Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 701
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732195

RESUMEN

Sport injuries, including the anterior crucial ligament rupture (ACLR) seem to be related to complex genetic backgrounds, including the genes responsible for inflammatory response. This review and meta-analysis investigated the contribution of the polymorphisms of genes encoding inflammatory cytokines and their receptors to the risk of ACLR. The scientific databases Science Direct, EBSCO host, Scopus, PubMed, and Google Scholar were screened (completed on 14 June 2023) according to the established inclusion/exclusion criteria (only fully accessible, original, human case-control studies written in English concerning the effect of interleukin genes' polymorphisms on the occurrence of ACL injury were included) and statistical meta-analysis using R version 4.0.3 was performed. The PRISMA methodology was used to review articles. The review protocol was registered under the number CRD42024514316 in the Prospero database. Eighty-nine studies were identified and narrowed down to three original case-control studies used for the meta-analysis. The studies analyzed Polish, South African, and Swedish cohorts, altogether 1282 participants. The candidate polymorphisms indicated in the studies involved IL6 rs1800795, IL6R rs2228145 and IL1B rs16944. The systematic review showed the relationships between IL6 rs1800795 polymorphism and ACLR in the Polish subpopulation, and IL6R rs2228145 and IL1B rs16944 in the South African subpopulations. The meta-analysis revealed that the IL6 rs1800795 CG genotype was over-represented (OR = 1.30, 95% CI 1.02-1.66), while the CC genotype was under-represented (OR = 0.75, 95% CI 0.54-1.03) in ACLR subjects, but no significant impact of IL6R rs2228145 was shown. Additionally, a tendency of the IL1B rs16944 CT genotype to be protective (OR 0.89, 95% CI 0.70-1.14), while the TT to be a risk genotype (OR 1.19, 95% CI 0.84-1.68) was observed. Thus, the relationship between the interleukin receptor IL6R rs2228145 and ACLR risk was not confirmed. However, the impact of genes coding pleiotropic IL6 rs1800795 on the incidences of ACLR was clear and the effect of pro-inflammatory IL1B rs16944 was possible.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Humanos , Lesiones del Ligamento Cruzado Anterior/genética , Interleucina-6/genética , Interleucina-1beta/genética , Receptores de Interleucina-6/genética , Interleucinas/genética , Factores de Riesgo , Estudios de Casos y Controles
2.
Sci Rep ; 14(1): 8021, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580710

RESUMEN

The Phenome-Wide Association Study (PheWAS) is increasingly used to broadly screen for potential treatment effects, e.g., IL6R variant as a proxy for IL6R antagonists. This approach offers an opportunity to address the limited power in clinical trials to study differential treatment effects across patient subgroups. However, limited methods exist to efficiently test for differences across subgroups in the thousands of multiple comparisons generated as part of a PheWAS. In this study, we developed an approach that maximizes the power to test for heterogeneous genotype-phenotype associations and applied this approach to an IL6R PheWAS among individuals of African (AFR) and European (EUR) ancestries. We identified 29 traits with differences in IL6R variant-phenotype associations, including a lower risk of type 2 diabetes in AFR (OR 0.96) vs EUR (OR 1.0, p-value for heterogeneity = 8.5 × 10-3), and higher white blood cell count (p-value for heterogeneity = 8.5 × 10-131). These data suggest a more salutary effect of IL6R blockade for T2D among individuals of AFR vs EUR ancestry and provide data to inform ongoing clinical trials targeting IL6 for an expanding number of conditions. Moreover, the method to test for heterogeneity of associations can be applied broadly to other large-scale genotype-phenotype screens in diverse populations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Estudios de Asociación Genética , Fenotipo , Polimorfismo de Nucleótido Simple , Receptores de Interleucina-6/genética
3.
Nat Commun ; 15(1): 2071, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453915

RESUMEN

IL-11 and IL-6 activate signalling via assembly of the cell surface receptor gp130; however, it is unclear how signals are transmitted across the membrane to instruct cellular responses. Here we solve the cryoEM structure of the IL-11 receptor recognition complex to discover how differences in gp130-binding interfaces may drive signalling outcomes. We explore how mutations in the IL6ST gene encoding for gp130, which cause severe immune deficiencies in humans, impair signalling without blocking cytokine binding. We use cryoEM to solve structures of both IL-11 and IL-6 complexes with a mutant form of gp130 associated with human disease. Together with molecular dynamics simulations, we show that the disease-associated variant led to an increase in flexibility including motion within the cytokine-binding core and increased distance between extracellular domains. However, these distances are minimized as the transmembrane helix exits the membrane, suggesting a stringency in geometry for signalling and dimmer switch mode of action.


Asunto(s)
Interleucina-11 , Interleucina-6 , Humanos , Interleucina-11/genética , Interleucina-6/metabolismo , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Transducción de Señal , Receptores de Interleucina-6/genética
4.
Proc Natl Acad Sci U S A ; 121(2): e2315898120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165930

RESUMEN

Protection against endothelial damage is recognized as a frontline approach to preventing the progression of cytokine release syndrome (CRS). Accumulating evidence has demonstrated that interleukin-6 (IL-6) promotes vascular endothelial damage during CRS, although the molecular mechanisms remain to be fully elucidated. Targeting IL-6 receptor signaling delays CRS progression; however, current options are limited by persistent inhibition of the immune system. Here, we show that endothelial IL-6 trans-signaling promoted vascular damage and inflammatory responses via hypoxia-inducible factor-1α (HIF1α)-induced glycolysis. Using pharmacological inhibitors targeting HIF1α activity or mice with the genetic ablation of gp130 in the endothelium, we found that inhibition of IL-6R (IL-6 receptor)-HIF1α signaling in endothelial cells protected against vascular injury caused by septic damage and provided survival benefit in a mouse model of sepsis. In addition, we developed a short half-life anti-IL-6R antibody (silent anti-IL-6R antibody) and found that it was highly effective at augmenting survival for sepsis and severe burn by strengthening the endothelial glycocalyx and reducing cytokine storm, and vascular leakage. Together, our data advance the role of endothelial IL-6 trans-signaling in the progression of CRS and indicate a potential therapeutic approach for burns and sepsis.


Asunto(s)
Receptor gp130 de Citocinas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Interleucina-6 , Receptores de Interleucina-6 , Sepsis , Animales , Ratones , Receptor gp130 de Citocinas/genética , Síndrome de Liberación de Citoquinas , Células Endoteliales , Receptores de Interleucina-6/genética , Sepsis/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
6.
FEBS J ; 291(8): 1667-1683, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37994264

RESUMEN

Interleukin-11 (IL-11) is a member of the IL-6 family of cytokines and is an important factor for bone homeostasis. IL-11 binds to and signals via the membrane-bound IL-11 receptor (IL-11R, classic signaling) or soluble forms of the IL-11R (sIL-11R, trans-signaling). Mutations in the IL11RA gene, which encodes the IL-11R, are associated with craniosynostosis, a human condition in which one or several of the sutures close prematurely, resulting in malformation of the skull. The biological mechanisms of how mutations within the IL-11R are linked to craniosynostosis are mostly unexplored. In this study, we analyze two variants of the IL-11R described in craniosynostosis patients: p.T306_S308dup, which results in a duplication of three amino-acid residues within the membrane-proximal fibronectin type III domain, and p.E364_V368del, which results in a deletion of five amino-acid residues in the so-called stalk region adjacent to the plasma membrane. The stalk region connects the three extracellular domains to the transmembrane and intracellular region of the IL-11R and contains cleavage sites for different proteases that generate sIL-11R variants. Using a combination of bioinformatics and different biochemical, molecular, and cell biology methods, we show that the IL-11R-T306_S308dup variant does not mature correctly, is intracellularly retained, and does not reach the cell surface. In contrast, the IL-11R-E364_V368del variant is fully biologically active and processed normally by proteases, thus allowing classic and trans-signaling of IL-11. Our results provide evidence that mutations within the IL11RA gene may not be causative for craniosynostosis and suggest that other regulatory mechanism(s) are involved but remain to be identified.


Asunto(s)
Craneosinostosis , Interleucina-11 , Humanos , Receptores de Interleucina-11/genética , Receptores de Interleucina-11/química , Receptores de Interleucina-11/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Transducción de Señal , Craneosinostosis/genética , Péptido Hidrolasas/metabolismo , Receptores de Interleucina-6/genética , Receptor gp130 de Citocinas/genética
7.
Cell Rep ; 43(1): 113612, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38141171

RESUMEN

Malignancy is enabled by pro-growth mutations and adequate energy provision. However, global metabolic activation would be self-terminating if it depleted tumor resources. Cancer cells could avoid this by rationing resources, e.g., dynamically switching between "baseline" and "activated" metabolic states. Using single-cell metabolic phenotyping of pancreatic ductal adenocarcinoma cells, we identify MIA-PaCa-2 as having broad heterogeneity of fermentative metabolism. Sorting by a readout of lactic acid permeability separates cells by fermentative and respiratory rates. Contrasting phenotypes persist for 4 days and are unrelated to cell cycling or glycolytic/respiratory gene expression; however, transcriptomics links metabolically active cells with interleukin-6 receptor (IL-6R)-STAT3 signaling. We verify this by IL-6R/STAT3 knockdowns and sorting by IL-6R status. IL-6R/STAT3 activates fermentation and transcription of its inhibitor, SOCS3, resulting in delayed negative feedback that underpins transitions between metabolic states. Among cells manifesting wide metabolic heterogeneity, dynamic IL-6R/STAT3 signaling may allow cell cohorts to take turns in progressing energy-intense processes without depleting shared resources.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transducción de Señal , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Fenotipo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo
8.
Respir Res ; 24(1): 308, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062491

RESUMEN

BACKGROUND: Asthma is stratified into type 2-high and type 2-low inflammatory phenotypes. Limited success has been achieved in developing drugs that target type 2-low inflammation. Previous studies have linked IL-6 signaling to severe asthma. IL-6 cooperates with soluble-IL-6Rα to activate cell signaling in airway epithelium. OBJECTIVE: We sought to study the role of sIL-6Rα amplified IL-6 signaling in airway epithelium and to develop an IL-6+ sIL-6Rα gene signature that may be used to select asthma patients who potentially respond to anti-IL-6 therapy. METHODS: Human airway epithelial cells were stimulated with combinations of IL-6, sIL-6Rα, and inhibitors, sgp130 (Olamkicept), and anti-IL-6R (Tocilizumab), to assess effects on pathway activation, epithelial barrier integrity, and gene expression. A gene signature was generated to identify IL-6 high patients using bronchial biopsies and nasal brushes. RESULTS: Soluble-IL-6Rα amplified the activation of the IL-6 pathway, shown by the increase of STAT3 phosphorylation and stronger gene induction in airway epithelial cells compared to IL-6 alone. Olamkicept and Tocilizumab inhibited the effect of IL-6 + sIL-6Rα on gene expression. We developed an IL-6 + sIL-6Rα gene signature and observed enrichment of this signature in bronchial biopsies but not nasal brushes from asthma patients compared to healthy controls. An IL-6 + sIL-6Rα gene signature score was associated with lower levels of sputum eosinophils in asthma. CONCLUSION: sIL-6Rα amplifies IL-6 signaling in bronchial epithelial cells. Higher local airway IL-6 + sIL-6Rα signaling is observed in asthma patients with low sputum eosinophils.


Asunto(s)
Asma , Interleucina-6 , Humanos , Asma/diagnóstico , Asma/tratamiento farmacológico , Asma/genética , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Inflamación , Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Transducción de Señal
9.
Invest Ophthalmol Vis Sci ; 64(15): 1, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038619

RESUMEN

Purpose: Interleukin-6 (IL-6) is implicated in the pathology of diabetic retinopathy (DR). IL-6 trans-signaling via soluble IL-6 receptor (IL-6R) is primarily responsible for its pro-inflammatory functions, whereas cis-signaling via membrane-bound IL-6R is anti-inflammatory. Using a Müller-glial-cell-specific Il6ra-/- mouse, we examined how loss of IL-6 cis-signaling in Müller glial cells (MGCs) affected retinal thinning and electroretinography (ERG) response over 9 months of diabetes. Methods: Diabetes was induced in wildtype and knockout mice with streptozotocin (40 mg/kg, daily for 5 days). Spectral domain optical coherence tomography (SD-OCT), ERG, and fundoscopy/fluorescein angiography (FA) were assessed at 2, 6, and 9 months of diabetes. MGCs and bipolar neurons were examined in retinal tissue sections by immunofluorescence. Results: Diabetic MGC Il6ra-/- mice had significantly thinner retinas than diabetic wildtype mice at 2 (-7.6 µm), 6 (-12.0 µm), and 9 months (-5.0 µm) of diabetes, as well as significant thinning of the inner nuclear layer (INL). Diabetic MGC Il6ra-/- mice also showed a reduction in scotopic B-wave amplitude and B-wave/A-wave ratio earlier than wildtype diabetic mice. In retinal sections, we found a decrease in bipolar neuronal marker PKCα only in diabetic MGC Il6ra-/- mice, which was significantly lower than both controls and diabetic wildtype mice. Glutamine synthetase, a Müller cell marker, was reduced in both wildtype and MGC Il6ra-/- diabetic mice compared to their respective controls. Conclusions: IL-6 cis-signaling in MGCs contributes to maintenance of the INL in diabetes, and loss of the IL-6 receptor reduces MGC-mediated neuroprotection of bipolar neurons in the diabetic retina.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Receptores de Interleucina-6 , Animales , Ratones , Diabetes Mellitus Experimental/patología , Células Ependimogliales/patología , Interleucina-6 , Ratones Noqueados , Receptores de Interleucina-6/genética , Retina
10.
J Clin Invest ; 134(4)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015631

RESUMEN

C1q/TNF-related protein 4 (CTRP4) is generally thought to be released extracellularly and plays a critical role in energy metabolism and protecting against sepsis. However, its physiological functions in autoimmune diseases have not been thoroughly explored. In this study, we demonstrate that Th17 cell-associated experimental autoimmune encephalomyelitis was greatly exacerbated in Ctrp4-/- mice compared with WT mice due to increased Th17 cell infiltration. The absence of Ctrp4 promoted the differentiation of naive CD4+ T cells into Th17 cells in vitro. Mechanistically, CTRP4 interfered with the interaction between IL-6 and the IL-6 receptor (IL-6R) by directly competing to bind with IL-6R, leading to suppression of IL-6-induced activation of the STAT3 pathway. Furthermore, the administration of recombinant CTRP4 protein ameliorated disease symptoms. In conclusion, our results indicate that CTRP4, as an endogenous regulator of the IL-6 receptor-signaling pathway, may be a potential therapeutic intervention for Th17-driven autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Encefalomielitis , Ratones , Animales , Interleucina-6/genética , Interleucina-6/metabolismo , Células Th17 , Complemento C1q , Diferenciación Celular , Factores Inmunológicos , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Adipoquinas/metabolismo
11.
Arthritis Res Ther ; 25(1): 226, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001504

RESUMEN

BACKGROUND: Sarilumab, an IL-6 receptor antagonist, is a first-line biologic disease-modifying anti-rheumatic drug for rheumatoid arthritis. The identification of genetic biomarkers as predictors of response to sarilumab could allow for a personalized treatment strategy to improve clinical outcomes. METHODS: We conducted a retrospective cohort study of 62 patients treated with sarilumab to determine whether single-nucleotide polymorphisms (SNP) in the IL6R gene could predict efficacy and toxicity responses. Six SNPs previously described in the IL6R gene (rs12083537, rs11265618, rs4329505, rs2228145, rs4537545, and rs4845625) were genotyped in DNA samples obtained from these patients. Using parametric tests, we evaluated the association between these polymorphisms and clinicopathological features. Treatment response was assessed six months after treatment initiation. Satisfactory response was based on EULAR criteria. Low disease activity was determined according to DAS28 and CDAI and quantitative improvements in DAS28 and CDAI scores. RESULTS: Three SNPs (rs4845625, rs4329505 and rs11265618) were significantly associated with response outcomes. All of the SNPs, except for rs12083537, had at least one significant association with dyslipidemia or hepatotoxicity. CONCLUSIONS: These findings support the potential clinical value of SNPs, particularly rs4845625, as potentially useful biomarkers to predict response to sarilumab in patients with RA.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Humanos , Estudios Retrospectivos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Antirreumáticos/efectos adversos , Resultado del Tratamiento , Biomarcadores , Receptores de Interleucina-6/genética
12.
Asian Pac J Cancer Prev ; 24(9): 3269-3274, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774081

RESUMEN

OBJECTIVE: Osteosarcoma is considered the most common primary malignant tumor that develops from the primary osteoblasts. MiRNAs are small non-coding RNAs that play a key role in tumorigenesis. The aim of this study was to detect the possible relationship between expression levels of miRNA-34a and levels of Signal transducer and activator of transcription 3 (STAT3) and interleukin-6 receptor (IL-6R) in osteosarcoma and the possible role of this relationship in development of metastases in these patients. METHODS: A total of thirty-six (36) bone samples were included in the study. They were divided into 3 groups: Group (I): Twelve normal bone samples as control group. Group (II): Twelve patients with non-metastatic osteosarcoma. Group (III): Twelve patients with metastatic osteosarcoma. MiRNA-34a expression levels were estimated using qRT-PCR. STAT3 and IL-6R levels were measured by ELISA. RESULTS: Expression level of miRNA-34a was downregulated in osteosarcoma groups compared to control group. STAT3 and IL-6R levels were upregulated in osteosarcoma groups compared to control group. This difference in expression levels was found to be more significant in the metastatic group than the non-metastatic one (P<0.001 each). There was a significant positive correlation between STAT3 and IL-6R (r=0.868, P<0.001), and a significant inverse correlation between IL6 and miRNA-34a (r=-0.993, P<0.001). CONCLUSION: miRNA-34a, STAT3 and IL-6R feedback loop could be a potential target for treatment of osteosarcoma and can be used as prognostic indicator for this disease.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Humanos , Neoplasias Óseas/genética , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , Receptores de Interleucina-6/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Retroalimentación Fisiológica
13.
Methods Mol Biol ; 2691: 207-224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355548

RESUMEN

Interleukin-6 (IL-6) is a cytokine synthesized by many cells in the human body. IL-6 binds to a membrane-bound receptor (IL-6R), which is only present on hepatocytes, some epithelial cells, and some leukocytes. The complex of IL-6 and IL-6R binds to the ubiquitously expressed receptor subunit gp130, which forms a homodimer and thereby initiates intracellular signaling, e.g., the JAK/STAT and MAPK pathways. Proteases can cleave the membrane-bound IL-6R from the cell surface and generate a soluble IL-6R (sIL-6R), which retains its ability to bind IL-6. The IL-6/sIL-6R complex associates with gp130 and induces signaling even on cells which do not express the IL-6R. This paradigm has been called IL-6 trans-signaling, whereas signaling via the membrane-bound IL-6R is referred to as classic signaling. We have generated several molecular tools to differentiate between both pathways and to analyze the consequences of cellular IL-6 signaling in vivo. One of these tools is soluble gp130Fc, which selectively inhibits IL-6 trans-signaling. This protein under the WHO name Olamkicept has successfully undergone phase II clinical trials in patients with autoimmune diseases. Here, in this chapter, we describe several molecular tools to differentiate between IL-6 classic and trans-signaling and to analyze the consequences of cellular IL-6 signaling in vivo.


Asunto(s)
Interleucina-6 , Neoplasias , Humanos , Interleucina-6/genética , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Receptores de Interleucina-6/genética , Neoplasias/genética , Citocinas/metabolismo , Inflamación/metabolismo
14.
Front Immunol ; 14: 1160148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342352

