Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673976

RESUMEN

Antagonist peptides (ANTs) of vasoactive intestinal polypeptide receptors (VIP-Rs) are shown to enhance T cell activation and proliferation in vitro, as well as improving T cell-dependent anti-tumor response in acute myeloid leukemia (AML) murine models. However, peptide therapeutics often suffer from poor metabolic stability and exhibit a short half-life/fast elimination in vivo. In this study, we describe efforts to enhance the drug properties of ANTs via chemical modifications. The lead antagonist (ANT308) is derivatized with the following modifications: N-terminus acetylation, peptide stapling, and PEGylation. Acetylated ANT308 exhibits diminished T cell activation in vitro, indicating that N-terminus conservation is critical for antagonist activity. The replacement of residues 13 and 17 with cysteine to accommodate a chemical staple results in diminished survival using the modified peptide to treat mice with AML. However, the incorporation of the constraint increases survival and reduces tumor burden relative to its unstapled counterpart. Notably, PEGylation has a significant positive effect, with fewer doses of PEGylated ANT308 needed to achieve comparable overall survival and tumor burden in leukemic mice dosed with the parenteral ANT308 peptide, suggesting that polyethylene glycol (PEG) incorporation enhances longevity, and thus the antagonist activity of ANT308.


Asunto(s)
Leucemia Mieloide Aguda , Receptores de Péptido Intestinal Vasoactivo , Animales , Ratones , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Humanos , Péptidos/química , Péptidos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Línea Celular Tumoral
2.
J Neuroendocrinol ; 35(11): e13354, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37946684

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) and the homologous peptide, vasoactive intestinal peptide (VIP), participate in glucose homeostasis using insulinotropic and counterregulatory processes. The role of VIP receptor 2 (VPAC2R) in these opposing actions needs further characterization. In this study, we examined the participation of VPAC2R on basal glycemia, fasted levels of glucoregulatory hormones and on glycemia responses during metabolic and psychogenic stress using gene-deleted (Vipr2-/- ) female mice. The mean basal glycemia was significantly greater in Vipr2-/- in the fed state and after an 8-h overnight fast as compared to wild-type (WT) mice. Insulin tolerance testing following a 5-h fast (morning fast, 0.38 U/kg insulin) indicated no effect of genotype. However, during a more intense metabolic challenge (8 h, ON fast, 0.25 U/kg insulin), Vipr2-/- females displayed significantly impaired insulin hypoglycemia. During immobilization stress, the hyperglycemic response and plasma epinephrine levels were significantly elevated above basal in Vipr2-/- , but not WT mice, in spite of similar stress levels of plasma corticosterone. Together, these results implicate participation of VPAC2R in upregulated counterregulatory processes influenced by enhanced sympathoexcitation. Moreover, the suppression of plasma GLP-1 levels in Vipr2-/- mice may have removed the inhibition on hepatic glucose production and the promotion of glucose disposal by GLP-1. qPCR analysis indicated deregulation of central gene markers of PACAP/VIP signaling in Vipr2-/- , upregulated medulla tyrosine hydroxylase (Th) and downregulated hypothalamic Vip transcripts. These results demonstrate a physiological role for VPAC2R in glucose metabolism, especially during insulin challenge and psychogenic stress, likely involving the participation of sympathoadrenal activity and/or metabolic hormones.


Asunto(s)
Receptores de la Hormona Hipofisaria , Receptores de Péptido Intestinal Vasoactivo , Ratones , Femenino , Animales , Receptores de Péptido Intestinal Vasoactivo/genética , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Eliminación de Gen , Péptido Intestinal Vasoactivo/metabolismo , Insulina/metabolismo , Glucosa , Péptido 1 Similar al Glucagón , Receptores de la Hormona Hipofisaria/genética , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética
3.
Biomolecules ; 13(6)2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37371459

