Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
BMC Genomics ; 25(1): 787, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143522

RESUMEN

BACKGROUND/OBJECTIVES: This study aims to elucidate the genetic causes of congenital hypogonadotropic hypogonadism (CHH), a rare genetic disorder resulting in GnRH deficiency, in six families from Pakistan. METHODS: Eighteen DNA samples from six families underwent genome sequencing followed by standard evaluation for pathogenic single nucleotide variants (SNVs) and small indels. All families were subsequently analyzed for pathogenic copy number variants (CNVs) using CoverageMaster. RESULTS: Novel pathogenic homozygous SNVs in known CHH genes were identified in four families: two families with variants in GNRHR, and two others harboring KISS1R variants. Subsequent investigation of CNVs in the remaining two families identified novel unique large deletions in ANOS1. CONCLUSION: A combined, systematic analysis of single nucleotide and CNVs helps to improve the diagnostic yield for variants in patients with CHH.


Asunto(s)
Variaciones en el Número de Copia de ADN , Hipogonadismo , Linaje , Polimorfismo de Nucleótido Simple , Humanos , Hipogonadismo/genética , Pakistán , Masculino , Femenino , Receptores de Kisspeptina-1/genética , Secuenciación Completa del Genoma , Receptores LHRH/genética , Adulto , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso , Proteínas de la Matriz Extracelular
2.
Medicine (Baltimore) ; 103(28): e38866, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996103

RESUMEN

BACKGROUND: This study aimed to explore the potential influence of kisspeptin (KISS1) levels on the etiology of placenta previa for early pregnancy diagnosis. METHODS: The study included 20 pregnant women diagnosed with placenta previa and 20 pregnant woman with normal pregnancies between 2021 and 2022. Plasma KISS1 levels were determined through biochemical analysis, while genetic analysis assessed KISS1 and KISS1 receptor gene expression levels. Immunohistochemical methods were employed to determine placenta KISS1 levels. RESULTS: The evaluation of KISS1 concentration in serum revealed a significant decrease in the placenta previa group compared to the control group (P < .001). KISS1 gene expression level 0.043-fold decreased in the placenta previa group (P < .001). Furthermore, the KISS1 receptor gene expression level increased 170-fold in the placenta previa group. CONCLUSIONS: Results from biochemical, immunohistochemical, and genetic analyses consistently indicated significantly reduced KISS1 expression in patients with placenta previa. These findings suggest a potential link between diminished KISS1 levels and the occurrence of placenta previa. KISS1 may play a critical role in the etiology of placenta previa. Detailed studies on angiogenesis, cell migration and tissue modeling should be conducted to understand possible mechanisms.


Asunto(s)
Kisspeptinas , Placenta Previa , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Femenino , Embarazo , Placenta Previa/metabolismo , Adulto , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Placenta/metabolismo , Expresión Génica
3.
Reprod Fertil Dev ; 362024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976640

RESUMEN

Context There is mounting evidence implicating kisspeptin signalling in placental development and function. Aims This study aimed to elucidate kisspeptin's role in trophoblast invasion and migration using three experimental models. Methods First, we examined the mouse fetus and placenta in a kisspeptin receptor (Kiss1r) knockout (KO) model. Fetal/placental weights and gene expression (quantitative polymerase chain reaction) were assessed. Second, we determined kisspeptin effects on a human trophoblast (BeWo) cell line in vitro . Third, we examined KISS1 and KISS1R gene expression in human placenta from term and pre-term pregnancies. Key results No difference was found in fetal or placental weight between Kiss1r KO and wildtype mice. However, expression of the trophoblast invasion marker, Mmp2 mRNA, was greater in the placental labyrinth zone of Kiss1r KO mice. BeWo cell models of villus cytotrophoblast and syncytiotrophoblast cells exhibited kisspeptin protein expression, with greater expression in syncytiotrophoblast, consistent with KISS1 mRNA. Kisspeptin treatment inhibited the migratory potential of cytotrophoblast-like cells. Finally, while no difference was seen in KISS1 and KISS1R mRNA between term and pre-term placentas, we saw a difference in the relative expression of each gene pre-term. We also observed a positive correlation between KISS1 expression and maternal body mass index. Conclusions Our results indicate that kisspeptin may inhibit trophoblast invasion. Implications Further investigation is required to clarify specific regulatory mechanisms.


Asunto(s)
Movimiento Celular , Kisspeptinas , Ratones Noqueados , Placenta , Receptores de Kisspeptina-1 , Trofoblastos , Kisspeptinas/metabolismo , Kisspeptinas/genética , Femenino , Trofoblastos/metabolismo , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Animales , Embarazo , Placenta/metabolismo , Movimiento Celular/fisiología , Humanos , Ratones , Línea Celular , Placentación/fisiología
4.
Genes (Basel) ; 15(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38927724

RESUMEN

Previous studies have demonstrated the essential role of the Kisspeptin/Neurokinin B/Dynorphin A (KNDy) pathway in female reproductive biology by regulating the activity of the hypothalamic-pituitary-gonadal axis. Identified loss-of-function mutations in these genes are linked to various reproductive disorders. This study investigated genetic disorders linked to mutations in the KNDy genes related to premature ovarian insufficiency (POI). A cohort of 14 Mexican POI patients underwent genetic screening using PCR-SSCP and Sanger sequencing, assessing the genetic variations' impact on protein function thereafter using multiple in silico tools. The PCR excluded extensive deletions, insertions, and duplications, while SSCP detected five genetic variants. Variations occurred in the KISS1 (c.58G>A and c.242C>G), KISS1R (c.1091A>T), PDYN (c.600C>T), and OPRK1 (c.36G>T) genes, whereas no genetic anomalies were found in NK3/NK3R genes. Each single-nucleotide variant underwent genotyping using PCR-SSCP in 100 POI-free subjects. Their allelic frequencies paralleled the patient group. These observations indicate that allelic variations in the KNDy genes may not contribute to POI etiology. Hence, screening for mutations in KNDy genes should not be a part of the diagnostic protocol for POI.


Asunto(s)
Kisspeptinas , Neuroquinina B , Insuficiencia Ovárica Primaria , Humanos , Femenino , Insuficiencia Ovárica Primaria/genética , México , Adulto , Neuroquinina B/genética , Kisspeptinas/genética , Estudios de Cohortes , Polimorfismo de Nucleótido Simple , Receptores de Kisspeptina-1/genética , Encefalinas/genética , Precursores de Proteínas
5.
J Clin Invest ; 134(15)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861336

RESUMEN

Reproduction is safeguarded by multiple, often cooperative, regulatory networks. Kisspeptin signaling, via KISS1R, plays a fundamental role in reproductive control, primarily by regulation of hypothalamic GnRH neurons. We disclose herein a pathway for direct kisspeptin actions in astrocytes that contributes to central reproductive modulation. Protein-protein interaction and ontology analyses of hypothalamic proteomic profiles after kisspeptin stimulation revealed that glial/astrocyte markers are regulated by kisspeptin in mice. This glial-kisspeptin pathway was validated by the demonstrated expression of Kiss1r in mouse astrocytes in vivo and astrocyte cultures from humans, rats, and mice, where kisspeptin activated canonical intracellular signaling-pathways. Cellular coexpression of Kiss1r with the astrocyte markers GFAP and S100-ß occurred in different brain regions, with higher percentage in Kiss1- and GnRH-enriched areas. Conditional ablation of Kiss1r in GFAP-positive cells in the G-KiR-KO mouse altered gene expression of key factors in PGE2 synthesis in astrocytes and perturbed astrocyte-GnRH neuronal appositions, as well as LH responses to kisspeptin and LH pulsatility, as surrogate marker of GnRH secretion. G-KiR-KO mice also displayed changes in reproductive responses to metabolic stress induced by high-fat diet, affecting female pubertal onset, estrous cyclicity, and LH-secretory profiles. Our data unveil a nonneuronal pathway for kisspeptin actions in astrocytes, which cooperates in fine-tuning the reproductive axis and its responses to metabolic stress.


Asunto(s)
Astrocitos , Hormona Liberadora de Gonadotropina , Kisspeptinas , Ratones Noqueados , Receptores de Kisspeptina-1 , Transducción de Señal , Kisspeptinas/metabolismo , Kisspeptinas/genética , Animales , Astrocitos/metabolismo , Ratones , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Humanos , Ratas , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/genética , Masculino , Hipotálamo/metabolismo , Neuronas/metabolismo , Dinoprostona/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Reproducción
6.
Endocr J ; 71(8): 733-743, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38866494

RESUMEN

In the early 2000s, metastin, an endogenous ligand for G protein-coupled receptor 54 (GPR54), was discovered in human placental extracts. In 2003, GPR54 receptor mutations were found in a family with congenital hypogonadotropic hypogonadism. Metastin was subsequently renamed kisspeptin after its coding gene, Kiss1. Since then, studies in mice and other animals have revealed that kisspeptin is located at the apex of the hypothalamic-pituitary-gonadal axis and regulates reproductive functions by modulating gonadotropin-releasing hormone (GnRH). In rodents, kisspeptin (Kiss1) neurons localize to two regions, the hypothalamic arcuate nucleus (ARC) and the anteroventral periventricular nucleus (AVPV). ARC Kiss1 neurons co-express neurokinin B (NKB) and dynorphin and are thus termed KNDy neurons. Kiss1 neurons in humans are concentrated in the infundibular nucleus (equivalent to the ARC), with few Kiss1 neurons localized to the preoptic area (equivalent to the AVPV), and the mechanisms underlying GnRH surge secretion in humans are poorly understood. However, peripheral administration of kisspeptin to humans promotes gonadotropin secretion, and administration of kisspeptin to patients with hypothalamic amenorrhea or congenital hypogonadotropic hypogonadism restores the pulsatile secretion of GnRH/luteinizing hormone. Thus, kisspeptin undoubtedly plays an important role in reproductive function in humans. Studies are currently underway to develop kisspeptin receptor agonists or antagonists for clinical application. Modification of KNDy neurons by NKB agonists/antagonists is also being attempted to develop therapeutic agents for various menstrual abnormalities, including polycystic ovary syndrome and menopausal hot flashes. Here, we review the role of kisspeptin in humans and its clinical applications.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Hormona Liberadora de Gonadotropina , Kisspeptinas , Neuronas , Humanos , Kisspeptinas/metabolismo , Kisspeptinas/genética , Kisspeptinas/fisiología , Neuronas/metabolismo , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Salud Reproductiva , Neuroquinina B/metabolismo , Neuroquinina B/genética , Hipogonadismo/genética , Hipogonadismo/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Dinorfinas/metabolismo , Dinorfinas/genética , Reproducción/fisiología
7.
Domest Anim Endocrinol ; 88: 106850, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640803

RESUMEN

Kisspeptins are neuropeptides encoded by the Kiss1 gene that was discovered as a metastasis suppressor gene in melanoma and breast cancer. Kisspeptin has pivotal functions for gonadotropin-releasing hormone secretion and plays integrated roles in the hypothalamic-pituitary-gonadal axis. However, little is known about the peripheral expression of kisspeptin in ruminants, especially in the female reproductive tract. Here, the objectives of the current study were to investigate the spatial localization of kisspeptin and mRNA expression of Kiss1 and its receptor (Kiss1r) in the fallopian tubes (FT) and uterus of goats at varied reproductive activity (cyclic versus true anoestrous goats, n=6, each). Specimens of the uterus and FT were collected and fixed using paraformaldehyde to investigate the localizations of kisspeptin in the selected tissues by immunohistochemistry. Another set of samples was snape-frozen to identify the expressions of mRNAs encoding Kiss1 and Kiss1r using real-time PCR. Results revealed immunolocalizations of kisspeptin in the uterus and the FT. The staining of kisspeptin was found mainly in the mucosal epithelium of the uterus the FT, and the endometrial glands. Very intense staining of kisspeptin was found in the uterine and FT specimens in the true anoestrous goats compared to that in cyclic ones. The expression of mRNA encoding Kiss1 gene was significantly higher in the uterine specimen of cyclic goats (1.00±0.09) compared to that in the true anoestrous goats (0.62±0.08) (P ˂0.05), while the expression of mRNA encoding Kiss1r was significantly (P ˂0.001) higher in the uterine tissues of true anoestrous goats (1.78±0.17) compared to that in cyclic ones (1.00±0.11). In conclusion, immunohistochemical localization of kisspeptin and the expression of mRNA encoding Kiss1/Kiss1r revealed spatial changes in the uterus and FT of goats according to the reproductive potential of goats (cyclic versus true anoestrous goats). However, the definitive local role of kisspeptin in the uterus and FT need further investigation.


Asunto(s)
Trompas Uterinas , Cabras , Kisspeptinas , Útero , Animales , Femenino , Cabras/fisiología , Cabras/genética , Cabras/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Útero/metabolismo , Trompas Uterinas/metabolismo , Trompas Uterinas/química , ARN Mensajero/metabolismo , ARN Mensajero/genética , Reproducción/fisiología , Regulación de la Expresión Génica/fisiología , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Anestro/metabolismo
8.
Am J Respir Cell Mol Biol ; 70(6): 507-518, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38512807

RESUMEN

Airway remodeling is a cardinal feature of asthma, associated with increased airway smooth muscle (ASM) cell mass and upregulation of extracellular matrix deposition. Exaggerated ASM cell migration contributes to excessive ASM mass. Previously, we demonstrated the alleviating role of Kp (kisspeptin) receptor (KISS1R) activation by Kp-10 in mitogen (PDGF [platelet-derived growth factor])-induced human ASM cell proliferation in vitro and airway remodeling in vivo in a mouse model of asthma. Here, we examined the mechanisms by which KISS1R activation regulates mitogen-induced ASM cell migration. KISS1R activation using Kp-10 significantly inhibited PDGF-induced ASM cell migration, further confirmed using KISS1R shRNA. Furthermore, KISS1R activation modulated F/G actin dynamics and the expression of promigration proteins like CDC42 (cell division control protein 42) and cofilin. Mechanistically, we observed reduced ASM RhoA-GTPAse with KISS1R activation. The antimigratory effect of KISS1R was abolished by PKA (protein kinase A)-inhibitory peptide. Conversely, KISS1R activation significantly increased cAMP and phosphorylation of CREB (cAMP-response element binding protein) in PDGF-exposed ASM cells. Overall, these results highlight the alleviating properties of Kp-10 in the context of airway remodeling.


Asunto(s)
Movimiento Celular , Kisspeptinas , Miocitos del Músculo Liso , Factor de Crecimiento Derivado de Plaquetas , Receptores de Kisspeptina-1 , Transducción de Señal , Proteína de Unión al GTP rhoA , Humanos , Movimiento Celular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Kisspeptinas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Proteína de Unión al GTP rhoA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Cultivadas , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Proliferación Celular
9.
Gene ; 895: 148016, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37981083

RESUMEN

Understanding the pathophysiology of idiopathic central precocious puberty (ICPP) is essential, in view of its consequences on reproductive health and metabolic disorders in later life. Towards this, estimation of circulating levels of the neuropeptides, viz; Kisspeptin (Kp-10), Neurokinin B (NKB) and Neuropeptide Y (NPY), acting upstream to Gonadotropin-Releasing Hormone (GnRH), has shown promise. Insights can also be gained from functional studies on genetic variations implicated in ICPP. This study investigated the pathophysiology of ICPP in a girl by exploring the therapeutic relevance of the circulating levels of Kp-10, NKB, NPY and characterizing the nonsynonymous KISS1R variant, L364H, that she harbours, in a homozygous condition. Plasma levels of Kp-10, NKB and NPY before and after GnRH analog (GnRHa) treatment, were determined by ELISA. It was observed that GnRHa treatment resulted in suppression of circulating levels of Kp-10, NKB and NPY. Further, the H364 variant in KISS1R was generated by site directed mutagenesis. Post transient transfection of either L364 or H364 KISS1R variant in CHO cells, receptor expression was ascertained by western blotting, indirect immunofluorescence and flow cytometry. Kp-10 stimulated signalling response was also determined by phospho-ERK and inositol phosphate production. Structure-function studies revealed that, although the receptor expression in H364 KISS1R was comparable to L364 KISS1R, there was an enhanced signalling response through this variant at high doses of Kp-10. Thus, elevated levels of Kp-10, acting through H364 KISS1R, contributed to the manifestation of ICPP, providing further evidence that dysregulation of Kp-10/KISS1R axis impacts the onset of puberty.


Asunto(s)
Pubertad Precoz , Animales , Cricetinae , Femenino , Humanos , Cricetulus , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/genética , Neuroquinina B/genética , Neuroquinina B/metabolismo , Pubertad Precoz/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/genética
10.
Zygote ; 32(1): 49-57, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38059309

RESUMEN

The present study was conducted to elucidate (1) the influence of kisspeptin (KP) on the in vitro development of preantral follicles (PFs) and (2) evolution of KP receptor gene (KISS1R) expression during ovarian follicular development in sheep. Kisspeptin was supplemented (0-100 µg/ml) in the culture medium of PFs for 6 days. The cumulus-oocyte complexes (COCs) from cultured PFs were subsequently matured to metaphase II (MII) for an additional 24 h. The proportions of PFs exhibiting growth, antrum formation, average increase in diameter, and maturation of oocytes to MII stage were the indicators of follicular development in vitro. The expression of the kisspeptin receptor gene at each development stages of in vivo developed (preantral, early antral, antral, large antral and COCs from Graafian follicles) and in vitro cultured PFs supplemented with KP was assessed using a real-time polymerase chain reaction. The best development in all the parameters under study was elicited with 10 µg/ml of KP. Supplementation of KP (10 µg/ml) in a medium containing other growth factors (insulin-like growth factor-I) and hormones (growth hormone, thyroxine, follicle-stimulating hormone) resulted in better PF development. The KISS1R gene was expressed in follicular cells and oocytes at all the development stages of both in vivo developed and in vitro cultured follicles. Higher KISS1R gene expression was supported by culture medium containing KP along with other hormones and growth factors. Accordingly, it is suggested that one of the mechanisms through which KP and other growth factors and hormones influence the ovarian follicular development in mammals is through the upregulation of expression of the KP receptor gene.


Asunto(s)
Kisspeptinas , Oocitos , Femenino , Animales , Ovinos , Kisspeptinas/genética , Kisspeptinas/farmacología , Receptores de Kisspeptina-1/genética , Oocitos/fisiología , Folículo Ovárico , Hormona Folículo Estimulante/farmacología , Mamíferos
11.
Front Endocrinol (Lausanne) ; 14: 1269334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900144

RESUMEN

Introduction: Male reproduction is under the control of the hypothalamus-pituitary-gonadal (HPG) axis. The endocannabinoid system (ECS) and the kisspeptin system (KS) are two major signaling systems in the central and peripheral control of reproduction, but their possible interaction has been poorly investigated in mammals. This manuscript analyzes their possible reciprocal modulation in the control of the HPG axis. Materials and methods: Adolescent male rats were treated with kisspeptin-10 (Kp10) and endocannabinoid anandamide (AEA), the latter alone or in combination with the type 1 cannabinoid receptor (CB1) antagonist rimonabant (SR141716A). The hypothalamic KS system and GnRH expression, circulating sex steroids and kisspeptin (Kiss1) levels, and intratesticular KS and ECS were evaluated by immunohistochemical and molecular methods. Non-coding RNAs (i.e., miR145-5p, miR-132-3p, let7a-5p, let7b-5p) were also considered. Results: Circulating hormonal values were not significantly affected by Kp10 or AEA; in the hypothalamus, Kp10 significantly increased GnRH mRNA and aromatase Cyp19, Kiss1, and Kiss1 receptor (Kiss1R) proteins. By contrast, AEA treatment affected the hypothalamic KS at the protein levels, with opposite effects on the ligand and receptor, and SR141716A was capable of attenuating the AEA effects. Among the considered non-coding RNA, only the expression of miR145-5p was positively affected by AEA but not by Kp10 treatment. Localization of Kiss1+/Kiss1R+ neurons in the arcuate nucleus revealed an increase of Kiss1R-expressing neurons in Kp10- and AEA-treated animals associated with enlargement of the lateral ventricles in Kp10-treated animals. In the brain and testis, the selected non-coding RNA was differently modulated by Kp10 or AEA. Lastly, in the testis, AEA treatment affected the KS at the protein levels, whereas Kp10 affected the intragonadal levels of CB1 and FAAH, the main modulator of the AEA tone. Changes in pubertal transition-related miRNAs and the intratesticular distribution of Kiss1, Kiss1R, CB1, and CB2 following KP and AEA treatment corroborate the KS-ECS crosstalk also showing that the CB1 receptor is involved in this interplay. Conclusion: For the first time in mammals, we report the modulation of the KS in both the hypothalamus and testis by AEA and revealed the KP-dependent modulation of CB1 and FAAH in the testis. KP involvement in the progression of spermatogenesis is also suggested.


Asunto(s)
Kisspeptinas , MicroARNs , Masculino , Ratas , Animales , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/genética , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Rimonabant/metabolismo , Rimonabant/farmacología , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Mamíferos/metabolismo , Reproducción , ARN no Traducido/metabolismo , MicroARNs/metabolismo
12.
Endocrinology ; 164(11)2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37776515

RESUMEN

The current model for the synchronization of GnRH neural activity driving GnRH and LH pulses proposes that a set of arcuate (ARC) neurons that contain kisspeptin, neurokinin B, and dynorphin (KNDy neurons) is the GnRH pulse generator. This study tested the functional role of ovine KNDy neurons in pulse generation and explored the roles of nearby Kiss1 receptor (Kiss1R)-containing cells using lesions produced with saporin (SAP) conjugates. Injection of NK3-SAP ablated over 90% of the KNDy cells, while Kiss-SAP (saporin conjugated to kisspeptin-54) lesioned about two-thirds of the Kiss1R population without affecting KNDy or GnRH cell number. Both lesions produced a dramatic decrease in LH pulse amplitude but had different effects on LH pulse patterns. NK3-SAP increased interpulse interval, but Kiss-SAP did not. In contrast, Kiss-SAP disrupted the regular hourly occurrence of LH pulses, but NK3-SAP did not. Because Kiss1R is not expressed in KNDy cells, HiPlex RNAScope was used to assess the colocalization of 8 neurotransmitters and 3 receptors in ARC Kiss1R-containing cells. Kiss1R cells primarily contained transcript markers for GABA (68%), glutamate (28%), ESR1 (estrogen receptor-α) mRNA, and OPRK1 (kappa opioid receptor) mRNA. These data support the conclusion that KNDy neurons are essential for GnRH pulses in ewes, whereas ARC Kiss1R cells are not but do maintain the amplitude and regularity of GnRH pulses. We thus propose that in sheep, ARC Kiss1R neurons form part of a positive feedback circuit that reinforces the activity of the KNDy neural network, with GABA or glutamate likely being involved.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Kisspeptinas , Hormona Luteinizante , Neuronas , Animales , Femenino , Núcleo Arqueado del Hipotálamo/metabolismo , Dinorfinas/metabolismo , Ácido gamma-Aminobutírico , Glutamatos , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo , Neuronas/metabolismo , Receptores de Kisspeptina-1/genética , ARN Mensajero , Saporinas , Ovinos , Hormona Luteinizante/metabolismo
13.
Biol Reprod ; 109(5): 654-668, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37665248

RESUMEN

Kisspeptin (KP, encoded by Kiss1, binding to the Gpr54 receptor) is a neuropeptide conveying information on the metabolic status to the hypothalamic-pituitary-gonadal axis. KP acts together with dynorphin A (encoded by Pdyn) and neurokinin B (encoded by Tac2) to regulate reproduction. KP is crucial for the onset of puberty and is under the control of sirtuin (encoded by Sirt1). We hypothesize that the maternal cafeteria (CAF) diet has adverse effects on the offspring's hormonal, metabolic, and reproductive functions due to sex-specific alterations in the expression of Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 in the hypothalamus, and Kiss1, Gpr54, and Sirt1 in the liver. Rats were fed a CAF diet before pregnancy, during pregnancy, and during lactation. The vaginal opening was monitored. Offspring were sacrificed in three age points: PND 30, PND 35, and PND 60 (females) and PND 40, PND 45, and PND 60 (males). Their metabolic and hormonal status was assessed. mRNA for Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 were measured by real-time PCR in the hypothalamus and/or livers. We found that CAF offspring had lower weight and altered body composition; increased cholesterol and triglyceride levels, sex-specific changes in glucose and insulin levels; sex-dependent changes in Sirt1/Kiss1 mRNA ratio in the hypothalamus; sex-specific alterations in Kiss1 and Sirt1 mRNA in the liver with more diversity in males; and a delayed puberty onset in females. We concluded that the mother's CAF diet leads to sex-specific alterations in metabolic and reproductive outcomes via Kiss1/Gpr54 and Sirt1 systems in offspring.


Asunto(s)
Kisspeptinas , Sirtuina 1 , Embarazo , Femenino , Masculino , Ratas , Animales , Kisspeptinas/genética , Kisspeptinas/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Maduración Sexual/fisiología , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Dieta , Metaboloma , ARN Mensajero/metabolismo
14.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 8-12, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300694

RESUMEN

The basic objective of this study was to examine the possible effects of treadmill exercise on obesity-related sexual behavior disorder in obese male rats and the role of kisspeptin in this effect. The rats were separated from their mothers at the age of 3 weeks, and classified into four groups as Control (C): normal diet-sedentary group, Exercise (E): normal diet-exercise group, Obese (O): high-fat diet-sedentary group, Obese + Exercise (O+E): high-fat diet-exercise grouSexual behavioral testing was conducted in the rats. At the end of the study, brain samples were taken from the animals for gene expression analyses. The treadmill exercise caused a significant increase in the O+E Group compared to the O Group in kisspeptin and kiss1R gene expression and in EF, ML, IL, MF, IF, III, EL, PEI, IR1, MFT, IFT, IRT sexual behavior parameters (p<0.05), and a significant decrease in ML, IL, III, EL sexual behavior parameters (p<0.05). Treadmill exercise caused a significant decrease in EF, ML, IL, MF, IF, III, EL, PEI, IR1, MFT, IFT, IRT sexual behavior parameters and kisspeptin and kiss1R gene expression in the hypothalamus, hippocampus, prefrontal cortex and corpus striatum in E Group compared to C Group (p<0.05), and a significant increase in ML, IL, III, EL sexual behavior parameters (p<0.05). Based on this effect, we believe that it is caused by an increase in kisspeptin and kiss1R expression in the hypothalamus, hippocampus, prefrontal cortex and corpus striatum. In conclusion, treadmill exercise-induced kisspeptin secretion may increase GnRH secretion and cause hypothalamo-pituitary gonadal axis activation and ameliorative effect on deteriorated sexual function.


Asunto(s)
Hipotálamo , Kisspeptinas , Obesidad , Condicionamiento Físico Animal , Disfunciones Sexuales Fisiológicas , Animales , Masculino , Ratas , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Obesidad/terapia , Obesidad/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Conducta Sexual Animal
15.
Gen Comp Endocrinol ; 340: 114324, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37247825

RESUMEN

Pubertal stress causes enduring sexual behavior dysfunction in males and females, but the underlying mechanism remains unknown. These changes may arise from pubertal programming of the hypothalamic-pituitary-gonadal axis. Previous findings show that stress exposure downregulates the hypothalamic-pituitary-gonadal axis, particularly through the reduction of the neuropeptide kisspeptin (Kiss1) and its receptor (Kiss1R). Although acute changes in kiss1 and Kiss1r genes have been observed following pubertal immune stress, it is unclear whether immune stress-induced downregulation of kiss1 and kiss1r persists beyond puberty. The current study investigated the enduring sex-specific consequences of lipopolysaccharide on the expression of Kiss1 and Kiss1r in 160 pubertal or adult mice at multiple time points. Six-week and 10-week-old male and female mice were treated with either saline or with lipopolysaccharide. Mice were euthanized either 8 h or 4 weeks following treatment. Although we did not identify any sex differences, our results revealed that lipopolysaccharide treatment decreases hypothalamic Kiss1 and Kiss1r in both pubertal and adult mice within 8 h of treatment. The decreased hypothalamic Kiss1 expression persists 4 weeks later only in mice treated with lipopolysaccharide during puberty. Our findings highlight the age-dependent vulnerability of the hypothalamic-pituitary-gonadal axis to immune stress, providing a better understanding of the mechanisms implicated in allostatic shift during immune stress. Finally, our findings also show the effects of immune stress on various components of the hypothalamic-pituitary-gonadal axis, which could have implications for sexual and fertility-related dysfunctions.


Asunto(s)
Kisspeptinas , Lipopolisacáridos , Ratones , Animales , Femenino , Masculino , Kisspeptinas/genética , Receptores de Kisspeptina-1/genética , Lipopolisacáridos/toxicidad , Eje Hipotálamico-Pituitario-Gonadal , Maduración Sexual/genética
16.
Hum Reprod ; 38(7): 1253-1260, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37105233

RESUMEN

Kisspeptins, encoded by the KISS1 gene, are a family of polypeptides that bind the kisspeptin receptor (KISS1R) to perform biological functions. Produced mainly in the hypothalamus, these neuropeptides regulate the pulsatile secretion of GnRH and trigger the hypothalamus-pituitary-gonadal axis. Other peripheral organs also express kisspeptin, which inhibits metastasis. Kisspeptin and KISS1R are reportedly present in the endometrium and may play roles in limiting the migration and invasion of trophoblasts into the endometrium during pregnancy (decidua) to maintain endometrial homeostasis. A deficiency of kisspeptin and KISS1R in the endometrium can lead to pathological conditions such as endometriosis and endometrial carcinoma. Kisspeptin and KISS1R in the endometrium can also promote endometrial receptivity and decidualization. Overall, kisspeptin and KISS1R are important for maintaining the normal physiological functions of the endometrium. By summarizing the roles of kisspeptin and KISS1R in the endometrium, our review explores the regulatory roles in the peripheral reproductive system of this peptide family that plays broad and profound roles in many physiological processes.


Asunto(s)
Endometriosis , Kisspeptinas , Embarazo , Femenino , Humanos , Receptores de Kisspeptina-1/genética , Kisspeptinas/genética , Endometrio/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Endometriosis/patología
17.
Nat Commun ; 14(1): 1351, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906579

RESUMEN

Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs.


Asunto(s)
Radioisótopos de Yodo , Neoplasias de la Tiroides , Humanos , Receptores de Kisspeptina-1/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Neoplasias de la Tiroides/genética , Células Madre Embrionarias , Proteínas Proto-Oncogénicas B-raf/genética , Mutación
18.
F S Sci ; 4(1): 56-64, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36243398

RESUMEN

OBJECTIVE: To study choriodecidual immunoreactivity of kisspeptin (KISS1) and its receptor (KISS1R) in recurrent pregnancy loss (RPL) due to aneuploidy (AnE) and unexplained (UE) RPL in comparison to control elective abortions (EAbs). DESIGN: This is a case-control study. SETTING: Tertiary care facility and affiliated research institute. PATIENT(S): Patients with either UE RPL (n = 10) or RPL due to AnE (n = 10) vs. a control group of patients who underwent EAb (n = 10). INTERVENTION(S): Immunohistochemistry of archived choriodecidual tissue samples. MAIN OUTCOME MEASURE(S): Histoscores of KISS1 and KISS1R immunoreactivity in the syncytiotrophoblast (SyT), cytotrophoblast (CyT), decidual glands (DeGs), and decidual stroma (DeS) across the 3 study groups. RESULT(S): There was no difference in both maternal and gestational ages among the 3 groups. Kisspeptin immunoreactivity was similar in the SyT, CyT, DeGs, and DeS of all groups. Similarly, KISS1R expression was not different in the DeGs or DeS among all study groups. In addition, there was no difference in KISS1R immunoreactivity in the SyTs and CyTs between patients with RPL due to AnE and those with UE RPL. However, KISS1R was significantly lower in the SyT and CyT of patients with RPL due to AnE and UE RPL than in those who underwent EAb. CONCLUSION(S): The expression of KISS1R is lower in the chorionic tissues of euploid (unexplained) and aneuploid RPLs than in the control group. The current results broaden our understanding of the role played by KISS1 and KISS1R in early placentation. Further investigation is necessary to determine whether KISS1 activity is the cause or a sequel of defective placentation.


Asunto(s)
Aborto Habitual , Kisspeptinas , Embarazo , Femenino , Humanos , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Estudios de Casos y Controles , Aborto Habitual/genética , Aneuploidia
19.
Cancer Genomics Proteomics ; 19(6): 673-682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36316037

RESUMEN

BACKGROUND/AIM: The kisspeptin 1 (KISS1) gene encodes a precursor polypeptide which after proteolysis forms the kisspeptin-10 (KISS1) protein. KISS1, retains maximum physiological activity when it binds to its receptor (KISS1R), allowing KISS1 to effectively function as a suppressor of metastasis in melanomas and other types of cancer. The goal of this study was to evaluate the expression of KISS1 and KISS1R in breast carcinomas from African American (AA) women and correlate their association with clinicopathological features, including breast cancer subtypes, and outcomes. MATERIALS AND METHODS: Tissue microarrays were constructed from formalin-fixed, paraffin-embedded surgical blocks from 216 AA patients. KISS1 and KISS1R expression was assessed using immunohistochemistry. Univariate analysis was used to determine the association between the expression of KISS1 and KISS1R, and clinicopathological characteristics. Pearson correlation was also determined between immunohistochemical H-scores, tumor size, and the number of positive lymph nodes. Kaplan-Meier estimates of overall and disease-free survival were plotted, and log-rank tests were performed to compare estimates among groups. RESULTS: KISS1 protein expression was found to be higher in receptor-negative and triple-negative breast cancer (TNBC) compared to other subtypes (p<0.001). However, KISS1R expression was higher in non-TNBC tumors compared to other subtypes (p<0.001). Higher KISS1R expression was marginally negatively correlated with tumor size (p=0.077), and positively correlated with lymph-node positivity (p=0.056), and disease-free survival (p=0.092). CONCLUSION: Our study showed a significant inverse correlation between KISS1 and KISS1R in TNBC. This investigation implicates a role for KISS1 and KISS1R in the pathogenesis of TNBCs in AA women.


Asunto(s)
Kisspeptinas , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Negro o Afroamericano , Inmunohistoquímica
20.
Epigenetics ; 17(13): 2332-2346, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36094166

RESUMEN

Kisspeptin, produced from the brain and peripheral tissues, may constitute an important link in metabolic regulation in response to external cues, such as diet. The kisspeptin system is well described in the brain. However, its function and regulation in the peripheral tissues, especially in relation to metabolic disease and sex differences, remain to be elucidated. As Kiss1 and Kiss1r, encoding for kisspeptin and kisspeptin receptors, respectively, are altered by overnutrition/fasting and regulated by DNA methylation during puberty and cancer, epigenetic mechanisms in metabolic disorders are highly probable. In the present study, we experimentally induced type 2 diabetes mellitus (DM2) in female Wistar rats using high-fat diet/streptozocin. We analysed expression and DNA methylation of Kiss1 and Kiss1r in the peripheral tissues, using quantitative-reverse-transcription PCR (qRT-PCR) and pyrosequencing. We discovered differential expression of Kiss1 and Kiss1r in peripheral organs in DM2 females, as compared with healthy controls, and the profile differed from patterns reported earlier in males. DM2 in females was linked to the increased Kiss1 mRNA in the liver and increased Kiss1r mRNA in the liver and adipose tissue. However, Kiss1r promoter was hypermethylated in the liver, suggesting gene silencing. Indeed, the increase in DNA methylation of Kiss1r promoter was accompanied by a reduction in Kiss1r protein, implying epigenetic or translational gene repression. Our results deliver novel evidence for tissue-specific differences in Kiss1 and Kiss1r expression in peripheral organs in DM2 females and suggest DNA methylation as a player in regulation of the hepatic kisspeptin system in DM2.


Asunto(s)
Diabetes Mellitus Tipo 2 , Kisspeptinas , Femenino , Ratas , Animales , Masculino , Kisspeptinas/genética , Kisspeptinas/metabolismo , Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Ratas Wistar , Maduración Sexual , ARN Mensajero/metabolismo , Hígado/metabolismo , ADN/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA