Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Endocrinol ; 25(1): 15-31, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21106879

RESUMEN

Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH3. We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes.


Asunto(s)
Medición de Intercambio de Deuterio , Receptores de Hormona Tiroidea/agonistas , Receptores de Hormona Tiroidea/antagonistas & inhibidores , Secuencia de Aminoácidos , Amoníaco/farmacología , Apoproteínas/química , Apoproteínas/metabolismo , Deuterio/metabolismo , Humanos , Ligandos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación/genética , Péptidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Hormona Tiroidea/química , Alineación de Secuencia , Solventes , Triyodotironina/farmacología
2.
Nat Clin Pract Endocrinol Metab ; 3(9): 632-40, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17710084

RESUMEN

Thyroid hormone (T3 and T4) has many beneficial effects including enhancing cardiac function, promoting weight loss and reducing serum cholesterol. Excess thyroid hormone is, however, associated with unwanted effects on the heart, bone and skeletal muscle. We therefore need analogs that harness the beneficial effects of thyroid hormone without the untoward effects. Such work is largely based on understanding the cellular mechanisms of thyroid hormone action, specifically the crystal structure of the nuclear receptor proteins. In clinical studies, use of naturally occurring thyroid hormone analogs can suppress TSH levels in patients with thyroid cancer without producing tachycardia. Many thyromimetic compounds have been tested in animal models and shown to increase total body oxygen consumption, and to lower weight and serum cholesterol and triglyceride levels while having minor effects on heart rate. Alternatively, analogs that specifically enhance both systolic and diastolic function are potentially useful in the treatment of chronic congestive heart failure. In addition to analogs that are thyroid hormone receptor agonists, several compounds that are thyroid hormone receptor antagonists have been identified and tested. This Review discusses the potential application of thyroid hormone analogs (both agonists and antagonists) in a variety of human disease states.


Asunto(s)
Éteres Fenílicos/farmacología , Fenilacetatos/farmacología , Receptores de Hormona Tiroidea/agonistas , Receptores de Hormona Tiroidea/antagonistas & inhibidores , Diseño de Fármacos , Humanos , Imitación Molecular , Estructura Molecular , Éteres Fenílicos/química , Éteres Fenílicos/uso terapéutico , Fenilacetatos/química , Fenilacetatos/uso terapéutico , Receptores de Hormona Tiroidea/fisiología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Hormonas Tiroideas/química , Hormonas Tiroideas/farmacología , Hormonas Tiroideas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA