Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.390
Filtrar
1.
Exp Physiol ; 109(4): 576-587, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38356241

RESUMEN

Spasticity attributable to exaggerated stretch reflex pathways, particularly affecting the ankle plantar flexors, often impairs overground walking in persons with incomplete spinal cord injury. Compelling evidence from rodent models underscores how exposure to acute intermittent hypoxia (AIH) can provide a unique medium to induce spinal plasticity in key inhibitory pathways mediating stretch reflex excitability and potentially affect spasticity. In this study, we quantify the effects of a single exposure to AIH on the stretch reflex in able-bodied individuals. We hypothesized that a single sequence of AIH will increase the stretch reflex excitability of the soleus muscle during ramp-and-hold angular perturbations applied to the ankle joint while participants perform passive and volitionally matched contractions. Our results revealed that a single AIH exposure did not significantly change the stretch reflex excitability during both passive and active matching conditions. Furthermore, we found that able-bodied individuals increased their stretch reflex response from passive to active matching conditions after both sham and AIH exposures. Together, these findings suggest that a single AIH exposure might not engage inhibitory pathways sufficiently to alter stretch reflex responses in able-bodied persons. However, the generalizability of our present findings requires further examination during repetitive exposures to AIH along with potential reflex modulation during functional movements, such as overground walking.


Asunto(s)
Músculo Esquelético , Reflejo de Estiramiento , Humanos , Reflejo de Estiramiento/fisiología , Músculo Esquelético/fisiología , Tobillo , Articulación del Tobillo , Hipoxia , Electromiografía
2.
Artículo en Inglés | MEDLINE | ID: mdl-38083678

RESUMEN

Spasticity is characterized by a velocity-dependent increase in the tonic stretch reflex. Evidence suggests that spasticity originates from hyperactivity in the descending tract or reflex loop. To pinpoint the source of hyperactivity, however, is difficult due to lack of human data in-vivo. Thus, we implemented a neuromorphic model to revive the neurodynamics with spiking neuronal activity. Two types of input were modeled: (1) the additive condition (ADD) to apply tonic synaptic inputs directly into the reflex loop; (2) the multiplicative (MUL) condition to adjust the loop gains within the reflex loop. Results show that both conditions produced antagonist EMG responses resembling patient data. The timing of spasticity is more sensitive to the ADD condition, whereas the amplitude of spastic EMG is more sensitive to the MUL condition. In conclusion, our model shows that both additive and multiplicative hyperactivities suffice to elicit velocity-dependent spastic electromyographic signals (EMG), but with different sensitivities. This simulation study suggests that spasticity caused by different origins may be discernable by the progression of severity, which may help individualized goalsetting and parameter-selection in rehabilitation.Clinical Relevance-Potential application of neuromorphic modeling on spasticity includes selection of parameters for therapeutic plans, such as movement range, repetition, and load.


Asunto(s)
Neuronas Motoras , Espasticidad Muscular , Humanos , Neuronas Motoras/fisiología , Movimiento/fisiología , Reflejo de Estiramiento/fisiología
3.
PLoS One ; 18(10): e0292807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824570

RESUMEN

The dynamic nature of movement and muscle activation emphasizes the importance of a sound experimental design. To ensure that an experiment determines what we intend, the design must be carefully evaluated. Before analyzing data, it is imperative to limit the number of outliers, biases, and skewness. In the present study, a simple center-out experiment was performed by 16 healthy volunteers. The experiment included three load conditions, two preparatory delays, two perturbations, and four targets placed along a diagonal path on a 2D plane. While the participants performed the tasks, the activity of seven arm muscles were monitored using surface electromyography (EMG). Principal component analysis (PCA) was used to evaluate the study design, identify muscle synergies, and assess the effects of individual quirks. With PCA, we can identify the trials that trigger stretch reflexes and pinpoint muscle synergies. The posterior deltoid, triceps long head, and brachioradialis were engaged when targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. Similarly, the pectoralis and anterior deltoid were engaged when the targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. The stretch reflexes were not triggered when the perturbation brought the hand in the direction of, or into the target, except if the muscle was pre-loaded. The use of PCA was also proven valuable when evaluating participant performance. While individual quirks are to be expected, failure to perform trials as expected can adversely affect the study results.


