Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.195
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 75, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745295

RESUMEN

In Parkinson's disease and other synucleinopathies, fibrillar forms of α-synuclein (aSyn) are hypothesized to structurally convert and pathologize endogenous aSyn, which then propagates through the neural connections, forming Lewy pathologies and ultimately causing neurodegeneration. Inoculation of mouse-derived aSyn preformed fibrils (PFFs) into the unilateral striatum of wild-type mice causes widespread aSyn pathologies in the brain through the neural network. Here, we used the local injection of antisense oligonucleotides (ASOs) against Snca mRNA to confine the area of endogenous aSyn protein reduction and not to affect the PFFs properties in this model. We then varied the timing and location of ASOs injection to examine their impact on the initiation and propagation of aSyn pathologies in the whole brain and the therapeutic effect using abnormally-phosphorylated aSyn (pSyn) as an indicator. By injecting ASOs before or 0-14 days after the PFFs were inoculated into the same site in the left striatum, the reduction in endogenous aSyn in the striatum leads to the prevention and inhibition of the regional spread of pSyn pathologies to the whole brain including the contralateral right hemisphere. ASO post-injection inhibited extension from neuritic pathologies to somatic ones. Moreover, injection of ASOs into the right striatum prevented the remote regional spread of pSyn pathologies from the left striatum where PFFs were inoculated and no ASO treatment was conducted. This indicated that the reduction in endogenous aSyn protein levels at the propagation destination site can attenuate pSyn pathologies, even if those at the propagation initiation site are not inhibited, which is consistent with the original concept of prion-like propagation that endogenous aSyn is indispensable for this regional spread. Our results demonstrate the importance of recruiting endogenous aSyn in this neural network propagation model and indicate a possible potential for ASO treatment in synucleinopathies.


Asunto(s)
Ratones Endogámicos C57BL , Red Nerviosa , Oligonucleótidos Antisentido , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/administración & dosificación , Ratones , Red Nerviosa/metabolismo , Red Nerviosa/efectos de los fármacos , Red Nerviosa/patología , Masculino , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , ARN Mensajero/metabolismo
2.
J Neural Eng ; 21(2)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38621377

RESUMEN

Objective.Dopaminergic treatment is effective for Parkinson's disease (PD). Nevertheless, the conventional treatment assessment mainly focuses on human-administered behavior examination while the underlying functional improvements have not been well explored. This paper aims to investigate brain functional variations of PD patients after dopaminergic therapy.Approach.This paper proposed a dynamic brain network decomposition method and discovered brain hemodynamic sub-networks that well characterized the efficacy of dopaminergic treatment in PD. Firstly, a clinical walking procedure with functional near-infrared spectroscopy was developed, and brain activations during the procedure from fifty PD patients under the OFF and ON states (without and with dopaminergic medication) were captured. Then, dynamic brain networks were constructed with sliding-window analysis of phase lag index and integrated time-varying functional networks across all patients. Afterwards, an aggregated network decomposition algorithm was formulated based on aggregated effectiveness optimization of functional networks in spanning network topology and cross-validation network variations, and utilized to unveil effective brain hemodynamic sub-networks for PD patients. Further, dynamic sub-network features were constructed to characterize the brain flexibility and dynamics according to the temporal switching and activation variations of discovered sub-networks, and their correlations with differential treatment-induced gait alterations were analyzed.Results.The results demonstrated that PD patients exhibited significantly enhanced flexibility after dopaminergic therapy within a sub-network related to the improvement of motor functions. Other sub-networks were significantly correlated with trunk-related axial symptoms and exhibited no significant treatment-induced dynamic interactions.Significance.The proposed method promises a quantified and objective approach for dopaminergic treatment evaluation. Moreover, the findings suggest that the gait of PD patients comprises distinct motor domains, and the corresponding neural controls are selectively responsive to dopaminergic treatment.


Asunto(s)
Encéfalo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/tratamiento farmacológico , Masculino , Femenino , Encéfalo/fisiopatología , Persona de Mediana Edad , Anciano , Hemodinámica/fisiología , Hemodinámica/efectos de los fármacos , Espectroscopía Infrarroja Corta/métodos , Red Nerviosa/fisiopatología , Red Nerviosa/efectos de los fármacos , Dopaminérgicos/administración & dosificación , Caminata/fisiología
3.
Clin Neurophysiol ; 161: 222-230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522268

RESUMEN

OBJECTIVE: We compared the effective networks derived from Single Pulse Electrical Stimulation (SPES) in intracranial electrocorticography (ECoG) of awake epilepsy patients and while under general propofol-anesthesia to investigate the effect of propofol on these brain networks. METHODS: We included nine patients who underwent ECoG for epilepsy surgery evaluation. We performed SPES when the patient was awake (SPES-clinical) and repeated this under propofol-anesthesia during the surgery in which the ECoG grids were removed (SPES-propofol). We detected the cortico-cortical evoked potentials (CCEPs) with an automatic detector. We constructed two effective networks derived from SPES-clinical and SPES-propofol. We compared three network measures (indegree, outdegree and betweenness centrality), the N1-peak-latency and amplitude of CCEPs between the two effective networks. RESULTS: Fewer CCEPs were observed during SPES-propofol (median: 6.0, range: 0-29) compared to SPES-clinical (median: 10.0, range: 0-36). We found a significant correlation for the indegree, outdegree and betweenness centrality between SPES-clinical and SPES-propofol (respectively rs = 0.77, rs = 0.70, rs = 0.55, p < 0.001). The median N1-peak-latency increased from 22.0 ms during SPES-clinical to 26.4 ms during SPES-propofol. CONCLUSIONS: Our findings suggest that the number of effective network connections decreases, but network measures are only marginally affected. SIGNIFICANCE: The primary network topology is preserved under propofol.


Asunto(s)
Anestésicos Intravenosos , Electrocorticografía , Red Nerviosa , Propofol , Humanos , Propofol/farmacología , Propofol/administración & dosificación , Masculino , Femenino , Adulto , Electrocorticografía/métodos , Anestésicos Intravenosos/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Adulto Joven , Persona de Mediana Edad , Epilepsia/fisiopatología , Epilepsia/cirugía , Epilepsia/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Adolescente , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Estimulación Eléctrica
4.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38438258

RESUMEN

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in the basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM→CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over the cortex or hippocampus, suggesting preferential activation of the BLA during high ACh states. These data reveal a SOM→CCK IN circuit in the BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.


Asunto(s)
Acetilcolina , Colecistoquinina , Ratones Endogámicos C57BL , Ritmo Teta , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología , Animales , Masculino , Ratones , Femenino , Acetilcolina/farmacología , Acetilcolina/metabolismo , Colecistoquinina/farmacología , Colecistoquinina/metabolismo , Interneuronas/fisiología , Interneuronas/efectos de los fármacos , Somatostatina/metabolismo , Somatostatina/farmacología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/efectos de los fármacos , Red Nerviosa/fisiología , Red Nerviosa/efectos de los fármacos , Receptor Muscarínico M3/fisiología , Receptor Muscarínico M3/metabolismo , Parvalbúminas/metabolismo
5.
Mol Psychiatry ; 28(4): 1571-1584, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36385168

RESUMEN

Prenatal alcohol exposure is the foremost preventable etiology of intellectual disability and leads to a collection of diagnoses known as Fetal Alcohol Spectrum Disorders (FASD). Alcohol (EtOH) impacts diverse neural cell types and activity, but the precise functional pathophysiological effects on the human fetal cerebral cortex are unclear. Here, we used human cortical organoids to study the effects of EtOH on neurogenesis and validated our findings in primary human fetal neurons. EtOH exposure produced temporally dependent cellular effects on proliferation, cell cycle, and apoptosis. In addition, we identified EtOH-induced alterations in post-translational histone modifications and chromatin accessibility, leading to impairment of cAMP and calcium signaling, glutamatergic synaptic development, and astrocytic function. Proteomic spatial profiling of cortical organoids showed region-specific, EtOH-induced alterations linked to changes in cytoskeleton, gliogenesis, and impaired synaptogenesis. Finally, multi-electrode array electrophysiology recordings confirmed the deleterious impact of EtOH on neural network formation and activity in cortical organoids, which was validated in primary human fetal tissues. Our findings demonstrate progress in defining the human molecular and cellular phenotypic signatures of prenatal alcohol exposure on functional neurodevelopment, increasing our knowledge for potential therapeutic interventions targeting FASD symptoms.