RESUMEN

Odontoblasts are involved in sensory generation as sensory receptor cells and in dentin formation. We previously reported that an increase in intracellular cAMP levels by cannabinoid 1 receptor activation induces Ca2+ influx via transient receptor potential vanilloid subfamily member 1 channels in odontoblasts, indicating that intracellular cAMP/Ca2+ signal coupling is involved in dentinal pain generation and reactionary dentin formation. Here, intracellular cAMP dynamics in cultured human odontoblasts were investigated to understand the detailed expression patterns of the intracellular cAMP signaling pathway activated by the Gs protein-coupled receptor and to clarify its role in cellular functions. The presence of plasma membrane Gαs as well as prostaglandin I2 (IP), 5-hydroxytryptamine 5-HT4 (5-HT4), dopamine D1 (D1), adenosine A2A (A2A), and vasoactive intestinal polypeptide (VIP) receptor immunoreactivity was observed in human odontoblasts. In the presence of extracellular Ca2+, the application of agonists for the IP (beraprost), 5-HT4 (BIMU8), D1 (SKF83959), A2A (PSB0777), and VIP (VIP) receptors increased intracellular cAMP levels. This increase in cAMP levels was inhibited by the application of the adenylyl cyclase (AC) inhibitor SQ22536 and each receptor antagonist, dose-dependently. These results suggested that odontoblasts express Gs protein-coupled IP, 5-HT4, D1, A2A, and VIP receptors. In addition, activation of these receptors increased intracellular cAMP levels by activating AC in odontoblasts.


Asunto(s)
Receptores de Péptido Intestinal Vasoactivo , Serotonina , Humanos , Serotonina/farmacología , Serotonina/metabolismo , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Odontoblastos , Línea Celular , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Cannabinoides/metabolismo
4.
Asian Pac J Cancer Prev ; 24(5): 1711-1715, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37247292

RESUMEN

INTRODUCTION: Oral cancer is a major health problem. The study of exfoliative cytology material helps in the differentiation of premalignant and malignant alterations of oral lesions. The objective of this study was to assess the feasibility of detecting oral cancer by targeting genomic VPAC (combined vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide) receptors expressed on malignant oral cancer cells. PATIENTS & METHODS: All patients with suspected oral cavity cancers/lesions formed the study group. The samples from the oral cavity lesion or suspicious area were collected with a cytology brush. The harvested material was examined for malignant cells by 1. the standard PAP stain and 2. targeting the VPAC receptors on the cell surface using a fluorescent microscope. Similarly, malignant cells were identified from cells shed in oral gargles. RESULTS: A total of 60 patients with oral lesions were included in the study. The histopathological diagnosis was squamous cell carcinoma in 30 of these. The VPAC receptor positivity both on the brush cytology staining as well oral gargle staining was more sensitive than the brush cytology PAP staining. The accuracy of the various techniques was as follows, brush cytology PAP staining at 86.67%, brush cytology VPAC staining at 91.67% and oral gargle VPAC staining at 95%. CONCLUSIONS: This preliminary study validates our belief that malignant cells in the saliva can be identified by targeting the VPAC receptors. The test is simple, easy, non-invasive and reliable in the detection of oral cancers.


Asunto(s)
Neoplasias de la Boca , Receptores de Péptido Intestinal Vasoactivo , Humanos , Receptores de Péptido Intestinal Vasoactivo/genética , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Neoplasias de la Boca/diagnóstico
5.
Eur J Med Res ; 28(1): 67, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36750876

RESUMEN

RATIONALE: Immune thrombocytopenia (ITP) is thought to be a result of immune dysfunction, which is treated by glucocorticoids such as prednisone. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) have immunomodulatory properties, but their role in intestinal immune control is unclear. The major goal of this study was to look at the effects of prednisone on platelet, VIP, and PACAP levels in ITP mice, as well as the regulatory system that controls intestinal immunity. METHODS: Eighteen BALB/c mice were randomly divided into three groups: blank control group, model control group, and prednisone group, with six mice in each group. The ITP animal model control group and the prednisone group were injected with anti-platelet serum (APS) to replicate the ITP animal model. The prednisone group began prednisone intervention on the 8th day. Platelet count was dynamically measured before APS injection, on the 4th day of injection, on the 1st day of administration, on the 4th day of administration, and at the end of the experiment. After the experiment, the expression of p53 protein in mouse mesenteric lymph node lymphocytes was detected by immunohistochemistry. The changes in lymphocyte apoptosis rate in mouse mesenteric lymph nodes were detected by in situ terminal transferase labeling (TUNEL). The contents of VIP and PACAP in the mouse brain, colon, and serum were detected by enzyme-linked immunosorbent assay (ELISA). The contents of IFN-γ, IL-4, IL-10, IL-17A in the mouse spleen were detected by ELISA. RESULTS: ①Changes of peripheral platelet count: there was no significant difference in platelet count among the three groups before modeling; on the 4th day, the platelet count decreased in the model control group and prednisone group; on the 8th day, the number of platelets in model control group and prednisone group was at the lowest level; on the 12th day, the platelet count in prednisone group recovered significantly; on the 15th day, the platelet count in prednisone group continued to rise. ②Changes of VIP, PACAP: compared with the blank control group, VIP and PACAP in the model control group decreased significantly in the brain, colon, and serum. Compared with the model control group, the levels of VIP and PACAP in the brain, colon, and serum in the prednisone group were increased except for serum PACAP. ③Changes of mesenteric lymphocytes: the expression of p53 protein in the mesenteric lymph nodes of model control group mice was significantly higher than that of blank control group mice. After prednisone intervention, the expression of p53 protein decreased significantly.④Changes of cytokines in spleen: compared with blank control group, IFN- γ, IL-17A increased and IL-4 and IL-10 decreased in model control group. After prednisone intervention, IFN- γ, IL-17A was down-regulated and IL-4 and IL-10 were upregulated. CONCLUSIONS: Prednisone-upregulated VIP and PACAP levels decreased P53 protein expression and apoptosis rate in mesenteric lymph node lymphocytes and affected cytokine expression in ITP model mice. Therefore, we speculate that the regulation of intestinal immune function may be a potential mechanism of prednisone in treating ITP.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Péptido Intestinal Vasoactivo , Ratones , Animales , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Interleucina-10 , Prednisona , Proteína p53 Supresora de Tumor , Interleucina-17/metabolismo , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Interleucina-4/metabolismo , Citocinas/metabolismo
6.
Sci Rep ; 13(1): 927, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650220