Asunto(s)
Músculo Esquelético , Reflejo de Estiramiento , Humanos , Reflejo de Estiramiento/fisiología , Análisis de Componente Principal , Músculo Esquelético/fisiología , Electromiografía/métodos , Mano , Reflejo
4.
Eur J Neurosci ; 58(9): 3981-4001, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37727025

RESUMEN

Most individuals experience their dominant arm as being more dexterous than the non-dominant arm, but the neural mechanisms underlying this asymmetry in motor behaviour are unclear. Using a delayed-reach task, we have recently demonstrated strong goal-directed tuning of stretch reflex gains in the dominant upper limb of human participants. Here, we used an equivalent experimental paradigm to address the neural mechanisms that underlie the preparation for reaching movements with the non-dominant upper limb. There were consistent effects of load, preparatory delay duration and target direction on the long latency stretch reflex. However, by comparing stretch reflex responses in the non-dominant arm with those previously documented in the dominant arm, we demonstrate that goal-directed tuning of short and long latency stretch reflexes is markedly weaker in the non-dominant limb. The results indicate that the motor performance asymmetries across the two upper limbs are partly due to the more sophisticated control of reflexive stiffness in the dominant limb, likely facilitated by the superior goal-directed control of muscle spindle receptors. Our findings therefore suggest that fusimotor control may play a role in determining performance of complex motor behaviours and support existing proposals that the dominant arm is better supplied than the non-dominant arm for executing more complex tasks, such as trajectory control.


Asunto(s)
Objetivos , Reflejo de Estiramiento , Humanos , Reflejo de Estiramiento/fisiología , Movimiento/fisiología , Extremidad Superior , Músculo Esquelético/fisiología , Electromiografía , Reflejo/fisiología
5.
J Neurophysiol ; 130(3): 640-651, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584102

RESUMEN

Decisions for action are accompanied by a continual processing of sensory information, sometimes resulting in a revision of the initial choice, called a change of mind (CoM). Although the motor system is tuned during the formation of a reach decision, it is unclear whether its preparatory state differs between CoM and non-CoM decisions. To test this, participants (n = 14) viewed a random-dot motion (RDM) stimulus of various coherence levels for a random viewing duration. At the onset of a mechanical perturbation that rapidly stretched the pectoralis muscle, they indicated the perceived motion direction by making a reaching movement to one of two targets. Using electromyography (EMG), we quantified the reflex gains of the pectoralis and posterior deltoid muscles. Results show that reflex gains scaled with both the coherence level and the viewing duration of the stimulus. We fit a drift diffusion model (DDM) to the behavioral choices. The decision variable (DV), derived from the DDM, correlated well with the measured reflex gain at the single-trial level. However, when matched on DV magnitude, reflex gains were significantly lower in CoM than non-CoM trials. We conclude that the internal state of the motor system, as measured by the spinal reflexes, reflects the continual deliberation on sensory evidence for action selection, including the postdecisional evidence that can lead to a change of mind.NEW & NOTEWORTHY Using behavioral findings, EMG, and computational modeling, we show that not only the perceptual decision outcome but also the accumulating evidence for that outcome is continuously sent to the relevant muscles. Moreover, we show that an upcoming change of mind can be detected in the motor periphery, suggesting that a correlate of the internal decision making process is being sent along.


Asunto(s)
Reflejo de Estiramiento , Reflejo , Humanos , Reflejo de Estiramiento/fisiología , Reflejo/fisiología , Músculos/fisiología , Electromiografía , Movimiento
6.
Artículo en Inglés | MEDLINE | ID: mdl-37285243