RESUMEN

Aim: Interleukin 6 (IL-6) is considered to play a role in the dysbiotic host response in the development of periodontitis. While the inhibition of the IL-6 receptor using monoclonal antibodies is a well-established therapy for some diseases, so far, its potential benefit in patients with periodontitis has not been examined. We tested the association of genetically proxied downregulation of IL-6 signaling with periodontitis to explore whether downregulation of IL-6 signaling could represent a viable treatment target for periodontitis. Materials and methods: As proxies for IL-6 signaling downregulation, we selected 52 genetic variants in close vicinity of the gene encoding IL-6 receptor that were associated with lower circulating C-reactive protein (CRP) levels in a genome-wide association study (GWAS) of 575 531 participants of European ancestry from the UK Biobank and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Associations with periodontitis were tested with inverse-variance weighted Mendelian randomization in a study of 17 353 cases and 28 210 controls of European descent in the Gene-Lifestyle Interactions in Dental Endpoints (GLIDE) consortium. In addition, the effect of CRP reduction independent of the IL-6 pathway was assessed. Results: Genetically proxied downregulation of IL-6 signaling was associated with lower odds of periodontitis (odds ratio (OR) = 0.81 per 1-unit decrement in log-CRP levels; 95% confidence interval (CI): [0.66;0.99]; P = 0.0497). Genetically proxied reduction of CRP independent of the IL-6 pathway had a similar effect (OR = 0.81; 95% CI: [0.68; 0.98]; P = 0.0296). Conclusion: In conclusion, genetically proxied downregulation of IL-6 signaling was associated with lower odds of periodontitis and CRP might be a causal target for the effect of IL-6 on the risk of periodontitis.


Asunto(s)
Interleucina-6 , Periodontitis , Humanos , Interleucina-6/genética , Estudio de Asociación del Genoma Completo , Regulación hacia Abajo , Análisis de la Aleatorización Mendeliana , Periodontitis/genética , Periodontitis/complicaciones , Receptores de Interleucina-6/genética
15.
Front Immunol ; 14: 1154746, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153572

RESUMEN

Background: Neurological involvement and psychiatric manifestations have been documented in clinical cases of inflammatory bowel disease (IBD); however, the presence of a causal relationship remains elusive. The objective of this study is to investigate the modifications occurring in the cerebral cortex as a result of IBD. Methods: A compendium of data extracted from a genome-wide association study (GWAS) involving a maximum of 133,380 European subjects. A series of Mendelian random analyses were applied to exclude heterogeneity and pleiotropy, ensuring the stability of the results. Results: Neither IBDs nor inflammatory cytokines (IL-6/IL-6Rα) were found to have a significant causality with surface area (SA) and thickness (TH) at the global level. At the regional functional brain level, Crohn's disease (CD) significantly decreased the TH of pars orbitalis (ß=-0.003mm, Se=0.001mm, pivw =4.85×10-4). IL-6 was observed to reduce the SA of middle temporal (ß=-28.575mm2, Se=6.482mm2, pivw=1.04×10-5) and increase the TH of fusiform (ß=0.008mm, Se=0.002mm, pivw=8.86×10-5) and pars opercularis (ß=0.009mm, Se=0.002mm, pivw=2.34×10-4). Furthermore, a causal relationship between IL-6Rα and an increase in the SA of superior frontal (ß=21.132mm2, Se=5.806mm2, pivw=2.73×10-4) and the TH of supramarginal (ß=0.003mm, Se=0.0002mm, pivw=7.86×10-37). All results passed sensitivity analysis and no heterogeneity and pleiotropy were detected. Conclusion: The correlation between IBD and changes in cerebral cortical structures implies the existence of a gut-brain axis at the organismal level. It is recommended that clinical patients with IBD prioritize long-term management of inflammation, as changes at the organismal level can lead to functional pathologies. Magnetic resonance imaging (MRI) may be considered as an additional screening option for IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Interleucina-6 , Receptores de Interleucina-6 , Humanos , Corteza Cerebral/metabolismo , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Análisis de la Aleatorización Mendeliana , Receptores de Interleucina-6/genética
16.
Viruses ; 15(5)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37243282