RESUMEN

Macrophages are a major population of immune cells in solid cancers, especially colorectal cancers. Tumor-associated macrophages (TAMs) are commonly divided into M1-like (tumor suppression) and M2-like (tumor promotion) phenotypes. Vasoactive intestinal peptide (VIP) is an immunoregulatory neuropeptide with a potent anti-inflammatory function. Inhibition of VIP signaling has been shown to increase CD8+ T cell proliferation and function in viral infection and lymphoma. However, the role of VIP in macrophage polarization and function in solid tumors remains unknown. Here, we demonstrated that conditioned medium from CT26 (CT26-CM) cells enhanced M2-related marker and VIP receptor (VPAC) gene expression in RAW264.7 macrophages. VIP hybrid, a VIP antagonist, enhanced M1-related genes but reduced Mrc1 gene expression and increased phagocytic ability in CT26-CM-treated RAW264.7 cells. In immunodeficient SCID mice, VIP antagonist alone or in combination with anti-PD-1 antibody attenuated CT26 tumor growth compared with the control. Analysis of tumor-infiltrating leukocytes found that VIP antagonist increased M1/M2 ratios and macrophage phagocytosis of CT26-GFP cells. Furthermore, Vipr2 gene silencing or VPAC2 activation affected the polarization of CT26-CM-treated RAW264.7 cells. In conclusion, the inhibition of VIP signaling enhanced M1 macrophage polarization and macrophage phagocytic function, resulting in tumor regression in a CT26 colon cancer model.


Asunto(s)
Neoplasias del Colon , Macrófagos , Péptido Intestinal Vasoactivo , Animales , Ratones , Neoplasias del Colon/patología , Macrófagos/metabolismo , Ratones SCID , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Transducción de Señal , Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Péptido Intestinal Vasoactivo/metabolismo , Células RAW 264.7
7.
PLoS One ; 17(11): e0277096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36399482

RESUMEN

Vasoactive intestinal peptide (VIP) as a neurocrine factor released by enteric neurons has been postulated to participate in the regulation of transcellular active calcium transport across intestinal epithelium, but the preceding evidence is scant and inconclusive. Herein, transepithelial calcium flux and epithelial electrical parameters were determined by Ussing chamber technique with radioactive tracer in the intestinal epithelium-like Caco-2 monolayer grown on Snapwell. After 3-day culture, Caco-2 cells expressed mRNA of calcium transporters, i.e., TRPV6, calbindin-D9k, PMCA1b and NCX1, and exhibited transepithelial resistance of ~200 Ω cm2, a characteristic of leaky epithelium similar to the small intestine. VIP receptor agonist was able to enhance transcellular calcium flux, whereas VIP receptor antagonist totally abolished calcium fluxes induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Since the intestinal cystic fibrosis transmembrane conductance regulator (CFTR) could be activated by VIP and calciotropic hormones, particularly parathyroid hormone, we sought to determine whether CFTR also contributed to the 1,25(OH)2D3-induced calcium transport. A selective CFTR inhibitor (20-200 µM CFTRinh-172) appeared to diminish calcium fluxes as well as transepithelial potential difference and short-circuit current, both of which indicated a decrease in electrogenic ion transport. On the other hand, 50 µM genistein-a molecule that could rapidly activate CFTR-was found to increase calcium transport. Our in silico molecular docking analysis confirmed direct binding of CFTRinh-172 and genistein to CFTR channels. In conclusion, VIP and CFTR apparently contributed to the intestinal calcium transport, especially in the presence of 1,25(OH)2D3, thereby supporting the existence of the neurocrine control of intestinal calcium absorption.


Asunto(s)
Calcio , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Calcio/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Péptido Intestinal Vasoactivo/metabolismo , Células CACO-2 , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Genisteína/metabolismo , Simulación del Acoplamiento Molecular , Transporte Iónico , Mucosa Intestinal/metabolismo , Calcio de la Dieta/metabolismo
8.
Biochem Biophys Res Commun ; 636(Pt 1): 10-16, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36332470

RESUMEN

The vasoactive intestinal peptide receptor 2 (VIPR2) has attracted attention as a drug target for the treatment of mental disorders, cancer, and immune diseases. In 2021, we identified the peptide KS-133 as a VIPR2-selective antagonist. In this study, we aimed to elucidate the binding mechanism between VIPR2 and KS-133. To this end, VIPR2/KS-133 and VIPR2/vasoactive intestinal peptide (VIP) complex models were constructed through AlphaFold version 2.0 and molecular dynamic simulations. Our models revealed that: (i) both KS-133 and VIP have helical structures, (ii) the interaction residues on VIPR2 for both peptides are similar, and (iii) the orientation of their helices upon their binding to VIPR2 are different by ∼45°. Interestingly, in the process of constructing the aforementioned models, an S-S bond formation between Cys25 and Cys192 of the human VIPR2 was identified. Although these two Cys residues are highly conserved among species (i.e., corresponding to Cys24 and Cys191 in the mouse), no previous reports regarding this S-S bond formation exist. In order to clarify the potential role of this S-S bond in the VIPR2 has functional consequences, a cell line expressing the mouse VIPR2(Cys24Ala, Cys191Ala) was generated. During the VIP stimulation of this cell line, the phosphorylation of AKT (a downstream signal marker of VIPR2) was found to be significantly attenuated, thereby suggesting that the S-S bond has a functional significance for VIPR2. Our study not only elucidates the VIPR2-binding mechanism of KS-133 for the first time, but also provides new insights into the structural biology of VIPR2.


Asunto(s)
Receptores de Tipo II del Péptido Intestinal Vasoactivo , Receptores de Péptido Intestinal Vasoactivo , Humanos , Ratones , Animales , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Línea Celular
9.
Exp Eye Res ; 224: 109235, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049555

RESUMEN

We previously demonstrated vasoactive intestinal polypeptide (VIP) eyedrops reduce intraocular pressure (IOP) and stabilize cytoskeleton of the Schlemm's canal (SC) endothelium in a chronic ocular hypertension rat model. Here we determine if the trabecular meshwork (TM) releases endogenous VIP and affect SC in paracrine manner, and whether this cellular interaction via VIP is strengthened under stimulated sympathetic activity. A rat model of moderate-intensity exercise was established to stimulate sympathetic activation. IOP post exercise was measured by a rebound tonometer. Sympathetic nerve activity at the TM was immunofluorescence-stained with DßH and PGP9.5. Morphological changes of TM and SC were quantitatively measured by hematoxylin-eosin (HE) staining. Further, epinephrine was applied to mimic sympathetic excitation on primary rat TM cells, and ELISA to measure VIP levels in the medium. The cytoskeleton protective effect of VIP in the epinephrine-stimulated conditioned medium (Epi-CM) was evaluated in oxidative stressed human umbilical vein endothelial cells (HUVECs). Elevated sympathetic nerve activity was found at TM post exercise. Changes accompanying the sympathetic excitation included thinned TM, expanded SC and decreased IOP, which were consistent with epinephrine treatment. Epinephrine decreased TM cell size, enhanced VIP expression and release in the medium in vitro. Epi-CM restored linear F-actin and cell junction integrity in H2O2 treated HUVECs. Blockage of VIP receptor by PG99-465 attenuated the protective capability of Epi-CM. VIP expression was upregulated at TM and the inner wall of SC post exercise in vivo. PG99-465 significantly attenuated exercise-induced SC expansion and IOP reduction. Thus, the sympathetic activation promoted VIP release from TM cells and subsequently expanded SC via stabilizing cytoskeleton, which resulted in IOP reduction.