RESUMEN

Stretch reflexes are crucial for performing accurate movements and providing rapid corrections for unpredictable perturbations. Stretch reflexes are modulated by supraspinal structures via corticofugal pathways. Neural activity in these structures is difficult to observe directly, but the characterization of reflex excitability during volitional movement can be used to study how these structures modulate reflexes and how neurological injuries impact this control, such as in spasticity after stroke. We have developed a novel protocol to quantify stretch reflex excitability during ballistic reaching. This novel method was implemented using a custom haptic device (NACT-3D) capable of applying high-velocity (270 °/s) joint perturbations in the plane of the arm while participants performed 3D reaching tasks in a large workspace. We assessed the protocol on four participants with chronic hemiparetic stroke and two control participants. Participants reached ballistically from a near to a far target, with elbow extension perturbations applied in random catch trials. Perturbations were applied before movement, during the early phase of movement, or near peak movement velocity. Preliminary results show that stretch reflexes were elicited in the stroke group in the biceps muscle during reaching, as measured by electromyographic (EMG) activity both before (pre-motion phase) and during (early motion phase) movement. Reflexive EMG was also seen in the anterior deltoid and pectoralis major in the pre-motion phase. In the control group, no reflexive EMG was seen, as expected. This newly developed methodology allows the study of stretch reflex modulation in new ways by combining multijoint movements with haptic environments and high-velocity perturbations.


Asunto(s)
Reflejo de Estiramiento , Accidente Cerebrovascular , Humanos , Reflejo de Estiramiento/fisiología , Electromiografía/métodos , Músculo Esquelético/fisiología , Brazo/fisiología , Reflejo
7.
Brain ; 146(9): 3705-3718, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37018058

RESUMEN

Although rigidity is a cardinal motor sign in patients with Parkinson's disease (PD), the instrumental measurement of this clinical phenomenon is largely lacking, and its pathophysiological underpinning remains still unclear. Further advances in the field would require innovative methodological approaches able to measure parkinsonian rigidity objectively, discriminate the different biomechanical sources of muscle tone (neural or visco-elastic components), and finally clarify the contribution to 'objective rigidity' exerted by neurophysiological responses, which have previously been associated with this clinical sign (i.e. the long-latency stretch-induced reflex). Twenty patients with PD (67.3 ± 6.9 years) and 25 age- and sex-matched controls (66.9 ± 7.4 years) were recruited. Rigidity was measured clinically and through a robotic device. Participants underwent robot-assisted wrist extensions at seven different angular velocities randomly applied, when ON therapy. For each value of angular velocity, several biomechanical (i.e. elastic, viscous and neural components) and neurophysiological measures (i.e. short and long-latency reflex and shortening reaction) were synchronously assessed and correlated with the clinical score of rigidity (i.e. Unified Parkinson's Disease Rating Scale-part III, subitems for the upper limb). The biomechanical investigation allowed us to measure 'objective rigidity' in PD and estimate the neuronal source of this phenomenon. In patients, 'objective rigidity' progressively increased along with the rise of angular velocities during robot-assisted wrist extensions. The neurophysiological examination disclosed increased long-latency reflexes, but not short-latency reflexes nor shortening reaction, in PD compared with control subjects. Long-latency reflexes progressively increased according to angular velocities only in patients with PD. Lastly, specific biomechanical and neurophysiological abnormalities correlated with the clinical score of rigidity. 'Objective rigidity' in PD correlates with velocity-dependent abnormal neuronal activity. The observations overall (i.e. the velocity-dependent feature of biomechanical and neurophysiological measures of objective rigidity) would point to a putative subcortical network responsible for 'objective rigidity' in PD, which requires further investigation.


Asunto(s)
Enfermedad de Parkinson , Humanos , Rigidez Muscular/etiología , Rigidez Muscular/diagnóstico , Rigidez Muscular/tratamiento farmacológico , Reflejo de Estiramiento/fisiología , Reflejo Anormal , Electromiografía
8.
J Neurophysiol ; 129(4): 914-926, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947887

RESUMEN

Muscle stiffness is altered following postmastectomy breast reconstruction and breast cancer treatment. The exact mechanisms underlying these alterations are unknown; however, muscle stretch reflexes may play a role. This work examined short- (SLR) and long-latency (LLR) shoulder muscle stretch reflexes in breast cancer survivors. Forty-nine patients who had undergone postmastectomy breast reconstruction, 17 who had undergone chemoradiation, and 18 healthy, age-matched controls were enrolled. Muscle activity was recorded from the clavicular and sternocostal regions of the pectoralis major and anterior, middle, and posterior deltoids during vertical ab/adduction or horizontal flex/extension perturbations while participants maintained minimal torques. SLR and LLR were quantified for each muscle. Our major finding was that following postmastectomy breast reconstruction, SLR and LLR are impaired in the clavicular region of the pectoralis major. Individuals who had chemoradiation had impaired stretch reflexes in the clavicular and sternocostal region of the pectoralis major, anterior, middle, and posterior deltoid. These findings indicate that breast cancer treatments alter the regulation of shoulder muscle stretch reflexes and may be associated with surgical or nonsurgical damage to the pectoral fascia, muscle spindles, and/or sensory Ia afferents.NEW & NOTEWORTHY Shoulder muscle stretch reflexes may be impacted following postmastectomy breast reconstruction and chemoradiation. Here, we examined short- and long-latency shoulder muscle stretch reflexes in two experiments following common breast reconstruction procedures and chemoradiation. We show impairments in pectoralis major stretch reflexes following postmastectomy breast reconstruction and pectoralis major and deltoid muscle stretch reflexes following chemoradiation. These findings indicate that breast cancer treatments alter the regulation of shoulder muscle stretch reflexes.


Asunto(s)
Neoplasias de la Mama , Mamoplastia , Humanos , Femenino , Hombro/fisiología , Neoplasias de la Mama/cirugía , Mastectomía , Músculo Esquelético/fisiología , Reflejo de Estiramiento/fisiología
9.
eNeuro ; 10(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36781230

RESUMEN

Voluntary movements are prepared before they are executed. Preparatory activity has been observed across the CNS and recently documented in first-order neurons of the human PNS (i.e., in muscle spindles). Changes seen in sensory organs suggest that independent modulation of stretch reflex gains may represent an important component of movement preparation. The aim of the current study was to further investigate the preparatory modulation of short-latency stretch reflex responses (SLRs) and long-latency stretch reflex responses (LLRs) of the dominant upper limb of human subjects. Specifically, we investigated how different target parameters (target distance and direction) affect the preparatory tuning of stretch reflex gains in the context of goal-directed reaching, and whether any such tuning depends on preparation duration and the direction of background loads. We found that target distance produced only small variations in reflex gains. In contrast, both SLR and LLR gains were strongly modulated as a function of target direction, in a manner that facilitated the upcoming voluntary movement. This goal-directed tuning of SLR and LLR gains was present or enhanced when the preparatory delay was sufficiently long (>250 ms) and the homonymous muscle was unloaded [i.e., when a background load was first applied in the direction of homonymous muscle action (assistive loading)]. The results extend further support for a relatively slow-evolving process in reach preparation that functions to modulate reflexive muscle stiffness, likely via the independent control of fusimotor neurons. Such control can augment voluntary goal-directed movement and is triggered or enhanced when the homonymous muscle is unloaded.


Asunto(s)
Objetivos , Reflejo de Estiramiento , Humanos , Reflejo de Estiramiento/fisiología , Reflejo/fisiología , Músculos/fisiología , Movimiento/fisiología , Músculo Esquelético/fisiología , Electromiografía
10.
J Neurophysiol ; 129(1): 7-16, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475940

RESUMEN

The spinal stretch reflex is a fundamental building block of motor function, with a sensitivity that varies continuously during movement and when changing between movement and posture. Many have investigated task-dependent reflex sensitivity, but few have provided simple, quantitative analyses of the relationship between the volitional control and stretch reflex sensitivity throughout tasks that require coordinated activity of several muscles. Here, we develop such an analysis and use it to test the hypothesis that modulation of reflex sensitivity during movement can be explained by the balance of activity within agonist and antagonist muscles better than by activity only in the muscle homonymous with the reflex. Subjects completed hundreds of flexion and extension movements as small, pseudorandom perturbations of elbow angle were applied to obtain estimates of stretch reflex amplitude throughout the movement. A subset of subjects performed a postural control task with muscle activities matched to those during movement. We found that reflex modulation during movement can be described by background activity in antagonist muscles about the elbow much better than by activity only in the muscle homonymous to the reflex (P < 0.001). Agonist muscle activity enhanced reflex sensitivity, whereas antagonist activity suppressed it. Surprisingly, the magnitude of these effects was similar, suggesting a balance of control between agonists and antagonists very different from the dominance of sensitivity to homonymous activity during posture. This balance is due to a large decrease in sensitivity to homonymous muscle activity during movement rather than substantial changes in the influence of antagonistic muscle activity.NEW & NOTEWORTHY This study examined the sensitivity of the stretch reflexes elicited in elbow muscles to the background activity in these same muscles during movement and postural tasks. We found a heightened reciprocal control of reflex sensitivity during movement that was not present during maintenance of posture. These results help explain previous discrepancies in reflex sensitivity measured during movement and posture and provide a simple model for assessing their contributions to muscle activity in both tasks.


Asunto(s)
Articulación del Codo , Reflejo de Estiramiento , Humanos , Reflejo de Estiramiento/fisiología , Codo , Electromiografía , Articulación del Codo/fisiología , Músculo Esquelético/fisiología
11.
J Neuroeng Rehabil ; 19(1): 138, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494721

RESUMEN

BACKGROUND: Spasticity is defined as "a motor disorder characterised by a velocity dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks". It is a highly prevalent condition following stroke and other neurological conditions. Clinical assessment of spasticity relies predominantly on manual, non-instrumented, clinical scales. Technology based solutions have been developed in the last decades to offer more specific, sensitive and accurate alternatives but no consensus exists on these different approaches. METHOD: A systematic review of literature of technology-based methods aiming at the assessment of spasticity was performed. The approaches taken in the studies were classified based on the method used as well as their outcome measures. The psychometric properties and usability of the methods and outcome measures reported were evaluated. RESULTS: 124 studies were included in the analysis. 78 different outcome measures were identified, among which seven were used in more than 10 different studies each. The different methods rely on a wide range of different equipment (from robotic systems to simple goniometers) affecting their cost and usability. Studies equivalently applied to the lower and upper limbs (48% and 52%, respectively). A majority of studies applied to a stroke population (N = 79). More than half the papers did not report thoroughly the psychometric properties of the measures. Analysis identified that only 54 studies used measures specific to spasticity. Repeatability and discriminant validity were found to be of good quality in respectively 25 and 42 studies but were most often not evaluated (N = 95 and N = 78). Clinical validity was commonly assessed only against clinical scales (N = 33). Sensitivity of the measure was assessed in only three studies. CONCLUSION: The development of a large diversity of assessment approaches appears to be done at the expense of their careful evaluation. Still, among the well validated approaches, the ones based on manual stretching and measuring a muscle activity reaction and the ones leveraging controlled stretches while isolating the stretch-reflex torque component appear as the two promising practical alternatives to clinical scales. These methods should be further evaluated, including on their sensitivity, to fully inform on their potential.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Espasticidad Muscular/diagnóstico , Reflejo de Estiramiento/fisiología , Accidente Cerebrovascular/complicaciones , Tecnología
12.
J Neurophysiol ; 128(5): 1244-1257, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36224165

RESUMEN

The unique anatomy of the shoulder allows for expansive mobility but also sometimes precarious stability. It has long been suggested that stretch-sensitive reflexes contribute to maintaining joint stability through feedback control, but little is known about how stretch-sensitive reflexes are coordinated between the muscles of the shoulder. The purpose of this study was to investigate the coordination of stretch reflexes in shoulder muscles elicited by rotations of the glenohumeral joint. We hypothesized that stretch reflexes are sensitive to not only a given muscle's background activity but also the aggregate activity of all muscles crossing the shoulder based on the different groupings of muscles required to actuate the shoulder in three rotational degrees of freedom. We examined the relationship between a muscle's background activity and its reflex response in eight shoulder muscles by applying rotational perturbations while participants produced voluntary isometric torques. We found that this relationship, defined as gain scaling, differed at both short and long latencies based on the direction of voluntary torque generated by the participant. Therefore, gain scaling differed based on the aggregate of muscles that were active, not just the background activity in the muscle within which the reflex was measured. Across all muscles, the consideration of torque-dependent gain scaling improved model fits (ΔR2) by 0.17 ± 0.12. Modulation was most evident when volitional torques and perturbation directions were aligned along the same measurement axis, suggesting a functional role in resisting perturbations among synergists while maintaining task performance.NEW & NOTEWORTHY Careful coordination of muscles crossing the shoulder is needed to maintain the delicate balance between the joint's mobility and stability. We provide experimental evidence that stretch reflexes within shoulder muscles are modulated based on the aggregate activity of muscles crossing the joint, not just the activity of the muscle in which the reflex is elicited. Our results reflect coordination through neural coupling that may help maintain shoulder stability during encounters with environmental perturbations.


Asunto(s)
Reflejo de Estiramiento , Hombro , Humanos , Reflejo de Estiramiento/fisiología , Hombro/fisiología , Extremidad Superior , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Reflejo , Electromiografía/métodos
13.
J Neurophysiol ; 128(5): 1091-1105, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36102537

RESUMEN

In targeted movements of the hand, descending activation patterns must not only generate muscle activation but also adjust spinal reflexes from stabilizing the initial to stabilizing the final postural state. We estimate descending activation patterns that change minimally while generating a targeted movement within a given movement time based on a model of the biomechanics, the muscle dynamics, and the stretch reflex. The estimated descending activation patterns predict human movement trajectories quite well. Their temporal structure varies across workspace and with movement speed, from monotonic profiles for slow movements to nonmonotonic profiles for fast movements. Descending activation patterns at different speeds thus do not result from a mere rescaling of invariant templates but reflect varying needs to compensate for interaction torques and muscle dynamics. The virtual attractor trajectories, on which active muscle torques are zero, lie within reachable workspace and are largely invariant when represented in end-effector coordinates. Their temporal structure along movement direction changes from linear ramps to "N-shaped" profiles with increasing movement speed.NEW & NOTEWORTHY The descending activation patterns driving movement must be integrated with spinal reflexes, which would resist movement if left unchanged. We estimate the descending activation patterns at different movement speeds using a model of the stretch reflex and of muscle and limb dynamics. The descending activation patterns we find are temporally structured to compensate for interaction torques as predicted by internal models but also shift the reflex threshold, solving the posture-movement problem.


Asunto(s)
Movimiento , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Movimiento/fisiología , Reflejo de Estiramiento/fisiología , Torque , Reflejo
14.
J Musculoskelet Neuronal Interact ; 22(3): 364-368, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36046992

RESUMEN

OBJECTIVES: Stretch reflex responses were considered to be affected by the velocity of muscle fiber lengthening and angular velocity. However, the results of previous studies in vivo and in vitro are inconsistent in this regard. The purpose of the present study was to investigate the effects of the velocity of fascicle lengthening on the amplitude of the stretch reflex for each trial with a high angular velocity and wide range of motion. METHODS: Thirteen healthy men volunteered for this study. While the ankle was passively moved from 100 to 80 deg at five different angular velocities (100, 200, 300, 500, and 600 deg⋅s-1), the velocity of fascicle lengthening in the soleus muscle was measured using ultrasonography. In addition, the amplitude of the short latency stretch reflex in the soleus muscle was also measured. RESULTS: As angular velocity increased, the amplitude of the stretch reflex and velocity of fascicle lengthening significantly increased (both p<0.001). For each trial in all subjects, the amplitude of the stretch reflex was not correlated with the velocity of fascicle lengthening at any of the angular velocities. CONCLUSION: In conclusion, the stretch reflex size is not related to the fascicle behavior in each trial.


Asunto(s)
Músculo Esquelético , Reflejo de Estiramiento , Articulación del Tobillo/diagnóstico por imagen , Articulación del Tobillo/fisiología , Electromiografía , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Rango del Movimiento Articular , Reflejo de Estiramiento/fisiología
15.
Med Biol Eng Comput ; 60(10): 2917-2929, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35953592

RESUMEN

Deep tendon reflexes are one of the main parameters of the neurological examination in many diseases. Reflex responses increase in upper motor neuron diseases due to a lack of suprasegmental control such as spasticity and rigidity. This information provided by the reflex response makes it an indispensable element of neurological examination. However, an important limitation is that this assessment is subjective. In this study, EMG and kinesiology measurements were recorded together during the assessment of the patellar T reflex in healthy control, spasticity, and Parkinson's disease groups. Nine kinesiologic and three electrophysiologic features were extracted. We validated the proposed method with three healthy participants by ten repeated measurements on 6 different days and we observed that angular velocity is the most stable parameter. Clustering of different groups determined with K-clustering and artificial neural network used for classification with kinesiological and EMG inputs. Our findings show that reflex grade can be determined with high accuracy (Acc = 98.6) in a large population for both pathological and healthy groups and angular velocity is sufficient for reflex grading. Therefore, we think that our study will contribute to the literature by providing an approach with high reliability and reproducibility in the quantitative assessment of reflexes.


Asunto(s)
Espasticidad Muscular , Reflejo de Estiramiento , Electromiografía/métodos , Humanos , Reflejo , Reflejo de Estiramiento/fisiología , Reproducibilidad de los Resultados
16.
J Vis Exp ; (184)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35781283

RESUMEN

The Hoffmann reflex (H-reflex), as an electrical analog to the stretch reflex, allows electrophysiological validation of the integrity of neural circuits after injuries such as spinal cord damage or stroke. An increase of the H-reflex response, together with symptoms like non-voluntary muscle contractions, pathologically augmented stretch reflex, and hypertonia in the corresponding muscle, is an indicator of post-stroke spasticity (PSS). In contrast to rather nerve-unspecific transcutaneous measurements, here, we present a protocol to quantify the H-reflex directly at the ulnar and median nerves of the forepaw, which is applicable, with minor modifications, to the tibial and sciatic nerve of the hindpaw. Based on the direct stimulation and the adaptation to different nerves, the method represents a reliable and versatile tool to validate electrophysiological changes in spasticity-related disease models.


Asunto(s)
Reflejo H , Reflejo de Estiramiento , Animales , Reflejo H/fisiología , Nervio Mediano , Ratones , Espasticidad Muscular , Músculos , Reflejo de Estiramiento/fisiología
17.
J Neurophysiol ; 128(1): 148-159, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35675443

RESUMEN

In this paper, we review the legacy of Gerald (Gerry) Gottlieb in various fields related to the neural control of human movement. His studies on the myotatic (stretch) reflex and postmyotatic responses to ankle joint perturbations paved the way for current explorations of long-loop reflexes and their role in the control of movement. The dual-strategy hypothesis introduced order into a large body of literature on the triphasic muscle activation patterns seen over a variety of voluntary movements in healthy persons. The dual-strategy hypothesis continues to be important for understanding the performance of subjects with disordered motor control. The principle of linear synergy (covariance of joint torques) was an attempt to solve one of the notorious problems of motor redundancy, which remains an important topic in the field. Gerry's attitude toward the equilibrium-point hypothesis varied between rejection and using it to explore patterns of hypothetical control variables and movement variability. The discovery of reciprocal excitation in healthy neonates fostered other studies of changes in spinal cord physiology as motor skills develop. In addition, studies of people with spasticity and the effects of treatment with intrathecal baclofen were crucial in demonstrating the possibility of unmasking voluntary movements after suppression of the hyperreflexia of spasticity. Gerry Gottlieb contributed a significant body of knowledge that formed a solid foundation from which to study a variety of neurological diseases and their treatments, and a more comprehensive and parsimonious foundation to describe the neural control of human movement.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Electromiografía , Humanos , Recién Nacido , Movimiento/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Reflejo , Reflejo de Estiramiento/fisiología
18.
Exp Brain Res ; 240(5): 1411-1422, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35286422

RESUMEN

Friedreich's ataxia (FA) is a hereditary system degeneration, which progressively affects sensory functions such as proprioceptive feedback, which causes progressive ataxia in FA patients. While major clinical features of movement disorders in FA patients have been identified, the underlying impaired neural control is not sufficiently understood. To elucidate the underlying control mechanism, we investigated single-joint movements of the upper limb in FA patients. Small, tolerable force perturbations were induced during voluntary single-joint arm movements to examine the compensatory reaction of the FA patient's motor system. Movement kinematics were measured, and muscle torques were quantified. We first found that as in healthy subjects, unperturbed single-joint movements in FA patients preserved similar temporal profiles of hand velocity and muscle torques, however, scaled in duration and amplitude. In addition, the small perturbations were compensated for efficiently in both groups, with the endpoint error < 0.5° (maximum displacement of 5-15°). We further quantified the differences in movement time, torque response, and displacement between patients and controls. To distinguish whether these differences were caused by a malfunction of top-down control or a malfunction of feedback control, the responses were fitted with a detailed model of the stretch reflex. The model simulations revealed that the feedback delay, but not the feedback gain was affected in FA patients. They also showed that the descending control signal was scaled in time and amplitude and co-contraction was smaller in FA patients. Thus, our study explains how the motor deficits of FA patients result from pathological alterations of both top-down and feedback control.


Asunto(s)
Retroalimentación Sensorial , Ataxia de Friedreich , Brazo/fisiología , Retroalimentación , Humanos , Movimiento/fisiología , Reflejo de Estiramiento/fisiología
19.
Eur J Appl Physiol ; 122(5): 1303-1312, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35278109

RESUMEN

PURPOSE: The purpose of the present study was to determine the effect of the short latency stretch reflex on passive and active muscle stiffness in the soleus muscle. METHODS: Fourteen males participated in this study. Passive muscle stiffness was calculated from passive muscle force and fascicle length during passive lengthening at four different angular velocities (5, 50, 100, and 200 deg s-1). Active muscle stiffness was also calculated according to changes in muscle force and fascicle length during fast lengthening at five different angular velocities (100, 200, 300, 500, and 600 deg s-1) after submaximal isometric contraction (30% of maximal voluntary contraction). During the measurements of passive and active muscle stiffness, the amplitude of the short latency stretch reflex in the soleus muscle was measured. RESULTS: Change in passive torque and passive muscle stiffness significantly increased, whereas change in the fascicle length decreased, as angular velocity increased. At 100 and 200 deg s-1 (stretch reflex responses were not observed at 5 and 50 deg s-1), the amplitude of the short latency stretch reflex was highly correlated with passive muscle stiffness. Change in torque and active muscle stiffness were highest at 100 deg s-1 and decreased as angular velocity increased. At all angular velocities under active conditions, the amplitude of the short latency stretch reflex was not correlated with active muscle stiffness. CONCLUSION: These results suggest that the short latency stretch reflex affects passive muscle stiffness in the soleus muscle, but not active muscle stiffness.


Asunto(s)
Músculo Esquelético , Reflejo de Estiramiento , Electromiografía , Humanos , Contracción Isométrica/fisiología , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Reflejo de Estiramiento/fisiología , Torque
20.
J Musculoskelet Neuronal Interact ; 22(1): 37-42, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35234157

RESUMEN

OBJECTIVES: Whole-body vibration (WBV) is applied to the sole of the foot, whereas local mechanical vibration (LMV) is applied directly to the muscle or tendon. The time required for the mechanical stimulus to reach the muscle belly is longer for WBV. Therefore, the WBV-induced muscular reflex (WBV-IMR) latency may be longer than the tonic vibration reflex (TVR) latency. The aim of this study was to determine whether the difference between WBV-IMR and TVR latencies is due to the distance between the vibration application point and the target muscle. METHODS: Eight volunteers participated in this study. The soleus reflex response was recorded during WBV, LMVs, and tendon tap. LMVs were applied to the Achilles tendon and sole of the foot. The latencies were calculated using the cumulative averaging technique. RESULTS: The latency (33.4±2.8 ms) of the soleus reflex induced by the local foot vibration was similar to the soleus TVR latency (30.9±3.2 ms) and T-reflex (32.0±2.4 ms) but significantly shorter than the latency of the soleus WBV-IMR (42.3±3.4 ms) (F(3,21)=27.46, p=0.0001, partial η2=0.797). CONCLUSIONS: The present study points out that the neuronal circuitries of TVR and WBV-IMR are different.


Asunto(s)
Tendón Calcáneo , Fármacos Neuromusculares , Tendón Calcáneo/fisiología , Electromiografía , Humanos , Músculo Esquelético/fisiología , Reflejo/fisiología , Reflejo de Estiramiento/fisiología , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...