and targeted chemical analysis for AhR agonists by gas chromatography quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry analysis. Coupled with non-targeted analysis and toxicity Forecaster (ToxCast)/Tox21 database, 104 ToxCast chemicals were screened to be able to induce EROD response. The combination of targeted chemical analyses and biological effects evaluation indicated that PAHs, dibutyl phthalate (DBP) and Cypermethrin might be the important AhR-agonists in different indoor dust and mainly contributed in 1.84%-97.56 % (median: 26.62%) of total observed biological effects through comparing toxic equivalency quotient derived from chemical analysis with biological equivalences derived from bioassay. DBP and cypermethrin seldom reported in the analysis of AhR agonists should raise great concern. In addition, the present results in experiment of synthetic solution of 4 selected AhR-agonists pointed out that some unidentified AhR agonists existed in indoor dust.


Asunto(s)
Contaminación del Aire Interior , Polvo , Cromatografía de Gases y Espectrometría de Masas , Receptores de Hidrocarburo de Aril , Polvo/análisis , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/metabolismo , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Monitoreo del Ambiente/métodos , Piretrinas/análisis , Piretrinas/toxicidad , Citocromo P-450 CYP1A1/metabolismo , Humanos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Bases de Datos Factuales
14.
JCI Insight ; 9(10)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652558

RESUMEN

Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.


Asunto(s)
Ratones Endogámicos C57BL , Músculo Esquelético , Fosforilación Oxidativa , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Receptores de Hidrocarburo de Aril , Insuficiencia Renal Crónica , Triptófano , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Ratones , Masculino , Insuficiencia Renal Crónica/metabolismo , Triptófano/metabolismo , Músculo Esquelético/metabolismo , Humanos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Uremia/metabolismo , Mitocondrias Musculares/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Femenino , Ratones Noqueados , Citocromo P-450 CYP1B1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Persona de Mediana Edad , Metabolismo Energético , Modelos Animales de Enfermedad
15.
Int Immunopharmacol ; 133: 112062, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652967

RESUMEN

Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.


Asunto(s)
Células Dendríticas , Indolamina-Pirrol 2,3,-Dioxigenasa , Monocitos , Enfermedad de Parkinson , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Humanos , Células Dendríticas/inmunología , Enfermedad de Parkinson/inmunología , Monocitos/inmunología , Animales , Quinurenina/metabolismo , Triptófano/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo
16.
Chem Res Toxicol ; 37(5): 675-684, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38598786

RESUMEN

Air pollution consists of complex mixtures of chemicals with serious deleterious health effects from acute and chronic exposure. To help understand the mechanisms by which adverse effects occur, the present work examines the responses of cultured human epidermal keratinocytes to specific chemicals commonly found in woodsmoke. Our earlier findings with liquid smoke flavoring (aqueous extract of charred wood) revealed that such extracts stimulated the expression of genes associated with oxidative stress and proinflammatory response, activated the aryl hydrocarbon receptor, thereby inducing cytochrome P4501A1 activity, and induced cross-linked envelope formation, a lethal event ordinarily occurring during terminal differentiation. The present results showed that furfural produced transcriptional responses resembling those of liquid smoke, cyclohexanedione activated the aryl hydrocarbon receptor, and several chemicals induced envelope formation. Of these, syringol permeabilized the cells to the egress of lactate dehydrogenase at a concentration close to that yielding envelope formation, while furfural induced envelope formation without permeabilization detectable in this way. Furfural (but not syringol) stimulated the incorporation of amines into cell proteins in extracts in the absence of transglutaminase activity. Nevertheless, both chemicals substantially increased the amount of cellular protein incorporated into envelopes and greatly altered the envelope protein profile. Moreover, the proportion of keratin in the envelopes was dramatically increased. These findings are consistent with the chemically induced protein cross-linking in the cells. Elucidating mechanisms by which this phenomenon occurs may help understand how smoke chemicals interact with proteins to elicit cellular responses, interpret bioassays of complex pollutant mixtures, and suggest additional sensitive ways to monitor exposures.


Asunto(s)
Queratinocitos , Madera , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Madera/química , Humo/efectos adversos , Furaldehído/análogos & derivados , Furaldehído/farmacología , Células Cultivadas , Receptores de Hidrocarburo de Aril/metabolismo
17.
Toxicol Appl Pharmacol ; 486: 116936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641223

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is pivotal in development, metabolic homeostasis, and immune responses. While recent research has highlighted AhR's significant role in modulating oxidative stress responses, its mechanistic relationship with ferroptosis-an iron-dependent, non-apoptotic cell death-remains to be fully elucidated. In our study, we discovered that AhR plays a crucial role in ferroptosis, in part by transcriptionally regulating the expression of the solute carrier family 7 member 11 (SLC7A11). Our findings indicate that both pharmacological inactivation and genetic ablation of AhR markedly enhance erastin-induced ferroptosis. This enhancement is achieved by suppressing SLC7A11, leading to increased lipid peroxidation. We also obtained evidence of post-translational modifications of SLC7A11 during ferroptosis. Additionally, we observed that indole 3-pyruvate (I3P), an endogenous ligand of AhR, protects cells from ferroptosis through an AhR-dependent mechanism. Based on these insights, we propose that AhR transcriptionally regulates the expression of SLC family genes, which in turn play a pivotal role in mediating ferroptosis. This underscores AhR's essential role in suppressing lipid oxidation and ensuring cell survival under oxidative stress.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Receptores de Hidrocarburo de Aril , Transducción de Señal , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Humanos , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Peroxidación de Lípido/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Regulación de la Expresión Génica , Piperazinas/farmacología
18.
Toxicol Lett ; 396: 81-93, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670245