Asunto(s)
Malla Trabecular , Péptido Intestinal Vasoactivo , Animales , Humanos , Ratas , Actinas/metabolismo , Medios de Cultivo Condicionados/farmacología , Epinefrina/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno/farmacología , Presión Intraocular , Soluciones Oftálmicas/farmacología , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Malla Trabecular/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Péptido Intestinal Vasoactivo/metabolismo
10.
Neurochem Int ; 158: 105383, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35787395

RESUMEN

VIP binding sites are upregulated in mesial temporal lobe epilepsy (MTLE) patients, also suffering from severe cognitive deficits. Although altered VIP and VIP receptor levels were described in rodent models of epilepsy, the VIP receptor subtype(s) were never identified. We now investigated how VPAC1 and VPAC2 receptor levels change in the Li2+-pilocarpine rat model of MTLE. Cognitive decline and altered synaptic plasticity as estimated from phosphorylation of AMPA GluA1 subunit on Ser831 and Ser845 and AMPA GluA1/GluA2 ratio was also probed. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks showed impaired learning in the radial arm maze (RAM) and presented decreased VPAC1 and increased VPAC2 receptor levels. In addition, SRSs rats showed increased AMPA GluA1 phosphorylation in Ser831 and Ser845, marked decrease in GluA1 levels and a milder decrease in GluA2 levels. Consequently, the GluA1/GluA2 ratio was also decreased in SRSs rats. Altered VIP receptor levels may differentially prevent or contribute to MTLE pathology, since VPAC1 receptors promote the endogenous control of LTP, mediate endogenous VIP neuroprotection against altered synaptic plasticity following epileptiform activity, and mediate anti-inflammatory actions in microglia, while VPAC2 receptors mediate VIP endogenous neuroprotection against neonatal excitotoxicity and prevent reactive astrogliosis. This discovery imposes a different mindset for considering VIP receptors as therapeutic targets in MTLE, allowing a differential targeting of the cellular events contributing to epileptogenesis.


Asunto(s)
Epilepsia del Lóbulo Temporal , Receptores de Péptido Intestinal Vasoactivo , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Pilocarpina/toxicidad , Ratas , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Convulsiones/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
11.
Br J Pharmacol ; 179(3): 435-453, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34612509

RESUMEN

BACKGROUND AND PURPOSE: The pituitary adenylate cyclase-activating peptide (PACAP) family is of clinical interest for the treatment of migraine. These peptides activate three different PACAP-responsive class B G protein-coupled receptors: the PAC1 , VPAC1 and VPAC2 receptors. The PAC1 receptor may be alternatively spliced, generating variants that can differ in their pharmacological or signalling profiles. To inform drug discovery efforts targeting migraine, we need to better understand how the different PACAP-responsive receptors signal and how effectively these responses can be blocked by antagonists. EXPERIMENTAL APPROACH: The signalling profiles of the human PAC1n , PAC1s , VPAC1 and VPAC2 receptors were examined in transfected Cos7 cells for cAMP, IP1 , pAkt, pERK and pCREB. Biased signalling was then quantified. The ability of antagonists to block PACAP-38, PACAP-27 or VIP stimulated cAMP accumulation at PACAP-responsive receptors was also determined. KEY RESULTS: PACAP-responsive receptors exhibited varied pharmacological profiles but activated signalling in a similar manner. The PAC1n and PAC1s receptors displayed distinct pharmacology. At the PAC1s receptor, VIP and PHM were more potent than at the PAC1n receptor. PACAP-responsive receptors displayed agonist-dependent antagonism where PACAP-38 was less effectively antagonised compared to PACAP-27 and VIP. CONCLUSIONS AND IMPLICATIONS: The distinct pharmacological profile displayed by the PAC1s receptor suggests that it can act as a dual receptor for VIP and PACAP. Furthermore, the effectiveness of blocking a signalling pathway can be influenced by which endogenous PACAP family agonist is present. These effects have potential implications for the development and effectiveness of drugs targeting the PACAP system. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Asunto(s)
Trastornos Migrañosos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Descubrimiento de Drogas , Humanos , Trastornos Migrañosos/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , Péptido Intestinal Vasoactivo
12.
Peptides ; 151: 170713, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34929264

