Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.210
Filtrar
1.
Addict Biol ; 29(5): e13401, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38782631

RESUMEN

Addictive properties of propofol have been demonstrated in both humans and animals. The nucleus accumbens (NAc) shell (NAsh) in the brain, along with the interactions between N-methyl-D-aspartate receptor (NMDAR) and the dopamine D1 receptor (D1R), as well as their downstream ERK/CREB signalling pathway in the NAc, are integral in regulating reward-seeking behaviour. Nevertheless, it remains unclear whether NMDARs and the NMDAR-D1R/ERK/CREB signalling pathway in the NAsh are involved in mediating propofol addiction. To investigate it, we conducted experiments with adult male Sprague-Dawley rats to establish a model of propofol self-administration behaviour. Subsequently, we microinjected D-AP5 (a competitive antagonist of NMDARs, 1.0-4.0 µg/0.3 µL/site) or vehicle into bilateral NAsh in rats that had previously self-administered propofol to examine the impact of NMDARs within the NAsh on propofol self-administration behaviour. Additionally, we examined the protein expressions of NR2A and NR2B subunits, and the D1R/ERK/CREB signalling pathways within the NAc. The results revealed that propofol administration behaviour was enhanced by D-AP5 pretreatment in NAsh, accompanied by elevated expressions of phosphorylation of NR2A (Tyr1246) and NR2B (Tyr1472) subunits. There were statistically significant increases in the expressions of D1Rs, as well as in the phosphorylated ERK1/2 (p-ERK1/2) and CREB (p-CREB). This evidence substantiates a pivotal role of NMDARs in the NAsh, with a particular emphasis on the NR2A and NR2B subunits, in mediating propofol self-administration behaviour. Furthermore, it suggests that this central reward processing mechanism may operate through the NMDAR-D1R/ERK/CREB signal transduction pathway.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Núcleo Accumbens , Propofol , Ratas Sprague-Dawley , Receptores de Dopamina D1 , Receptores de N-Metil-D-Aspartato , Autoadministración , Transducción de Señal , Animales , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Propofol/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
2.
Schizophr Res ; 267: 432-440, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642484

RESUMEN

Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17ß-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17ß-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17ß-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.


Asunto(s)
Modelos Animales de Enfermedad , Maleato de Dizocilpina , Estradiol , Poli I-C , Efectos Tardíos de la Exposición Prenatal , Inhibición Prepulso , Clorhidrato de Raloxifeno , Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animales , Femenino , Estradiol/farmacología , Clorhidrato de Raloxifeno/farmacología , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/inducido químicamente , Embarazo , Inhibición Prepulso/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Poli I-C/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Antagonistas de Aminoácidos Excitadores/farmacología , Masculino , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Estrógenos/farmacología , Actividad Motora/efectos de los fármacos
3.
Neurosci Lett ; 793: 136970, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36402255

RESUMEN

Trigeminal neuropathic pain (TNP) is an intense pain condition characterized by hyperalgesia and allodynia; however, its neural mechanisms are not completely understood. Its management is complex, and studies that investigate its biochemical mechanisms are important for improving clinical approaches. This study aimed to evaluate the involvement of GABAergic, glutamatergic, and opioidergic systems and brain-derived neurotrophic factor (BDNF) levels in the TNP process in rats. TNP is induced by chronic constriction injury of the infraorbital nerve (CCI-ION). Nociceptive responses were evaluated using the facial von Frey test before and after the administration of GABAergic and opioidergic agonists and glutamatergic antagonists. The rats were divided into vehicle-treated control (C), sham-surgery (SS), and CCI-ION groups, and then subdivided into the vehicle (V)-treated SS-V and CCI-ION-V groups, SS-MK801 and CCI-ION-MK801, treated with the N-methyl-d-aspartate receptor selective antagonist MK801; SS-PB and CCI-ION-PB, treated with phenobarbital; SS-BZD and CCI-ION-BZD, treated with diazepam; SS-MOR and CCI-ION-MOR, treated with morphine. BDNF levels were evaluated in the cerebral cortex, brainstem, trigeminal ganglion, infraorbital branch of the trigeminal nerve, and serum. CCI-ION induced facial mechanical hyperalgesia. Phenobarbital and morphine reversed the hyperalgesia induced by CCI-ION, and the CCI-BZD group had an increased nociceptive threshold until 60 min. CCI-ION-GLU increased the nociceptive threshold at 60 min. Cerebral cortex and brainstem BDNF levels increased in the CCI-ION and SS groups. Only the CCI group presented high levels of BDNF in the trigeminal ganglion. Our data suggest the involvement of GABAergic, glutamatergic, and opioidergic systems and peripheral BDNF in the TNP process.


Asunto(s)
Neuralgia , Neuralgia del Trigémino , Animales , Ratas , Factor Neurotrófico Derivado del Encéfalo , Maleato de Dizocilpina , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Morfina/farmacología , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Fenobarbital/farmacología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Neuralgia del Trigémino/tratamiento farmacológico , Neuralgia del Trigémino/metabolismo , Neuronas GABAérgicas/metabolismo , Receptores Opioides/metabolismo
4.
Biochem Biophys Res Commun ; 632: 150-157, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36209583

RESUMEN

Ketamine is a noncompetitive antagonist of N-methyl-D-aspartate receptors (NMDARs). We have shown that ketamine can induce cognitive impairments and schizophrenia-like symptoms in mice. However, the detailed metabolic profile changes in the progression of ketamine-induced schizophrenia-like symptoms are still not fully elucidated. In this study, an ultra-performance liquid chromatography-Q-Exactive hybrid quadrupole-Orbitrap mass spectrometry-based untargeted hippocampus high-throughput metabolomics method was first performed to screen for potential biomarkers in a schizophrenia-like state in a chronically administered ketamine-induced mouse model. Our results identified that the amino acid and energy metabolism pathways were significantly affected in mouse models of ketamine-induced schizophrenia. The detailed amino acid profiles were subsequently quantified in the hippocampus. The results showed that ketamine dramatically decreased the Lys, Gly, and Ser levels while significantly increasing the Gln level and relative Glu-to-GABA ratio. Our study suggested that Gln, Gly and Ser metabolism disturbances might be involved in ketamine-induced schizophrenia-like phenotypes. This research offers a fresh viewpoint for creating new neuroleptic medications and contributes to understanding the mechanisms underlying ketamine-induced schizophrenia.


Asunto(s)
Antipsicóticos , Hipocampo , Esquizofrenia , Animales , Ratones , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Ácido gamma-Aminobutírico/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Ketamina/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/inducido químicamente , Esquizofrenia/metabolismo , Metabolómica/métodos
5.
Neuropharmacology ; 207: 108943, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007623

RESUMEN

A stressor can trigger lasting adaptations that contribute to neuropsychiatric disorders. Predator odor (TMT) exposure is an innate stressor that may activate the metabotropic glutamate receptor 3 (mGlu3) to produce stress adaptations. To evaluate functional involvement, the mGlu3 negative allosteric modulator (NAM, VU6010572; 3 mg/kg, i.p.) was administered before TMT exposure in male, Long Evans rats. Two weeks after, rats underwent context re-exposure, elevated zero maze (ZM), and acoustic startle (ASR) behavioral tests, followed by RT-PCR gene expression in the insular cortex and bed nucleus of the stria terminalis (BNST) to evaluate lasting behavioral and molecular adaptations from the stressor. Rats displayed stress-reactive behaviors in response to TMT exposure that were not affected by VU6010572. Freezing and hyperactivity were observed during the context re-exposure, and mGlu3-NAM pretreatment during stressor prevented the context freezing response. TMT exposure did not affect ZM or ASR measures, but VU6010572 increased time spent in the open arms of the ZM and ASR habituation regardless of stressor treatment. In the insular cortex, TMT exposure increased expression of mGlu (Grm3, Grm5) and NMDA (GriN2A, GriN2B, GriN2C, GriN3A, GriN3B) receptor transcripts, and mGlu3-NAM pretreatment blocked GriN3B upregulation. In the BNST, TMT exposure increased expression of GriN2B and GriN3B in vehicle-treated rats, but decreased expression in the mGlu3-NAM group. Similar to the insular cortex, mGlu3-NAM reversed the stressor-induced upregulation of GriN3B in the BNST. mGlu3-NAM also upregulated GriN2A, GriN2B, GriN3B and Grm2 in the control group, but not the TMT group. Together, these data implicate mGlu3 receptor signaling in some lasting adaptations of predator odor stressor and anxiolytic-like effects.


Asunto(s)
Adaptación Fisiológica/fisiología , Conducta Animal/fisiología , Corteza Insular/metabolismo , Neurotransmisores/farmacología , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleos Septales/metabolismo , Tiazoles/farmacología , Adaptación Fisiológica/efectos de los fármacos , Regulación Alostérica , Animales , Conducta Animal/efectos de los fármacos , Condicionamiento Clásico , Cadena Alimentaria , Corteza Insular/efectos de los fármacos , Masculino , Odorantes , Ratas , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Núcleos Septales/efectos de los fármacos
6.
Neuropharmacology ; 207: 108967, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35077763

RESUMEN

Dopamine D1 receptor (D1R) agonists are frequently used to study the role of D1Rs in neurotransmission and behaviour. They have been repeatedly shown to modulate glutamatergic NMDAR currents in the prefrontal cortex (PFC), giving rise to the idea that D1R activation tunes glutamatergic networks by regulating NMDAR activity. We report that the widely used D1R agonist SKF81297 potentiates NMDAR currents in a dose-dependent manner, independently of D1R activation in mPFC slices, cortical neuron cultures and NMDAR-expressing recombinant HEK293 cells. SKF81297 potentiated NMDAR currents through both GluN2A and GluN2B subtypes in the absence of D1R expression, while inhibiting NMDAR currents through GluN2C and GluN2D subtypes. In contrast, the D1R ligands SKF38393, dopamine and SCH23390 inhibited GluN2A- and GluN2B-containing NMDAR currents. SKF81297 also inhibited GluN2A- and GluN2B-containing NMDAR currents at higher concentrations and when glutamate/glycine levels were high, exhibiting bidirectional modulation. To our knowledge, these findings are the first report of a D1R-independent positive modulatory effect of a D1R ligand on NMDA receptors. Importantly, our results further emphasize the possibility of off-target effects of many D1R ligands, which has significant implications for interpreting the large body of research relying on these compounds to examine dopamine functions.


Asunto(s)
Benzazepinas/farmacología , Agonistas de Dopamina/farmacología , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Receptores de Dopamina D1/agonistas , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Células HEK293 , Humanos
7.
Neuropharmacology ; 202: 108840, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678377

RESUMEN

Different types of memory are thought to rely on different types of synaptic plasticity, many of which depend on the activation of the N-Methyl-D Aspartate (NMDA) subtype of glutamate receptors. Accordingly, there is considerable interest in the possibility of using positive allosteric modulators (PAMs) of NMDA receptors (NMDARs) as cognitive enhancers. Here we firstly review the evidence that NMDA receptor-dependent forms of synaptic plasticity: short-term potentiation (STP), long-term potentiation (LTP) and long-term depression (LTD) can be pharmacologically differentiated by using NMDAR ligands. These observations suggest that PAMs of NMDAR function, depending on their subtype selectivity, might differentially regulate STP, LTP and LTD. To test this hypothesis, we secondly performed experiments in rodent hippocampal slices with UBP714 (a GluN2A/2B preferring PAM), CIQ (a GluN2C/D selective PAM) and UBP709 (a pan-PAM that potentiates all GluN2 subunits). We report here, for the first time, that: (i) UBP714 potentiates sub-maximal LTP and reduces LTD; (ii) CIQ potentiates STP without affecting LTP; (iii) UBP709 enhances LTD and decreases LTP. We conclude that PAMs can differentially regulate distinct forms of NMDAR-dependent synaptic plasticity due to their subtype selectivity.


Asunto(s)
Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Regulación Alostérica , Animales , Bencimidazoles/farmacología , Hipocampo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar
8.
Artículo en Inglés | MEDLINE | ID: mdl-34560172

RESUMEN

Prepulse inhibition (PPI) is disrupted in many neuropsychiatric diseases. Molecules such as 5-HT2C receptor agonists alleviate PPI deficits in rodents; however, the precise mechanisms and critical regions of the brain responsible for the reversal effect of these agonists remain inconclusive. The present study aimed to investigate the areas of the brain critical for the reversal effect of 5-HT2C receptor agonists on PPI deficits in mice. The results showed that systemic administration of the 5-HT2C receptor agonist MK212 did not affect normal PPI behavior, but reversed the PPI deficits induced by the N-methyl d-aspartate receptor antagonist MK801 in mice. In addition, the 5-HT2C receptor antagonist SB242084 had no effect on PPI behavior despite MK801 treatment. Moreover, local infusion of MK212 into the medial prefrontal cortex and ventral hippocampus, excluding the nucleus accumbens or ventral tegmental area, rescued the PPI deficits induced by MK801. These data suggest that the medial prefrontal cortex and ventral hippocampus are critical brain areas responsible for the reversal of 5-HT2C agonists on PPI deficits. The results will contribute to our current knowledge on the molecular and neural mechanisms underlying the antipsychotic effects of 5-HT2C receptor agonists, especially the neural circuits modulated by 5-HT2C receptor activity.


Asunto(s)
Hipocampo , Corteza Prefrontal , Inhibición Prepulso/efectos de los fármacos , Pirazinas/farmacología , Receptor de Serotonina 5-HT2C/efectos de los fármacos , Aminopiridinas/farmacología , Animales , Encéfalo/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Hipocampo/química , Hipocampo/fisiología , Indoles/farmacología , Ratones , Corteza Prefrontal/química , Corteza Prefrontal/fisiología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
9.
Neuropharmacology ; 206: 108937, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34965406

RESUMEN

Although the pharmacological and behavioural interactions between cocaine and alcohol are well established, less is known about how polyconsumption of these drugs affects the neurotransmitter systems involved in their psychoactive effects and in particular, in the process of addiction. Here, rats of both sexes at two stages of development were studied under a chronic regime of intravenous cocaine and/or alcohol administration. Brain samples from the medial prefrontal cortex, nucleus accumbens, hippocampus and amygdala were extracted to analyse the mRNA expression of genes encoding subunits of the GABA, NMDA and AMPA receptors, as well as the expression of the CB1 receptor, and that of enzymes related to the biosynthesis and degradation of endocannabinoids. Moreover, two synaptic scaffold proteins related to GABA and NMDA receptors, gephyrin and PSD-95, were quantified in Western blots. Significant interactions between cocaine and alcohol were common, affecting the GABAergic and endocannabinoid systems in the medial prefrontal cortex and amygdala of young adults, whereas such interactions were evident in the glutamatergic and endocannabinoid systems in adults, as well as a more pronounced sex effect. Significant interactions between these drugs affecting the scaffold proteins were evident in the medial prefrontal cortex and nucleus accumbens of young adults, and in the nucleus accumbens and amygdala of adults, but not in the hippocampus. These results highlight the importance of considering the interactions between cocaine and alcohol on neurotransmitter systems in the context of polyconsumption, specifically when treating problems of abuse of these two substances.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Cerebro/efectos de los fármacos , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Etanol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Receptores AMPA/efectos de los fármacos , Receptores de Cannabinoides/efectos de los fármacos , Receptores de GABA/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Factores de Edad , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Interacciones Farmacológicas , Etanol/administración & dosificación , Femenino , Masculino , Ratas , Caracteres Sexuales
10.
Pak J Pharm Sci ; 34(3): 909-914, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34602413

RESUMEN

N-Methyl-D-aspartate receptor (NMDAR)-induced antioxidation is a significant cause of neuronal injury after ischemic stroke. In a previous work, we verified the neuroprotective roles of geniposide during tMCAO in vivo. However, it remains unknown whether geniposide ameliorates injury to hippocampal neurons during Ischemic Long Term Potentiation (iLTP) induction in vitro. After induction of cells oxygen-glucose deprivation or hydrogen peroxide, the protection of geniposide evaluated by MTT assay and electrophysiological tests. In this study, we suggested neuronal cell apoptosis was attenuated by geniposide. Furthermore, field excitatory postsynaptic potentials (fEPSCs) following postischemic LTP were assessed by electrophysiological tests. Finally, we determined that medium and high doses of geniposide attenuated oxidative stress insult and improved iLTP. Importantly, these effects were abolished by cotreatment with geniposide and the GluN2A antagonist NVP. In contrast, the GluN2B inhibitor ifenprodil failed to have an effect. In conclusion, we suggest for the first time that treatment with geniposide can attenuate postischemic LTP induction in a concentration-dependent manner. We infer that GluN2A-containing NMDARs are involved in the neuroprotection induced by geniposide treatment in ischemia.


Asunto(s)
Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipoxia-Isquemia Encefálica/metabolismo , Iridoides/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Peróxido de Hidrógeno/farmacología , Hipoxia-Isquemia Encefálica/fisiopatología , Técnicas In Vitro , Infarto de la Arteria Cerebral Media/fisiopatología , Neuronas/metabolismo , Oxidantes/farmacología , Células PC12 , Piperidinas/farmacología , Quinoxalinas/farmacología , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Neuropharmacology ; 200: 108807, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562442

RESUMEN

Interoception refers to the perception of the internal state of the body and is increasingly being recognized as an important factor in mental health disorders. Drugs of abuse produce powerful interoceptive states that are upstream of behaviors that drive and influence drug intake, and addiction pathology is impacted by interoceptive processes. The goal of the present review is to discuss interoceptive processes related to alcohol. We will cover physiological responses to alcohol, how interoceptive states can impact drinking, and the recruitment of brain networks as informed by clinical research. We also review the molecular and brain circuitry mechanisms of alcohol interoceptive effects as informed by preclinical studies. Finally, we will discuss emerging treatments with consideration of interoception processes. As our understanding of the role of interoception in drug and alcohol use grows, we suggest that the convergence of information provided by clinical and preclinical studies will be increasingly important. Given the complexity of interoceptive processing and the multitude of brain regions involved, an overarching network-based framework can provide context for how focused manipulations modulate interoceptive processing as a whole. In turn, preclinical studies can systematically determine the roles of individual nodes and their molecular underpinnings in a given network, potentially suggesting new therapeutic targets and directions. As interoceptive processing drives and influences motivation, emotion, and subsequent behavior, consideration of interoception is important for our understanding of processes that drive ongoing drinking and relapse.


Asunto(s)
Alcoholismo/fisiopatología , Encéfalo/efectos de los fármacos , Etanol/farmacología , Interocepción/efectos de los fármacos , Animales , Conducta Adictiva/fisiopatología , Evaluación Preclínica de Medicamentos , Emociones/efectos de los fármacos , Humanos , Receptores de GABA-A/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Factores Sexuales , Estrés Psicológico/fisiopatología
12.
J Neurophysiol ; 126(5): 1622-1634, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495785

RESUMEN

Choline is an essential nutrient under evaluation as a cognitive enhancing treatment for fetal alcohol spectrum disorders (FASD) in clinical trials. As a result, there is increased pressure to identify therapeutic mechanism(s) of action. Choline is not only a precursor for several essential cell membrane components and signaling molecules but also has the potential to directly affect synaptic mechanisms that are believed important for cognitive processes. In the current work, we study how the direct application of choline can affect synaptic transmission in the dentate gyrus (DG) of hippocampal slices obtained from adolescent (postnatal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSPs) in the DG in vitro. The depression required the involvement of M1 receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of N-methyl-d-aspartate (NMDA) and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.NEW & NOTEWORTHY Choline supplementation is a nutraceutical therapy with significant potential for a variety of developmental disorders; however, the mechanisms involved in its therapeutic effects remain poorly understood. Our research shows that choline directly impacts synaptic communication in the brain, inducing a long-term depression of synaptic efficacy in brain slices. The depression is equivalent in male and female animals, involves M1 receptors in control animals, but uniquely involves NMDA receptors in a model of FASD.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Colina/farmacología , Giro Dentado/efectos de los fármacos , Etanol/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Nootrópicos/farmacología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Receptor Muscarínico M1/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Sprague-Dawley
13.
Neurobiol Learn Mem ; 185: 107526, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34562619

RESUMEN

Heightened fear responding is characteristic of fear- and anxiety-related disorders, including post-traumatic stress disorder. Neural plasticity in the amygdala is essential for both initial fear learning and fear expression, and strengthening of synaptic connections between the medial geniculate nucleus (MgN) and amygdala is critical for auditory fear learning. However, very little is known about what happens in the MgN-amygdala pathway during fear recall and extinction, in which conditional fear decreases with repeated presentations of the auditory stimulus alone. In the present study, we found that optogenetic inhibition of activity in the MgN-amygdala pathway during fear retrieval and extinction reduced expression of conditional fear. While this effect persisted for at least two weeks following pathway inhibition, it was specific to the context in which optogenetic inhibition occurred, linking MgN-BLA inhibition to facilitation of extinction-like processes. Reduced fear expression through inhibition of the MgN-amygdala pathway was further characterized by similar synaptic expression of GluA1 and GluA2 AMPA receptor subunits compared to what was seen in controls. Inhibition also decreased CREB phosphorylation in the amygdala, similar to what has been reported following auditory fear extinction. We then demonstrated that this effect was reduced by inhibition of GluN2B-containing NMDA receptors. These results demonstrate a new and important role for the MgN-amygdala pathway in extinction-like processes, and show that suppressing activity in this pathway results in a persistent decrease in fear behavior.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Cuerpos Geniculados/fisiología , Vías Nerviosas/fisiología , Estimulación Acústica , Animales , Condicionamiento Clásico/efectos de los fármacos , Extinción Psicológica/fisiología , Técnica del Anticuerpo Fluorescente , Hylobatidae , Masculino , Optogenética , Piperidinas/farmacología , Ratas , Ratas Long-Evans , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología
14.
Pharmacol Res Perspect ; 9(5): e00859, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34476911

RESUMEN

Precisely controlled synaptic glutamate concentration is essential for the normal function of the N-methyl D-aspartate (NMDA) receptors. Atypical fluctuations in synaptic glutamate homeostasis lead to aberrant NMDA receptor activity that results in the pathogenesis of neurological and psychiatric disorders. Therefore, glutamate concentration-dependent NMDA receptor modulators would be clinically useful agents with fewer on-target adverse effects. In the present study, we have characterized a novel compound (CNS4) that potentiates NMDA receptor currents based on glutamate concentration. This compound alters glutamate potency and exhibits no voltage-dependent effect. Patch-clamp electrophysiology recordings confirmed agonist concentration-dependent changes in maximum inducible currents. Dynamic Ca2+ and Na+ imaging assays using rat brain cortical, striatal and cerebellar neurons revealed CNS4 potentiated ion influx through native NMDA receptor activity. Overall, CNS4 is novel in chemical structure, mechanism of action and agonist concentration-biased allosteric modulatory effect. This compound or its future analogs will serve as useful candidates to develop drug-like compounds for the treatment of treatment-resistant schizophrenia and major depression disorders associated with hypoglutamatergic neurotransmission.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Regulación Alostérica , Animales , Benzamidas/farmacología , Cerebelo/citología , Corteza Cerebral/citología , Cuerpo Estriado/citología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Neuronas/metabolismo , Imagen Óptica , Técnicas de Placa-Clamp , Piperidinas/farmacología , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus laevis
15.
Neuropharmacology ; 197: 108749, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364898

RESUMEN

The anterior cingulate cortex (ACC) plays an important role in pain modulation, and pain-related emotional disorders. In the ACC, two major forms of long-term potentiation (LTP) coexist in excitatory synapses and lay the basis of chronic pain and pain-related emotional disorders. The induction of postsynaptic LTP is dependent on the activation of postsynaptic NMDA receptors (NMDARs), while the presynaptic LTP is NMDAR-independent. Long-term depression (LTD) can also be divided into two types according to the degree of sensitivity to the inhibition of NMDARs. NMDAR heteromers containing GluN2A and GluN2B act as key molecules in both the NMDAR-dependent postsynaptic LTP and LTD. Additionally, NMDARs also exist in presynaptic terminals and modulate the evoked and spontaneous transmitter release. From a translational point of view, inhibiting subtypes of NMDARs and/or downstream signaling proteins may provide potential drug targets for chronic pain and its related emotional disorders. This article is part of the special Issue on 'Glutamate Receptors -NMDA receptors'.


Asunto(s)
Giro del Cíngulo/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Animales , Giro del Cíngulo/efectos de los fármacos , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo , Plasticidad Neuronal/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Sinapsis/efectos de los fármacos
16.
Cell Rep ; 36(8): 109612, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433031

RESUMEN

Drugs targeting N-methyl-D-aspartate receptors (NMDARs) have been approved to treat major depressive disorder (MDD); however, the presence of undesirable psychotomimetic and cognitive side effects may limit their utility. In this study, we show that the phosphorylation levels of the GluN2B subunit at tyrosine (Y) 1070 increase in mice after both acute and chronic restraint stress (CRS) exposure. Preventing GluN2B-Y1070 phosphorylation via Y1070F mutation knockin produces effects similar to those of antidepressants but does not affect cognitive or anxiety-related behaviors in subject mice. Mechanistically, the Y1070F mutation selectively reduces non-synaptic NMDAR currents and increases the number of excitatory synapses in the layer 5 pyramidal neurons of medial prefrontal cortex (mPFC) but not in the hippocampus. Altogether, our study identifies phosphorylation levels of GluN2B-Y1070 in the mPFC as a dynamic, master switch guarding depressive behaviors, suggesting that disrupting the Y1070 phosphorylation of GluN2B subunit has the potential for developing new antidepressants.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Tirosina/efectos de los fármacos , Animales , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Tirosina/metabolismo
17.
J Clin Pharmacol ; 61 Suppl 2: S100-S113, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34396556

RESUMEN

Hallucinogens constitute a unique class of substances that cause changes in the user's thoughts, perceptions, and mood through various mechanisms of action. Although the serotonergic hallucinogens such as lysergic acid diethylamide, psilocybin, and N,N-dimethyltryptamine have been termed the classical hallucinogens, many hallucinogens elicit their actions through other mechanisms such as N-methyl-D-aspartate receptor antagonism, opioid receptor agonism, or inhibition of the reuptake of monoamines including serotonin, norepinephrine, and dopamine. The aim of this article is to compare the pharmacologic similarities and differences among substances within the hallucinogen class and their impact on physical and psychiatric effects. Potential toxicities, including life-threatening and long-term effects, will be reviewed.


Asunto(s)
Alucinógenos/farmacología , Monoaminas Biogénicas/metabolismo , Alucinógenos/química , Alucinógenos/toxicidad , Humanos , Dietilamida del Ácido Lisérgico/farmacología , Psilocibina/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/efectos de los fármacos , Receptores Opioides/metabolismo , Trastornos Relacionados con Sustancias/fisiopatología , Triptaminas/farmacología , Triptaminas/toxicidad
18.
Behav Brain Res ; 413: 113443, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216648

RESUMEN

The present study investigated the pharmacological mechanisms of the antidepressant-like effects of amantadine in mice and their influence on hippocampal neurogenesis. To improve the translational validity of preclinical results, reproducibility across laboratories and replication in other animal models and species are crucial. Single amantadine administration at doses of 50 and 75 mg/kg resulted in antidepressant-like effects in mice in the tail suspension test (TST), reflected by an increase in immobility time. The effects of amantadine were seen at doses that did not alter locomotor activity. The tyrosine hydroxylase inhibitor α-methyl-ρ-tyrosine did not influence the anti-immobility effect of amantadine in the TST. Pretreatment with the α1 adrenergic receptor antagonist prazosin, ß adrenergic receptor antagonist propranolol, α2 adrenergic receptor antagonist yohimbine, and α2 adrenergic receptor agonist clonidine did not alter the antidepressant-like effect of amantadine. However, amantadine's effect was blocked by the dopamine D2 receptor antagonist haloperidol and glutamate receptor agonist N-methyl-D-aspartate (NMDA). Repeated amantadine administration (50 mg/kg) also exerted an antidepressant-like effect, paralleled by an increase in hippocampal neurogenesis. The present results demonstrate that the antidepressant-like effects of amantadine may be mediated by its actions on D2 and NMDA receptors and likely involve hippocampal neurogenesis.


Asunto(s)
Agonistas Adrenérgicos/farmacología , Antagonistas Adrenérgicos/farmacología , Amantadina/farmacología , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Receptores de Dopamina D2/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Amantadina/administración & dosificación , Animales , Antidepresivos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Hipocampo/efectos de los fármacos , Masculino , Ratones , Neurogénesis/efectos de los fármacos , alfa-Metiltirosina/farmacología
19.
Exp Neurol ; 344: 113810, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34270920

RESUMEN

Ample evidence has demonstrated that α-Synuclein can propagate from one area of the brain to others via cell-to-cell transmission, which might be the underlying mechanism for pathological propagation and the disease progression of Parkinson's disease (PD). Recent reports have demonstrated cell surface receptor-mediated cell-to-cell transmission of α-synuclein. Memantine decreased the levels of internalized cytosolic α-synuclein and led to attenuation in α-synuclein-induced cell death. Specifically, memantine attenuated α-synuclein-induced expression of clathrin and EEA1, and increased expression of NR2A subunits. Moreover, memantine inhibited propagation of extracellular α-synuclein and thus, decreased the expression of the phosphorylated form of α-synuclein in dopaminergic neurons of the substantia nigra, which was accompanied by increased survival of dopaminergic neurons with functional improvement of motor deficits. The present study demonstrated that memantine modulates extracellular α-synuclein propagation by inhibiting interactions between α-synuclein and NR2A subunits, which leads to neuroprotective effects on nigral dopaminergic neurons against α-synuclein-enriched conditions. The repositioning use of memantine in α-synuclein propagation needs to be further evaluated in patients with α-synucleinopathies as an effective therapeutic approach.


Asunto(s)
Memantina/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/patología , alfa-Sinucleína/efectos de los fármacos , Animales , Línea Celular , Humanos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Trastornos Parkinsonianos/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , alfa-Sinucleína/metabolismo
20.
Brain Res Bull ; 175: 90-98, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34271120

RESUMEN

Quinolinic acid (QUIN) is an agonist of the neurotransmitter glutamate (Glu) capable of binding to N-methyl-D-aspartate receptors (NMDAR) increasing glutamatergic signaling. QUIN is known for being an endogenous neurotoxin, able to induce neurodegeneration. In Caenorhabditis elegans, the mechanism by which QUIN induces behavioral and metabolic toxicity has not been fully elucidated. The effects of QUIN on behavioral and metabolic parameters in nmr-1 and nmr-2 NMDA receptors in transgenic and wild-type (WT) worms were performed to decipher the pathway by which QUIN exerts its toxicity. QUIN increased locomotion parameters such as wavelength and movement amplitude medium, as well as speed and displacement, without modifying the number of body bends in an NMDAR-dependent-manner. QUIN increased the response time to the chemical stimulant 1-octanol, which is modulated by glutamatergic neurotransmission in the ASH neuron. Brood size increased after exposure to QUIN, dependent upon nmr-2/NMDA-receptor, with no change in lifespan. Oxygen consumption, mitochondrial membrane potential, and the flow of coupled and unbound electrons to ATP production were reduced by QUIN in wild-type animals, but did not alter citrate synthase activity, altering the functionality but the mitochondrial viability. Notably, QUIN modified fine locomotor and chemosensory behavioral parameters, as well as metabolic parameters, analogous to previously reported effects in mammals. Our results indicate that QUIN can be used as a neurotoxin to elicit glutamatergic dysfunction in C. elegans in a way analogous to other animal models.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/inducido químicamente , Caenorhabditis elegans/fisiología , Ácido Quinolínico , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , 1-Octanol/farmacología , Adenosina Trifosfato/biosíntesis , Animales , Animales Modificados Genéticamente , Citrato (si)-Sintasa/metabolismo , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Humanos , Quinurenina/metabolismo , Actividad Motora/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/genética , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...