Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.791
Filtrar
1.
Biomed Mater ; 19(5)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39094613

RESUMEN

The design of three-dimensional (3D) scaffolds should focus on creating highly porous, 3D structures with an interconnected pore network that supports cell growth. The scaffold's pore interconnectivity is directly linked to vascularization, cell seeding, guided cell migration, and transportation of nutrients and metabolic waste. In this study, different types of food flavors including monosodium glutamate, sugar, and sodium chloride were used as the porogens along with PCL/PVP blend polymer for solvent casting/particulate leaching method. The morphology, porosity, interconnectivity, chemical composition, water absorption, and mechanical properties of the fabricated scaffolds are carefully characterized. The scaffolds are biocompatible in bothin vitroandin vivoexperiments and do not trigger any inflammatory response while enhancing new bone formation and vascularization in rabbit calvaria critical-sized defects. The new bone merges and becomes denser along with the experiment timeline. The results indicate that the 3D PCL/PVP scaffolds, using monosodium glutamate as porogen, exhibited suitable biological performance and held promise for bone tissue engineering in oral and maxillofacial surgery.


Asunto(s)
Materiales Biocompatibles , Glutamato de Sodio , Solventes , Ingeniería de Tejidos , Andamios del Tejido , Animales , Andamios del Tejido/química , Conejos , Ingeniería de Tejidos/métodos , Porosidad , Solventes/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Poliésteres/química , Ensayo de Materiales , Cráneo/efectos de los fármacos , Polivinilos/química , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Huesos/metabolismo
2.
J Mater Sci Mater Med ; 35(1): 49, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136848

RESUMEN

It's imperative to create a more ideal biological scaffold for bone defect repair. Calcium phosphate bone cements (CPC) could be used as a scaffold. Some ingredients and osteogenic factors could be added to improve its poor mechanical properties and biological activity. As a macromolecule extracted from traditional Chinese medicine, Hedysarum polysaccharides (HPS) would significantly promote the osteogenic activity of bone biomaterials. Zirconium oxide and starch were added to the solid phase and citric acid was added to the liquid phase to optimize CPC. HPS was loaded onto the scaffold as an osteogenic factor, and the prepared CPS + HPS was characterized. Further, the cytocompatibility of CPS + HPS was assessed according to activity, differentiation, and calcification in neonatal rat calvarial osteoblasts, and the biosafety of CPS + HPS was evaluated according to acute toxicity, pyrogen, sensitization, and hemolysis. The success of CPS + HPS in repairing bone defects was evaluated by using a rabbit femur implantation experiment. After optimization, CPS-20-CA-5 containing 10% starch and 5% citric acid displayed the highest mechanical strength of 28.96 ± 0.03 MPa. HPS-50 was demonstrated to exert the best osteogenic effect. The combination of CPS + HPS achieved HPS-loaded CPC. Material characterization, cytocompatibility, biosafety, and femoral implantation experiments indicated that CPS + HPS possessed better pressure resistance and improved osteogenic ability in bone defect repair.CPS + HPS demonstrated effective pressure resistance and superior osteogenic ability, which may be of great significance for bone defects and bone tissue engineering to promote bone regeneration and repair.


Asunto(s)
Cementos para Huesos , Regeneración Ósea , Fosfatos de Calcio , Osteogénesis , Polisacáridos , Andamios del Tejido , Animales , Fosfatos de Calcio/química , Cementos para Huesos/química , Cementos para Huesos/farmacología , Conejos , Polisacáridos/química , Ratas , Andamios del Tejido/química , Osteogénesis/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratas Sprague-Dawley , Masculino , Circonio/química , Ingeniería de Tejidos/métodos , Fémur/patología
3.
Theranostics ; 14(11): 4438-4461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113795