RESUMEN

Neuropeptides are bioactive molecules, made up of small chains of amino acids, with many neuromodulatory properties. Several lines of evidence suggest that neuropeptides, mainly expressed in the central nervous system (CNS), play an important role in the onset of Parkinson's Disease (PD) pathology. The wide spread disruption of neuropeptides has been excessively demonstrated to be related to the pathophysiological symptoms in PD where impairment in motor function per example was correlated with neuropeptides dysregulation in the substantia niagra (SN). Moreover, the levels of different neuropeptides have been found modified in the cerebrospinal fluid and blood of PD patients, indicating their potential role in the manifestation of PD symptoms and dysfunctions. In this review, we outlined the neuroprotective effects of neuropeptides on dopaminergic neuronal loss, oxidative stress and neuroinflammation in several models and tissues of PD. Our main focus was to elaborate the role of orexin, pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), opioids, angiotensin, carnosine and many others in the protection and/or involvement in the neurodegeneration of striatal dopaminergic cells. Further studies are required to better assess the mode of action and cellular mechanisms of neuropeptides in order to shift the focus from the in vitro and in vivo testing to applicable clinical testing. This review, allows a support for future use of neuropeptides as therapeutic solution for PA pathophysiology.


Asunto(s)
Enfermedad de Parkinson , Sistema Nervioso Central/metabolismo , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología
13.
Life Sci ; 265: 118792, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220286

RESUMEN

AIMS: In the cyclic rat in estrus, the vasoactive intestinal peptide (VIP) has an impact on ovarian function, which depends on the endocrine status of the animal. In this work, we aimed to clarify the participation of VIP in the pathophysiological condition of polycystic ovary syndrome (PCOS) using a model of PCOS induced by estradiol valerate (EV-PCOS) in rats. MAIN METHODS: In the cyclic rat in estrus and in the EV-PCOS model, we analyzed the acute effects of blocking VIP receptors with the use of an antagonist (Ant-VIP) injected into the left or right ovarian bursa on the steroidogenic response and ovarian catecholamine levels. KEY FINDINGS: In the cyclic animal in estrus, the treatment with Ant-VIP in the left ovarian bursa resulted in a reduction in testosterone serum levels and in ovarian levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), without changes in 4-hydroxy-3-methoxyphenyl (MHPG) and norepinephrine (NE). When the treatment was applied on the right side, only MHPG levels increased. In the EV-PCOS model, the treatment with Ant-VIP in the left ovarian bursa increased testosterone, estradiol, MHPG, and NE levels. When the treatment was performed on the right side, progesterone levels decreased and estradiol increased, without changes in ovarian catecholamines. SIGNIFICANCE: The binding of VIP to its receptors differentially regulates steroidogenesis in the cyclic animal in estrus and in the EV-PCOS model. The blocking of VIP signaling produces changes in ovarian catecholamines.


Asunto(s)
Modelos Animales de Enfermedad , Ovario/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Animales , Catecolaminas/metabolismo , Estradiol/metabolismo , Estradiol/toxicidad , Femenino , Ovario/efectos de los fármacos , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Ratas , Testosterona/metabolismo , Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Péptido Intestinal Vasoactivo/metabolismo
14.
Bull Exp Biol Med ; 169(6): 787-790, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33098516

RESUMEN

We studied the effect of non-selective agonist of VIP receptors of vasoactive intestinal polypeptide in different concentrations on the frequency, force, and duration of isometric contraction of myocardial strips of the right atrium under conditions of spontaneous activity, as well as the force and duration of contractions of the right ventricle in rats. It was found that the agonist produced a positive inotropic and chronotropic effect that depended on its concentration. The maximum effect was observed at vasoactive intestinal peptide concentration of 10-11 M.


Asunto(s)
Contracción Isométrica/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Receptores de Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/farmacología , Animales , Cámaras de Difusión de Cultivos , Relación Dosis-Respuesta a Droga , Expresión Génica , Atrios Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Contracción Isométrica/fisiología , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Ratas , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Técnicas de Cultivo de Tejidos
15.
Nat Commun ; 11(1): 4791, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963229

RESUMEN

The ability to absorb ingested nutrients is an essential function of all metazoans and utilizes a wide array of nutrient transporters found on the absorptive enterocytes of the small intestine. A unique population of patients has previously been identified with severe congenital malabsorptive diarrhea upon ingestion of any enteral nutrition. The intestines of these patients are macroscopically normal, but lack enteroendocrine cells (EECs), suggesting an essential role for this rare population of nutrient-sensing cells in regulating macronutrient absorption. Here, we use human and mouse models of EEC deficiency to identify an unappreciated role for the EEC hormone peptide YY in regulating ion-coupled absorption of glucose and dipeptides. We find that peptide YY is required in the small intestine to maintain normal electrophysiology in the presence of vasoactive intestinal polypeptide, a potent stimulator of ion secretion classically produced by enteric neurons. Administration of peptide YY to EEC-deficient mice restores normal electrophysiology, improves glucose and peptide absorption, diminishes diarrhea and rescues postnatal survival. These data suggest that peptide YY is a key regulator of macronutrient absorption in the small intestine and may be a viable therapeutic option to treat patients with electrolyte imbalance and nutrient malabsorption.


Asunto(s)
Células Enteroendocrinas/metabolismo , Absorción Intestinal/fisiología , Transporte Iónico/fisiología , Nutrientes/metabolismo , Animales , Enterocitos , Glucosa/metabolismo , Células Madre Embrionarias Humanas , Humanos , Intestino Delgado , Intestinos , Ratones , Ratones Endogámicos C57BL , Péptido YY , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Intercambiador 3 de Sodio-Hidrógeno , Agua/metabolismo
16.
Physiol Rep ; 8(3): e14363, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32026594

RESUMEN

Innervation of the intestinal mucosa has gained more attention with demonstrations of tuft and enteroendocrine cell innervation. However, the role(s) these fibers play in maintaining the epithelial and mucus barriers are still poorly understood. This study therefore examines the proximity of mouse ileal goblet cells to neuronal fibers, and the regulation of goblet cell production by vasoactive intestinal peptide (VIP). An organotypic intestinal slice model that maintains the cellular diversity of the intestinal wall ex vivo was used. An ex vivo copper-free click-reaction to label glycosaminoglycans was used to identify goblet cells. Pharmacological treatment of slices was used to assess the influence of VIP receptor antagonism on goblet cell production and neuronal fiber proximity. Goblet cells were counted and shown to have at least one peripherin immunoreactive fiber within 3 µm of the cell, 51% of the time. Treatment with a VIP receptor type I and II antagonist (VPACa) resulted in an increase in the percentage of goblet cells with peripherin fibers. Pharmacological treatments altered goblet cell counts in intestinal crypts and villi, with tetrodotoxin and VPACa substantially decreasing goblet cell counts. When cultured with 5-Ethynyl-2'-deoxyuridine (EdU) as an indicator of cell proliferation, colocalization of labeled goblet cells and EdU in ileal crypts was decreased by 77% when treated with VPACa. This study demonstrates a close relationship of intestinal goblet cells to neuronal fibers. By using organotypic slices from mouse ileum, vasoactive intestinal peptide receptor regulation of gut wall goblet cell production was revealed.


Asunto(s)
Proliferación Celular , Células Caliciformes/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Femenino , Células Caliciformes/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Periferinas/metabolismo , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Tetrodotoxina/farmacología
17.
Reproduction ; 157(5): 475-484, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30817320

RESUMEN

In vitro activation of primordial follicles is becoming more essential in assisted reproductive technologies. Vasoactive intestinal peptide (VIP) is one of the members of the neurotrophin family which has demonstrated to have an impact on follicle development in recent years. This study aims to investigate the effect of VIP on the activation of primordial follicles in neonatal rat in an in vitro culture system and to determine the relevant molecular mechanism of their activation. Ovaries of 4-day-old rats were examined for the expression of VIP receptors and were cultured in mediums containing VIP with or without inhibitors of the ERK-mTOR signalling pathway. They were then collected for histological analysis or measurement of the molecular expression of this pathway. The receptors of VIP were found in granular cells and oocytes of primordial and early-growing follicles in neonatal ovary. The ratio of growing follicle increased in the presence VIP at different concentrations, with the highest level of increase being observed in the 10-7 mol/L VIP-treated group. The ratio of PCNA-positive granular cells was also increased, while that of the apoptotic oocytes were decreased, and protein analysis showed increased phosphorylation of ERK1/2, mTOR and RPS6 in the VIP-treated group. However, the effect of VIP on the activation of primordial follicle became insignificant with the addition of MEK inhibitor (U0126) or mTORC1 inhibitor (rapamycin). This study indicated that VIP could activate neonatal rat primordial follicle through the ERK-mTOR signalling pathway, suggesting a strategy for in vitro primordial follicle recruitment.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Oogénesis/efectos de los fármacos , Oogénesis/fisiología , Folículo Ovárico/fisiología , Ovario/citología , Ovario/efectos de los fármacos , Ovario/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Péptido Intestinal Vasoactivo/genética , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Técnicas de Cultivo de Tejidos , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo
18.
J Mol Neurosci ; 68(3): 427-438, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29982965

RESUMEN

Obesity arises from disrupted energy balance and is caused by chronically higher energy intake compared to expenditure via basal metabolic rate, exercise, and thermogenesis. The brown adipose tissue (BAT), the primary thermogenic organ, has received considerable attention as a potential therapeutic target due to its ability to burn lipids in the production of heat. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been identified as a key regulator of the physiological stress response both centrally and peripherally. While PACAP has been shown to increase thermogenesis by acting at the hypothalamus to increase sympathetic output to BAT, a peripheral role for PACAP-activated thermogenesis has not been studied. We identified PACAP receptor (PAC1, VPAC1/2) expression for the first time in murine BAT and confirmed their expression in white adipose tissues. PAC1 receptor expression was significantly altered in all three adipose tissues studied in response to 3.5-week cold acclimation, with expression patterns differing by depot type. In primary cell culture, VPAC1 was increased in differentiated compared to non-differentiated brown adipocytes, and the same trend was observed for the PACAP-specific receptor PAC1 in gonadal white fat primary cultures. The primary PAC1R mRNA splice variant in interscapular BAT was determined as isoform 2 by RNA-Seq. These results show that PACAP receptors are present in adipose tissues and may have important functional roles in adipocyte differentiation, lipid metabolism, or adipose sensitization to sympathetic signaling in response to thermogenic stimuli.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Respuesta al Choque por Frío , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Empalme del ARN , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Receptores de Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/genética
20.
Cell Death Dis ; 8(6): e2844, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569785

RESUMEN

Cancer stem cells (CSCs) are increasingly considered to be responsible for tumor initiation, metastasis and drug resistance. The drug resistance mechanisms activated in CSCs have not been thoroughly investigated. Although neuropeptides such as vasoactive intestinal peptide (VIP) can promote tumor growth and activate antiapoptotic signaling in differentiated cancer cells, it is not known whether they can activate antiapoptotic mechanisms in CSCs. The objectives of this study are to unravel the cytoprotective effects of neuropeptides and identify antiapoptotic mechanisms activated by neuropeptides in response to anticancer drug treatment in CSCs. We enriched and purified CSCs (CD44+/high/CD24-/low or CD133+ population) from breast and prostate cancer cell lines, and demonstrated their stemness phenotype. Of the several neuropeptides tested, only VIP could protect CSCs from drug-induced apoptosis. A functional correlation was found between drug-induced apoptosis and dephosphorylation of proapoptotic Bcl2 family protein BAD. Similarly, VIP-induced cytoprotection correlated with BAD phosphorylation at Ser112 in CSCs. Using pharmacological inhibitors and dominant-negative proteins, we showed that VIP-induced cytoprotection and BAD phosphorylation are mediated via both Ras/MAPK and PKA pathways in CSCs of prostate cancer LNCaP and C4-2 cells, but only PKA signaling was involved in CSCs of DUVIPR (DU145 prostate cancer cells ectopically expressing VIP receptor) and breast cancer MCF7 cells. As each of these pathways partially control BAD phosphorylation at Ser112, both have to be inhibited to block the cytoprotective effects of VIP. Furthermore, VIP is unable to protect CSCs that express phosphorylation-deficient mutant-BAD, suggesting that BAD phosphorylation is essential. Thus, antiapoptotic signaling by VIP could be one of the drug resistance mechanisms by which CSCs escape from anticancer therapies. Our findings suggest the potential usefulness of VIP receptor inhibition to eliminate CSCs, and that targeting BAD might be an attractive strategy for development of novel therapeutics.


Asunto(s)
Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/efectos de los fármacos , Péptido Intestinal Vasoactivo/farmacología , Proteína Letal Asociada a bcl/genética , Antineoplásicos/farmacología , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Humanos , Masculino , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Niacinamida/análogos & derivados , Niacinamida/antagonistas & inhibidores , Niacinamida/farmacología , Compuestos de Fenilurea/antagonistas & inhibidores , Compuestos de Fenilurea/farmacología , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Péptido Intestinal Vasoactivo/genética , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Transducción de Señal , Sorafenib , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Proteína Letal Asociada a bcl/antagonistas & inhibidores , Proteína Letal Asociada a bcl/metabolismo , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...