RESUMEN

PURPOSE: Uremic cardiomyopathy (UCM) is the leading cause of chronic kidney disease (CKD) related mortality. Uremic toxins including indoxyl sulfate (IS) play important role during the progression of UCM. This study was to explore the underlying mechanism of IS related myocardial injury. METHODS: UCM rat model was established through five-sixths nephrectomy to evaluate its effects on blood pressure, cardiac impairment, and histological changes using echocardiography and histological analysis. Additionally, IS was administered to neonatal rat cardiomyocytes (NRCMs) and the human cardiomyocyte cell line AC16. DHE staining and peroxide-sensitive dye 2',7'-dichlorofluorescein diacetate (H2DCFDA) was conducted to assess the reactive oxygen species (ROS) production. Cardiomyocyte hypertrophy was estimated using wheat germ agglutinin (WGA) staining and immunofluorescence. Aryl hydrocarbon receptor (AhR) translocation was observed by immunofluorescence. The activation of AhR was evaluated by immunoblotting of cytochrome P450 1 s (CYP1s) and quantitative real-time PCR (RT-PCR) analysis of AHRR and PTGS2. Additionally, the pro-oxidative and pro-hypertrophic effects were evaluated using the AhR inhibitor CH-223191, the CYP1s inhibitor Alizarin and the ROS scavenger N-Acetylcysteine (NAC). RESULTS: UCM rat model was successfully established, and cardiac hypertrophy, accompanied by increased blood pressure, and myocardial fibrosis. Further research confirmed the activation of the AhR pathway in UCM rats including AhR translocation and downstream protein CYP1s expression, accompanied with increasing ROS production detected by DHE staining. In vitro experiment demonstrated a translocation of AhR triggered by IS, leading to significant increase of downstream gene expression. Subsequently study indicated a close relationship between the production of ROS and the activation of AhR/CYP1s, which was effectively blocked by applying AhR inhibitor, CYP1s inhibitor and siRNA against AhR. Moreover, the inhibition of AhR/CYP1s/ROS pathway collectively blocked the pro-hypertrophic effect of IS-mediated cardiomyopathy. CONCLUSION: This study provides evidence that the AhR/CYP1s pathway is activated in UCM rats, and this activation is correlated with the uremic toxin IS. In vitro studies indicate that IS can stimulate the AhR translocation in cardiomyocyte, triggering to the production of intracellular ROS via CYP1s. This process leads to prolonged oxidative stress stimulation and thus contributes to the progression of uremic toxin-mediated cardiomyopathy.


Asunto(s)
Cardiomiopatías , Indicán , Miocitos Cardíacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Receptores de Hidrocarburo de Aril , Transducción de Señal , Uremia , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Especies Reactivas de Oxígeno/metabolismo , Uremia/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Indicán/toxicidad , Humanos , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Ratas , Masculino , Línea Celular , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Estrés Oxidativo , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología
19.
Ecotoxicol Environ Saf ; 276: 116287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579532

RESUMEN

Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.


Asunto(s)
Apoptosis , Benzo(a)pireno , Supervivencia Celular , Proteína con Dominio Pirina 3 de la Familia NLR , Placenta , Receptores de Hidrocarburo de Aril , Trofoblastos , Humanos , Benzo(a)pireno/toxicidad , Placenta/efectos de los fármacos , Placenta/citología , Línea Celular , Femenino , Embarazo , Apoptosis/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Mitocondrias/efectos de los fármacos , Inflamación/inducido químicamente , Hipoxia de la Célula/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
20.
Environ Pollut ; 349: 123872, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604309

RESUMEN

Recently, attention has been drawn to the adverse outcomes of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) on human health, but its cardiac toxicity has been relatively understudied. This work aims to investigate the effects of 6PPDQ on differentiated H9c2 cardiomyocytes. Our findings demonstrated that exposure to 6PPDQ altered cellular morphology and disrupted the expression of cardiac-specific markers. Significantly, 6PPDQ exposure led to cardiomyocyte senescence, characterized by elevated ß-Galactosidase activity, upregulation of cell cycle inhibitor, induction of DNA double-strand breaks, and remodeling of Lamin B1. Furthermore, 6PPDQ hindered autophagy flux by promoting the formation of autophagosomes while inhibiting the degradation of autolysosomes. Remarkably, restoration of autophagic flux using rapamycin counteracted 6PPDQ-induced cardiomyocyte senescence. Additionally, our study revealed that 6PPDQ significantly increased the ROS production. However, ROS scavenger effectively reduced the blockage of autophagic flux and cardiomyocyte senescence caused by 6PPDQ. Furthermore, we discovered that 6PPDQ activated the Aryl hydrocarbon receptor (AhR) signaling pathway. AhR antagonist was found to reverse the blockage of autophagy and alleviate cardiac senescence, while also reducing ROS levels in 6PPDQ-treated group. In conclusion, our research unveils that exposure to 6PPDQ induces ROS overproduction through AhR activation, leading to disruption of autophagy flux and ultimately contributing to cardiomyocyte senescence.


Asunto(s)
Autofagia , Senescencia Celular , Miocitos Cardíacos , Especies Reactivas de Oxígeno , Receptores de Hidrocarburo de Aril , Autofagia/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Senescencia Celular/efectos de los fármacos , Animales , Fenilendiaminas/farmacología , Fenilendiaminas/toxicidad , Transducción de Señal/efectos de los fármacos , Ratas , Línea Celular , Quinonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...