RESUMEN

The high incidence of bone defect-related diseases caused by trauma, infection, and tumor resection has greatly stimulated research in the field of bone regeneration. Generally, bone healing is a long and complicated process wherein manipulating the biological activity of interventional scaffolds to support long-term bone regeneration is significant for treating bone-related diseases. It has been reported that some physical cues can act as growth factor substitutes to promote osteogenesis through continuous activation of endogenous signaling pathways. This review focuses on the latest progress in bone repair by remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues (heat, electricity, and magnetism). As an alternative method to treat bone defects, physical cues show many advantages, including effectiveness, noninvasiveness, and remote manipulation. First, we introduce the impact of different physical cues on bone repair and potential internal regulatory mechanisms. Subsequently, biomaterials that mediate various physical cues in bone repair and their respective characteristics are summarized. Additionally, challenges are discussed, aiming to provide new insights and suggestions for developing intelligent biomaterials to treat bone defects and promote clinical translation.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Materiales Biocompatibles/química , Humanos , Animales , Andamios del Tejido/química , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos/métodos , Huesos/metabolismo
4.
Commun Biol ; 7(1): 972, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122786

RESUMEN

Dental pulp stem cells (DPSC) have shown osteogenic and bone regenerative potential. Improving the in situ bone regeneration potential of DPSC is crucial for their application as seed cells during bone defect reconstruction in clinics. This study aimed to develop DPSC-derived organoid-like microspheroids as effective seeds for bone tissue engineering applications. DPSC osteogenic microspheroids (70 µm diameter) were cultured in a polydimethylsiloxane-mold-based agarose-gel microwell-culture-system with or without cannabidiol (CBD)-treatment. Results of in vitro studies showed higher osteogenic differentiation potential of microspheroids compared with 2D-cultured-DPSC. CBD treatment further improved the osteogenic differentiation potential of microspheroids. The effect of CBD treatment in the osteogenic differentiation of microspheroids was more pronounced compared with that of CBD-treated 2D-cultured-DPSC. Microspheroids showed a higher degree of bone regeneration in nude mice calvarial bone defect compared to 2D-cultured-DPSC. CBD-treated microspheroids showed the most robust in situ bone regenerative potential compared with microspheroids or CBD-treated 2D-cultured-DPSC. According to mRNA sequencing, bioinformatic analysis, and confirmation study, the higher osteogenic potential of CBD-treated microspheroids was mainly attributed to WNT6 upregulation. Taken together, DPSC microspheroids have robust osteogenic potential and can effectively translate the effect of in vitro osteoinductive stimulation during in situ bone regeneration, indicating their application potential during bone defect reconstruction in clinics.


Asunto(s)
Cannabidiol , Diferenciación Celular , Pulpa Dental , Osteogénesis , Células Madre , Regulación hacia Arriba , Osteogénesis/efectos de los fármacos , Animales , Cannabidiol/farmacología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Ratones , Regulación hacia Arriba/efectos de los fármacos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/metabolismo , Humanos , Ratones Desnudos , Células Cultivadas , Regeneración Ósea/efectos de los fármacos
5.
BMC Oral Health ; 24(1): 878, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095803

RESUMEN

BACKGROUND: Effective treatments for the alveolar bone defect remain a major concern in dental therapy. The objectives of this study were to develop a fibrin and konjac glucomannan (KGM) composite hydrogel as scaffolds for the osteogenesis of nasal mucosa-derived ectodermal mesenchymal stem cells (EMSCs) for the regeneration of alveolar bone defect, and to investigate the osteogenesis-accelerating effects of black phosphorus nanoparticles (BPNs) embedded in the hydrogels. METHODS: Primary EMSCs were isolated from rat nasal mucosa and used for the alveolar bone recovery. Fibrin and KGM were prepared in different ratios for osteomimetic hydrogel scaffolds, and the optimal ratio was determined by mechanical properties and biocompatibility analysis. Then, the optimal hydrogels were integrated with BPNs to obtain BPNs/fibrin-KGM hydrogels, and the effects on osteogenic EMSCs in vitro were evaluated. To explore the osteogenesis-enhancing effects of hydrogels in vivo, the BPNs/fibrin-KGM scaffolds combined with EMSCs were implanted to a rat model of alveolar bone defect. Micro-computed tomography (CT), histological examination, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot were conducted to evaluate the bone morphology and expression of osteogenesis-related genes of the bone regeneration. RESULTS: The addition of KGM improved the mechanical properties and biodegradation characteristics of the fibrin hydrogels. In vitro, the BPNs-containing compound hydrogel was proved to be biocompatible and capable of enhancing the osteogenesis of EMSCs by upregulating the mineralization and the activity of alkaline phosphatase. In vivo, the micro-CT analysis and histological evaluation demonstrated that rats implanted EMSCs-BPNs/fibrin-KGM hydrogels exhibited the best bone reconstruction. And compared to the model group, the expression of osteogenesis genes including osteopontin (Opn, p < 0.0001), osteocalcin (Ocn, p < 0.0001), type collagen (Col , p < 0.0001), bone morphogenetic protein-2 (Bmp2, p < 0.0001), Smad1 (p = 0.0006), and runt-related transcription factor 2 (Runx2, p < 0.0001) were all significantly upregulated. CONCLUSIONS: EMSCs/BPNs-containing fibrin-KGM hydrogels accelerated the recovery of the alveolar bone defect in rats by effectively up-regulating the expression of osteogenesis-related genes, promoting the formation and mineralisation of bone matrix.