RESUMEN

Interleukin-6 has been recognized as a major role player in COVID-19 severity, being an important regulator of the cytokine storm. Hence, the evaluation of the influence of polymorphisms in key genes of the IL-6 pathway, namely IL6, IL6R, and IL6ST, may provide valuable prognostic/predictive markers for COVID-19. The present cross-sectional study genotyped three SNPs (rs1800795, rs2228145, and rs7730934) at IL6. IL6R and IL6ST genes, respectively, in 227 COVID-19 patients (132 hospitalized and 95 non-hospitalized). Genotype frequencies were compared between these groups. As a control group, published data on gene and genotype frequencies were gathered from published studies before the pandemic started. Our major results point to an association of the IL6 C allele with COVID-19 severity. Moreover, IL-6 plasmatic levels were higher among IL6 CC genotype carriers. Additionally, the frequency of symptoms was higher at IL6 CC and IL6R CC genotypes. In conclusion, the data suggest an important role of IL6 C allele and IL6R CC genotype on COVID-19 severity, in agreement with indirect evidence from the literature about the association of these genotypes with mortality rates, pneumonia, and heightening of protein plasmatic levels pro-inflammatory driven effects.


Asunto(s)
COVID-19 , Interleucina-6 , Humanos , Interleucina-6/genética , Estudios Transversales , Receptores de Interleucina-6/genética , COVID-19/genética , Genotipo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Receptor gp130 de Citocinas/genética
17.
Shock ; 59(5): 820-828, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870073

RESUMEN

ABSTRACT: Background: Infantile pneumonia is a respiratory infection disease, seriously threatening the life of neonatal patients. Circular RNA (circRNA) dysregulation is reported to be involved in pneumonia pathogenesis. Circ_0012535 was previously displayed to be upregulated in blood samples of patients with community-acquired pneumonia. However, circ_0012535's role in this disorder remains unclear. We thus aim to unveil the functions of circ_0012535 in infantile pneumonia. Methods: Fetal lung fibroblasts (WI38) treated with LPS were used as pneumonia cell models. Expression analysis for circ_0012535, miR-338-3p and IL6R was performed using quantitative real-time polymerase chain reaction. Cell counting kit 88), 5-ethynyl-2'-deoxyuridine, and flow cytometry assays were implemented for cell function detection. The release of inflammatory factors, and superoxide dismutase activity and malonaldehyde content were ascertained using commercial kits. The putative binding between miR-338-3p and circ_0012535 or IL6R was validated by dual-luciferase analysis, RIP analysis, and pull-down analysis. Results: Circ_0012535 was highly expressed in LPS-treated WI38 cells. Knockdown of circ_0012535 recovered LPS-inhibited cell viability and proliferation and attenuated LPS-induced cell apoptosis, cell cycle arrest, inflammation, and oxidative stress. Circ_0012535 bound to miR-338-3p and negatively regulated miR-338-3p expression. Inhibition of miR-338-3p reversed the role of circ_0012535 knockdown, thereby recovering LPS-induced WI38 cell apoptosis and inflammation. MiR-338-3p bound to IL6R 3'UTR, and circ_0012535 shared miR-338-3p binding site with IL6R. IL6R overexpression reversed the role of miR-338-3p, thereby recovering LPS-induced WI38 cell apoptosis and inflammation. Conclusion: Circ_0012535 supported LPS-induced WI38 cell apoptosis and inflammation to promote the progression of infantile pneumonia, and circ_0012535 functioned partly by targeting the miR-338-3p/IL6R signaling.


Asunto(s)
Lipopolisacáridos , MicroARNs , Recién Nacido , Humanos , Lipopolisacáridos/toxicidad , Inflamación/genética , Apoptosis/genética , Fibroblastos , Pulmón , MicroARNs/genética , Proliferación Celular/genética , Receptores de Interleucina-6/genética
19.
PLoS Med ; 20(1): e1004174, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716318