Asunto(s)
Corteza Cerebral , Etanol , Vías Nerviosas , Neurogénesis , Neuronas , Organoides , Femenino , Humanos , Masculino , Embarazo , Astrocitos/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/citología , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Etanol/farmacología , Trastornos del Espectro Alcohólico Fetal/etiología , Trastornos del Espectro Alcohólico Fetal/genética , Feto/citología , Perfilación de la Expresión Génica , Red Nerviosa/efectos de los fármacos , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/patología , Organoides/citología , Organoides/efectos de los fármacos , Organoides/patología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Proteómica , Sinapsis/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos
6.
Anesthesiology ; 136(3): 420-433, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35120195

RESUMEN

BACKGROUND: The wakeful brain can easily access and coordinate a large repertoire of different states-dynamics suggestive of "criticality." Anesthesia causes loss of criticality at the level of electroencephalogram waveforms, but the criticality of brain network connectivity is less well studied. The authors hypothesized that propofol anesthesia is associated with abrupt and divergent changes in brain network connectivity for different frequencies and time scales-characteristic of a phase transition, a signature of loss of criticality. METHODS: As part of a previously reported study, 16 volunteers were given propofol in slowly increasing brain concentrations, and their behavioral responsiveness was assessed. The network dynamics from 31-channel electroencephalogram data were calculated from 1 to 20 Hz using four phase and envelope amplitude-based functional connectivity metrics that covered a wide range of time scales from milliseconds to minutes. The authors calculated network global efficiency, clustering coefficient, and statistical complexity (using the Jensen-Shannon divergence) for each functional connectivity metric and compared their findings with those from an in silico Kuramoto network model. RESULTS: The transition to anesthesia was associated with critical slowing and then abrupt profound decreases in global network efficiency of 2 Hz power envelope metrics (from mean ± SD of 0.64 ± 0.15 to 0.29 ± 0.28 absolute value, P < 0.001, for medium; and from 0.47 ± 0.13 to 0.24 ± 0.21, P < 0.001, for long time scales) but with an increase in global network efficiency for 10 Hz weighted phase lag index (from 0.30 ± 0.20 to 0.72 ± 0.06, P < 0.001). Network complexity decreased for both the 10 Hz hypersynchronous (0.44 ± 0.13 to 0.23 ± 0.08, P < 0.001), and the 2 Hz asynchronous (0.73 ± 0.08 to 0.40 ± 0.13, P < 0.001) network states. These patterns of network coupling were consistent with those of the Kuramoto model of an order-disorder phase transition. CONCLUSIONS: Around loss of behavioral responsiveness, a small increase in propofol concentrations caused a collapse of long time scale power envelope connectivity and an increase in 10 Hz phase-based connectivity-suggestive of a brain network phase transition.


Asunto(s)
Anestésicos Intravenosos/farmacología , Encéfalo/efectos de los fármacos , Electroencefalografía/métodos , Propofol/farmacología , Adulto , Femenino , Humanos , Masculino , Red Nerviosa/efectos de los fármacos , Inconsciencia/inducido químicamente
7.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163810

RESUMEN

Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.


Asunto(s)
Anestésicos Generales/efectos adversos , Red Nerviosa/efectos de los fármacos , Trastornos Neurocognitivos/inducido químicamente , Animales , Niño , Modelos Animales de Enfermedad , Humanos , Trastornos Neurocognitivos/psicología
8.
Neuropharmacology ; 206: 108947, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026286

RESUMEN

Extracting relevant information and transforming it into appropriate behavior, is a fundamental brain function, and requires the coordination between the sensory and cognitive systems, however, the underlying mechanisms of interplay between sensory and cognition systems remain largely unknown. Here, we developed a mouse model for mimicking human auditory mismatch negativity (MMN), a well-characterized translational biomarker for schizophrenia, and an index of early auditory information processing. We found that a subanesthetic dose of ketamine decreased the amplitude of MMN in adult mice. Using pharmacological and chemogenetic approaches, we identified an auditory cortex-entorhinal cortex-hippocampus neural circuit loop that is required for the generation of MMN. In addition, we found that inhibition of dCA1→MEC circuit impaired the auditory related fear discrimination. Moreover, we found that ketamine induced MMN deficiency by inhibition of long-range GABAergic projection from the CA1 region of the dorsal hippocampus to the medial entorhinal cortex. These results provided circuit insights for ketamine effects and early auditory information processing. As the entorhinal cortex is the interface between the neocortex and hippocampus, and the hippocampus is critical for the formation, consolidation, and retrieval of episodic memories and other cognition, our results provide a neural mechanism for the interplay between the sensory and cognition systems.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Corteza Entorrinal/fisiología , Potenciales Evocados Auditivos/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/fisiología , Ketamina/farmacología , Red Nerviosa/fisiología , Animales , Corteza Auditiva/efectos de los fármacos , Percepción Auditiva/efectos de los fármacos , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Corteza Entorrinal/efectos de los fármacos , Potenciales Evocados Auditivos/efectos de los fármacos , Miedo/fisiología , Hipocampo/efectos de los fármacos , Ratones , Red Nerviosa/efectos de los fármacos
9.
J Neurophysiol ; 127(2): 586-595, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080449

RESUMEN

General anesthesia induces a profound but reversible unconscious state, which is accompanied by changes in various neurotransmitters in the cortex. Unlike the "brain silencing" effect of γ-aminobutyric acid (GABA) receptor potentiator anesthesia, ketamine anesthesia leads the brain to a paradoxical active state with higher cortical activity, which is manifested as dissociative anesthesia. However, how the overall neurotransmitter network evolves across conscious states after ketamine administration remains unclear. Using in vivo microdialysis, high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, and electroencephalogram (EEG) recording technique, we continuously measured the concentrations of six neurotransmitters and the EEG signals during anesthesia with esketamine, an S-enantiomer of ketamine racemate. We found that there was an increase in the release of five cortical neurotransmitters after the administration of esketamine. The correlation of cortical neurotransmitters was dynamically simplified along with behavioral changes until full recovery after anesthesia. The esketamine-increased gamma oscillation power was positively correlated only with the concentration of 5-hydroxytryptamine (5-HT) in the medial prefrontal cortex. This study suggests that the transformation of the neurotransmitter network rather than the concentrations of neurotransmitters could be more indicative of the consciousness shift during esketamine anesthesia.NEW & NOTEWORTHY In this study, we found that esketamine significantly increased the cortical concentration of multiple neurotransmitters in mice. However, esketamine dynamically simplified the overall network of cortical neurotransmitters at different behavioral states during the perianesthesia period. The concentration of 5-HT in the medial prefrontal cortex (mPFC) was highly correlated with the esketamine-increased gamma oscillation. These findings suggested that the transformation of the neurotransmitter network rather than the concentrations of neurotransmitters could be more indicative of the consciousness shift during esketamine anesthesia.


Asunto(s)
Anestésicos/farmacología , Ritmo Gamma/efectos de los fármacos , Ketamina/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Serotonina/metabolismo , Anestesia , Animales , Ratones , Corteza Prefrontal/metabolismo
10.
Sci Rep ; 12(1): 114, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997092

RESUMEN

Microglia are subject to change in tandem with the endogenously generated biological oscillations known as our circadian rhythm. Studies have shown microglia harbor an intrinsic molecular clock which regulates diurnal changes in morphology and influences inflammatory responses. In the adult brain, microglia play an important role in the regulation of condensed extracellular matrix structures called perineuronal nets (PNNs), and it has been suggested that PNNs are also regulated in a circadian and diurnal manner. We sought to determine whether microglia mediate the diurnal regulation of PNNs via CSF1R inhibitor dependent microglial depletion in C57BL/6J mice, and how the absence of microglia might affect cortical diurnal gene expression rhythms. While we observe diurnal differences in microglial morphology, where microglia are most ramified at the onset of the dark phase, we do not find diurnal differences in PNN intensity. However, PNN intensity increases across many brain regions in the absence of microglia, supporting a role for microglia in the regulation of PNNs. Here, we also show that cortical diurnal gene expression rhythms are intact, with no cycling gene changes without microglia. These findings demonstrate a role for microglia in the maintenance of PNNs, but not in the maintenance of diurnal rhythms.


Asunto(s)
Ondas Encefálicas , Ritmo Circadiano , Microglía/patología , Red Nerviosa/patología , Corteza Somatosensorial/patología , Animales , Ondas Encefálicas/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Compuestos Orgánicos/farmacología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/fisiopatología , Factores de Tiempo
11.
Neuroimage ; 249: 118887, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34999203

RESUMEN

An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.


Asunto(s)
Aprendizaje por Asociación , Conectoma , Corteza Insular , Red Nerviosa , Plasticidad Neuronal , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Adulto , Aprendizaje por Asociación/efectos de los fármacos , Aprendizaje por Asociación/fisiología , Citalopram/farmacología , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/fisiología , Humanos , Corteza Insular/diagnóstico por imagen , Corteza Insular/efectos de los fármacos , Corteza Insular/fisiología , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/efectos de los fármacos , Lóbulo Parietal/fisiología , Descanso , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Adulto Joven
12.
Schizophr Bull ; 48(1): 231-240, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34313782

RESUMEN

Cortical thickness reductions are evident in schizophrenia (SZ). Associations between antipsychotic medications (APMs) and cortical morphometry have been explored in SZ patients. This raises the question of whether the reconfiguration of morphological architecture by APM plays potential compensatory roles for abnormalities in the cerebral cortex. Structural magnetic resonance imaging was obtained from 127 medication-naive first-episode SZ patients and 133 matched healthy controls. Patients received 12 weeks of APM and were categorized as responders (n = 75) or nonresponders (NRs, n = 52) at follow-up. Using surface-based morphometry and structural covariance (SC) analysis, this study investigated the short-term effects of antipsychotics on cortical thickness and cortico-cortical covariance. Global efficiency was computed to characterize network integration of the large-scale structural connectome. The relationship between covariance and cortical thinning was examined by SC analysis among the top-n regions with thickness reduction. Widespread cortical thickness reductions were observed in pre-APM patients. Post-APM patients showed more reductions in cortical thickness, even in the frontotemporal regions without baseline reductions. Covariance analysis revealed strong cortico-cortical covariance and higher network integration in responders than in NRs. For the NRs, some of the prefrontal and temporal nodes were not covariant between the top-n regions with cortical thickness reduction. Antipsychotic effects are not restricted to a single brain region but rather exhibit a network-level covariance pattern. Neuroimaging connectomics highlights the positive effects of antipsychotics on the reconfiguration of brain architecture, suggesting that abnormalities in regional morphology may be compensated by increasing interregional covariance when symptoms are controlled by antipsychotics.


Asunto(s)
Antipsicóticos/farmacología , Corteza Cerebral , Red Nerviosa , Esquizofrenia , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/efectos de los fármacos , Red Nerviosa/patología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología
13.
Mitochondrion ; 62: 181-186, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915201

RESUMEN

In this retrospective, interventional, longitudinal small case series, we looked at the visual effects of pharmacologic intervention with 4-aminopyridine (4-AP) in chronic Leber's Hereditary Optic Neuropathy (LHON) patients who are non-responders to idebenone. We illustrate, as examples, the visual progression of three LHON patients with 4-AP as add-on therapy to idebenone. Each patient had a different primary LHON mutation and was treated with idebenone within one year of onset. No response to idebenone at 300 mg orally three times a day ranged from less than one year to 2.5 years, and the addition of 4-AP at 10 mg orally two times a day ranged from 24 to 29 months. Outcome measures included best-corrected distance visual acuity, color vision, automated perimetry, the average retinal nerve fiber layer (RNFL) thickness, and the full-field photopic negative response (PhNR) amplitude. The 19-year-old man with the LHON mutation 11778A > G had no response to the addition of 4-AP to idebenone. The 27-year-old man with the LHON mutation 3460A > G experienced a significant response to 4-AP. Finally, the 40-year-old man with the LHON mutation 14484 T > C had a milder response. Although this case series was too small to demonstrate the efficacy of idebenone with add-on 4AP, it allowed us to consider a new hypothesis that neuronal activity generated from 4-AP can add more potential for visual recovery in LHON patients.


Asunto(s)
4-Aminopiridina/uso terapéutico , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Ubiquinona/análogos & derivados , 4-Aminopiridina/administración & dosificación , Adulto , ADN Mitocondrial/genética , Quimioterapia Combinada , Humanos , Masculino , Estudios Retrospectivos , Ubiquinona/administración & dosificación , Ubiquinona/uso terapéutico , Adulto Joven
14.
Behav Brain Res ; 419: 113685, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34838931

RESUMEN

Consciousness is supported by rich neuronal dynamics to orchestrate behaviors and conscious processing can be disrupted by general anesthetics. Previous studies suggested that dynamic reconfiguration of large-scale functional network is critical for learning and higher-order cognitive function. During altered states of consciousness, how brain functional networks are dynamically changed and reconfigured at the whole-brain level is still unclear. To fill this gap, using multilayer network approach and functional magnetic resonance imaging (fMRI) data of 21 healthy subjects, we investigated the dynamic network reconfiguration in three different states of consciousness: wakefulness, dexmedetomidine-induced sedation, and recovery. Applying time-varying community detection algorithm, we constructed multilayer modularity networks to track and quantify dynamic interactions among brain areas that span time and space. We compared four high-level network features (i.e., switching, promiscuity, integration, and recruitment) derived from multilayer modularity across the three conditions. We found that sedation state is primarily characterized by increased switching rates as well as decreased integration, representing a whole-brain pattern with higher modular dynamics and more fragmented communication; such alteration can be mostly reversed after the recovery of consciousness. Thus, our work can provide additional insights to understand the modular network reconfiguration across different states of consciousness and may provide some clinical implications for disorders of consciousness.


Asunto(s)
Encéfalo/fisiología , Conectoma , Estado de Conciencia/fisiología , Dexmedetomidina/farmacología , Hipnóticos y Sedantes/farmacología , Red Nerviosa/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Dexmedetomidina/administración & dosificación , Humanos , Hipnóticos y Sedantes/administración & dosificación , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/efectos de los fármacos , Adulto Joven
15.
Neuropharmacology ; 203: 108874, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748860

RESUMEN

RATIONALE: The nucleus accumbens (NAc) is important for regulating a number of behaviors, including alcohol and substance use. We previously found that chemogenetically manipulating neuronal activity in the NAc core regulates binge-like drinking in mice. The central amygdala (CeA) is also an important regulator of alcohol drinking, and projects to the NAc core. We tested whether neuronal projections from the CeA to the NAc core, or neuropeptides released by the CeA in the NAc core, could regulate binge drinking. METHODS: For experiment 1, mice were administered AAV2 Cre-GFP into the NAc core and a Cre-inducible DREADD [AAV2 DIO- hM3Dq, -hM4Di, or -mCherry control] into the CeA. We tested the effects of altering CeA to NAc core activity on binge-like ethanol intake (via "Drinking in the Dark", DID). For experiment 2, we bilaterally microinfused corticotropin releasing factor (CRF), neuropeptide Y (NPY), or somatostatin (SST) into the NAc core prior to DID. For experiment 3, we tested whether intra-NAc CRF antagonism prevented reductions in drinking induced by CNO/hM3Dq stimulation of CeA->NAc projections. RESULTS: Chemogenetically increasing activity in neurons projecting from the CeA to NAc core decreased binge-like ethanol drinking (p < 0.01). Intra-NAc core CRF mimicked chemogenetic stimulation of this pathway (p < 0.05). Binge-like drinking was unaffected by the doses of NPY and SST tested. Lastly, we found that intra-NAc CRF antagonism prevented reductions in drinking induced by chemogenetic stimulation of CeA->NAc projections. These findings demonstrate that neurons projecting from the CeA to NAc core that release CRF are capable of regulating binge-like drinking in mice.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Red Nerviosa/metabolismo , Núcleo Accumbens/metabolismo , Animales , Núcleo Amigdalino Central/efectos de los fármacos , Hormona Liberadora de Corticotropina/administración & dosificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microinyecciones/métodos , Red Nerviosa/efectos de los fármacos , Neuropéptido Y/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Piperazinas/administración & dosificación
16.
Nat Commun ; 12(1): 7026, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857767

RESUMEN

Βeta oscillatory activity (human: 13-35 Hz; primate: 8-24 Hz) is pervasive within the cortex and basal ganglia. Studies in Parkinson's disease patients and animal models suggest that beta-power increases with dopamine depletion. However, the exact relationship between oscillatory power, frequency and dopamine tone remains unclear. We recorded neural activity in the cortex and basal ganglia of healthy non-human primates while acutely and chronically up- and down-modulating dopamine levels. We assessed changes in beta oscillations in patients with Parkinson's following acute and chronic changes in dopamine tone. Here we show beta oscillation frequency is strongly coupled with dopamine tone in both monkeys and humans. Power, coherence between single-units and local field potentials (LFP), spike-LFP phase-locking, and phase-amplitude coupling are not systematically regulated by dopamine levels. These results demonstrate that beta frequency is a key property of pathological oscillations in cortical and basal ganglia networks.


Asunto(s)
Potenciales de Acción/fisiología , Ganglios Basales/metabolismo , Ritmo beta/fisiología , Corteza Cerebral/metabolismo , Dopamina/farmacología , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/efectos de los fármacos , Ganglios Basales/fisiopatología , Ritmo beta/efectos de los fármacos , Carbidopa/farmacología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Chlorocebus aethiops , Dopamina/metabolismo , Electrodos Implantados , Tecnología de Seguimiento Ocular , Femenino , Humanos , Levodopa/farmacología , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Compuestos Orgánicos/farmacología , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/fisiopatología , Pupila/efectos de los fármacos , Pupila/fisiología , Técnicas Estereotáxicas
17.
Neural Plast ; 2021: 8774663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659399

RESUMEN

Hippocampal cell death and cognitive dysfunction are common following global cerebral ischemia across all ages, including children. Most research has focused on preventing neuronal death. Restoration of neuronal function after cell death is an alternative approach (neurorestoration). We previously identified transient receptor potential M2 (TRPM2) ion channels as a potential target for acute neuroprotection and delayed neurorestoration in an adult CA/CPR mouse model. Cardiac arrest/cardiopulmonary resuscitation (CA/CPR) in juvenile (p20-25) mice was used to investigate the role of ion TRPM2 channels in neuroprotection and ischemia-induced synaptic dysfunction in the developing brain. Our novel TRPM2 inhibitor, tatM2NX, did not confer protection against CA1 pyramidal cell death but attenuated synaptic plasticity (long-term plasticity (LTP)) deficits in both sexes. Further, in vivo administration of tatM2NX two weeks after CA/CPR reduced LTP impairments and restored memory function. These data provide evidence that pharmacological synaptic restoration of the surviving hippocampal network can occur independent of neuroprotection via inhibition of TRPM2 channels, providing a novel strategy to improve cognitive recovery in children following cerebral ischemia. Importantly, these data underscore the importance of age-appropriate models in disease research.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/uso terapéutico , Recuperación de la Función/fisiología , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/fisiología , Factores de Edad , Animales , Isquemia Encefálica/fisiopatología , Reanimación Cardiopulmonar/métodos , Femenino , Paro Cardíaco/tratamiento farmacológico , Paro Cardíaco/fisiopatología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Técnicas de Cultivo de Órganos , Recuperación de la Función/efectos de los fármacos
18.
J Neurosci ; 41(48): 9919-9931, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34697095

RESUMEN

Death from opioid overdose is typically caused by opioid-induced respiratory depression (OIRD). A particularly dangerous characteristic of OIRD is its apparent unpredictability. The respiratory consequences of opioids can be surprisingly inconsistent, even within the same individual. Despite significant clinical implications, most studies have focused on average dose-r esponses rather than individual variation, and there remains little insight into the etiology of this apparent unpredictability. The preBötzinger complex (preBötC) in the ventral medulla is an important site for generating the respiratory rhythm and OIRD. Here, using male and female C57-Bl6 mice in vitro, we demonstrate that the preBötC can assume different network states depending on the excitability of the preBötC and the intrinsic membrane properties of preBötC neurons. These network states predict the functional consequences of opioids in the preBötC, and depending on network state, respiratory rhythmogenesis can be either stabilized or suppressed by opioids. We hypothesize that the dynamic nature of preBötC rhythmogenic properties, required to endow breathing with remarkable flexibility, also plays a key role in the dangerous unpredictability of OIRD.SIGNIFICANCE STATEMENT Opioids can cause unpredictable, life-threatening suppression of breathing. This apparent unpredictability makes clinical management of opioids difficult while also making it challenging to define the underlying mechanisms of OIRD. Here, we find in brainstem slices that the preBötC, an opioid-sensitive subregion of the brainstem, has an optimal configuration of cellular and network properties that results in a maximally stable breathing rhythm. These properties are dynamic, and the state of each individual preBötC network relative to the optimal configuration of the network predicts how vulnerable rhythmogenesis is to the effects of opioids. These insights establish a framework for understanding how endogenous and exogenous modulation of the rhythmogenic state of the preBötC can increase or decrease the risk of OIRD.


Asunto(s)
Analgésicos Opioides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Centro Respiratorio/efectos de los fármacos , Centro Respiratorio/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Cultivo de Órganos
19.
Neuropharmacology ; 198: 108780, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34480911

RESUMEN

Acute ethanol (EtOH) intoxication results in several maladaptive behaviors that may be attributable, in part, to the effects of EtOH on neural activity in medial prefrontal cortex (mPFC). The acute effects of EtOH on mPFC function have been largely described as inhibitory. However, translating these observations on function into a mechanism capable of delineating acute EtOH's effects on behavior has proven difficult. This review highlights the role of acute EtOH on electrophysiological measurements of mPFC function and proposes that interpreting these changes through the lens of dynamical systems theory is critical to understand the mechanisms that mediate the effects of EtOH intoxication on behavior. Specifically, the present review posits that the effects of EtOH on mPFC N-methyl-d-aspartate (NMDA) receptors are critical for the expression of impaired behavior following EtOH consumption. This hypothesis is based on the observation that recurrent activity in cortical networks is supported by NMDA receptors, and, when disrupted, may lead to impairments in cognitive function. To evaluate this hypothesis, we discuss the representation of mPFC neural activity in low-dimensional, dynamic state spaces. This approach has proven useful for identifying the underlying computations necessary for the production of behavior. Ultimately, we hypothesize that EtOH-related alterations to NMDA receptor function produces alterations that can be effectively conceptualized as impairments in attractor dynamics and provides insight into how acute EtOH disrupts forms of cognition that rely on mPFC function. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Corteza Prefrontal/efectos de los fármacos , Consumo de Bebidas Alcohólicas , Intoxicación Alcohólica/psicología , Alcoholismo , Animales , Humanos , Red Nerviosa/efectos de los fármacos
20.
Neural Plast ; 2021: 9954547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512748

RESUMEN

Background: Previous studies have revealed the abnormalities in homotopic connectivity in schizophrenia. However, the relationship of these deficits to antipsychotic treatment in schizophrenia remains unclear. This study explored the effects of antipsychotic therapy on brain homotopic connectivity and whether the homotopic connectivity of these regions might predict individual treatment response in schizophrenic patients. Methods: A total of 21 schizophrenic patients and 20 healthy controls were scanned by the resting-state functional magnetic resonance imaging. The patients received olanzapine treatment and were scanned at two time points. Voxel-mirrored homotopic connectivity (VMHC) and pattern classification techniques were applied to analyze the imaging data. Results: Schizophrenic patients presented significantly decreased VMHC in the temporal and inferior frontal gyri, medial prefrontal cortex (MPFC), and motor and low-level sensory processing regions (including the fusiform gyrus and cerebellum lobule VI) relative to healthy controls. The VMHC in the superior/middle MPFC was significantly increased in the patients after eight weeks of treatment. Support vector regression (SVR) analyses revealed that VMHC in the superior/middle MPFC at baseline can predict the symptomatic improvement of the positive and negative syndrome scale after eight weeks of treatment. Conclusions: This study demonstrated that olanzapine treatment may normalize decreased homotopic connectivity in the superior/middle MPFC in schizophrenic patients. The VMHC in the superior/middle MPFC may predict individual response for antipsychotic therapy. The findings of this study conduce to the comprehension of the therapy effects of antipsychotic medications on homotopic connectivity in schizophrenia.


Asunto(s)
Antipsicóticos/uso terapéutico , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Olanzapina/uso terapéutico , Corteza Prefrontal/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Adolescente , Adulto , Antipsicóticos/farmacología , Femenino , Humanos , Masculino , Red Nerviosa/efectos de los fármacos , Olanzapina/farmacología , Valor Predictivo de las Pruebas , Corteza Prefrontal/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...