RESUMEN

BACKGROUND: Sepsis is characterised by dysregulated, life-threatening immune responses, which are thought to be driven by cytokines such as interleukin 6 (IL-6). Genetic variants in IL6R known to down-regulate IL-6 signalling are associated with improved Coronavirus Disease 2019 (COVID-19) outcomes, a finding later confirmed in randomised trials of IL-6 receptor antagonists (IL6RAs). We hypothesised that blockade of IL6R could also improve outcomes in sepsis. METHODS AND FINDINGS: We performed a Mendelian randomisation (MR) analysis using single nucleotide polymorphisms (SNPs) in and near IL6R to evaluate the likely causal effects of IL6R blockade on sepsis (primary outcome), sepsis severity, other infections, and COVID-19 (secondary outcomes). We weighted SNPs by their effect on CRP and combined results across them in inverse variance weighted meta-analysis, proxying the effect of IL6RA. Our outcomes were measured in UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative (HGI), and the GenOSept and GainS consortium. We performed several sensitivity analyses to test assumptions of our methods, including utilising variants around CRP and gp130 in a similar analysis. In the UK Biobank cohort (N = 486,484, including 11,643 with sepsis), IL6R blockade was associated with a decreased risk of our primary outcome, sepsis (odds ratio (OR) = 0.80; 95% confidence interval (CI) 0.66 to 0.96, per unit of natural log-transformed CRP decrease). The size of this effect increased with severity, with larger effects on 28-day sepsis mortality (OR = 0.74; 95% CI 0.47 to 1.15); critical care admission with sepsis (OR = 0.48, 95% CI 0.30 to 0.78) and critical care death with sepsis (OR = 0.37, 95% CI 0.14 to 0.98). Similar associations were seen with severe respiratory infection: OR for pneumonia in critical care 0.69 (95% CI 0.49 to 0.97) and for sepsis survival in critical care (OR = 0.22; 95% CI 0.04 to 1.31) in the GainS and GenOSept consortium, although this result had a large degree of imprecision. We also confirm the previously reported protective effect of IL6R blockade on severe COVID-19 (OR = 0.69, 95% CI 0.57 to 0.84) in the COVID-19 HGI, which was of similar magnitude to that seen in sepsis. Sensitivity analyses did not alter our primary results. These results are subject to the limitations and assumptions of MR, which in this case reflects interpretation of these SNP effects as causally acting through blockade of IL6R, and reflect lifetime exposure to IL6R blockade, rather than the effect of therapeutic IL6R blockade. CONCLUSIONS: IL6R blockade is causally associated with reduced incidence of sepsis. Similar but imprecisely estimated results supported a causal effect also on sepsis related mortality and critical care admission with sepsis. These effects are comparable in size to the effect seen in severe COVID-19, where IL-6 receptor antagonists were shown to improve survival. These data suggest that a randomised trial of IL-6 receptor antagonists in sepsis should be considered.


Asunto(s)
COVID-19 , Sepsis , Humanos , Interleucina-6/genética , Hospitalización , Receptores de Interleucina-6/genética , Sepsis/tratamiento farmacológico , Sepsis/genética , Análisis de la Aleatorización Mendeliana
20.
Scand J Immunol ; 98(1): e13271, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38441314

RESUMEN

The progression of hepatocellular carcinoma (HCC) involves multifactor, multistep interactions. High expression of interleukin-6 receptor (IL-6R) plays an important role in the occurrence and development of tumours, but the regulatory mechanism of IL-6R expression and its function in HCC have not been fully defined. Western blot was used to evaluate the phosphorylation of key kinases in the JAK2/STAT3 pathway and the protein expression levels of related proliferation molecules, migration molecules and apoptotic molecules. The antiapoptosis, migration and proliferation of cells of each group were analysed with JC-1 to judge the cell apoptosis rate, the EdU method to determine the proliferation vitality of the cells, clone formation experiments and Transwell experiments. High expression of IL-6R in cell lines, lower protein levels of the apoptotic molecules c-Caspase7 and c-Caspase3 and higher protein levels of the proliferative molecules p-P70S6K and migration molecules MMP9 and MMP2 were consistent with stronger antiapoptosis, proliferation and migration. Interestingly, IL-6 upregulated the expression of IL-6R by activating the JAK2/STAT3 signalling pathway. Also, the expression of IL-6R protein was downregulated after lentivirus knockdown of STAT3. In nude mice bearing subcutaneous tumours, upregulation of IL-6R expression after activation of the JAK2/STAT3 signalling pathway by IL-6 significantly increased tumour growth. Moreover, the expression of IL-6R protein was downregulated, and the terminal tumour volume was significantly downregulated in the lentiviral STAT3 knockdown group. IL-6 regulated the transcription of IL-6R through the activation of the JAK2/STAT3 signalling pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/genética , Interleucina-6 , Ratones Desnudos , Neoplasias Hepáticas/genética , Receptores de Interleucina-6/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...