Asunto(s)
Regeneración Ósea , Fibrina , Hidrogeles , Mananos , Células Madre Mesenquimatosas , Osteogénesis , Fósforo , Ratas Sprague-Dawley , Andamios del Tejido , Animales , Regeneración Ósea/efectos de los fármacos , Ratas , Mananos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Microtomografía por Rayos X , Nanopartículas , Mucosa Nasal , Proceso Alveolar , Masculino , Proteína Morfogenética Ósea 2 , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteocalcina
6.
Int J Nanomedicine ; 19: 8309-8336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161358

RESUMEN

Purpose: The treatment of craniofacial bone defects caused by trauma, tumors, and infectious and degenerative diseases is a significant issue in current clinical practice. Following the rapid development of bone tissue engineering (BTE) in the last decade, bioactive scaffolds coupled with multifunctional properties are in high demand with regard to effective therapy for bone defects. Herein, an innovative bone scaffold consisting of GO/Cu nanoderivatives and GelMA-based organic-inorganic hybrids was reported for repairing full-thickness calvarial bone defect. Methods: In this study, motivated by the versatile biological functions of nanomaterials and synthetic hydrogels, copper nanoparticle (CuNP)-decorated graphene oxide (GO) nanosheets (GO/Cu) were combined with methacrylated gelatin (GelMA)-based organic-inorganic hybrids to construct porous bone scaffolds that mimic the extracellular matrix (ECM) of bone tissues by photocrosslinking. The material characterizations, in vitro cytocompatibility, macrophage polarization and osteogenesis of the biohybrid hydrogel scaffolds were investigated, and two different animal models (BALB/c mice and SD rats) were established to further confirm the in vivo neovascularization, macrophage recruitment, biocompatibility, biosafety and bone regenerative potential. Results: We found that GO/Cu-functionalized GelMA/ß-TCP hydrogel scaffolds exhibited evidently promoted osteogenic activities, M2 type macrophage polarization, increased secretion of anti-inflammatory factors and excellent cytocompatibility, with favorable surface characteristics and sustainable release of Cu2+. Additionally, improved neovascularization, macrophage recruitment and tissue integration were found in mice implanted with the bioactive hydrogels. More importantly, the observations of microCT reconstruction and histological analysis in a calvarial bone defect model in rats treated with GO/Cu-incorporated hydrogel scaffolds demonstrated significantly increased bone morphometric values and newly formed bone tissues, indicating accelerated bone healing. Conclusion: Taken together, this BTE-based bone repair strategy provides a promising and feasible method for constructing multifunctional GO/Cu nanocomposite-incorporated biohybrid hydrogel scaffolds with facilitated osteogenesis, angiogenesis and immunoregulation in one system, with the optimization of material properties and biosafety, it thereby demonstrates great application potential for correcting craniofacial bone defects in future clinical scenarios.


Asunto(s)
Regeneración Ósea , Cobre , Grafito , Hidrogeles , Ratas Sprague-Dawley , Cráneo , Ingeniería de Tejidos , Andamios del Tejido , Animales , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Cobre/química , Cobre/farmacología , Grafito/química , Hidrogeles/química , Hidrogeles/farmacología , Cráneo/efectos de los fármacos , Cráneo/lesiones , Ratas , Ratones , Ingeniería de Tejidos/métodos , Osteogénesis/efectos de los fármacos , Ratones Endogámicos BALB C , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Masculino , Nanopartículas del Metal/química , Nanoestructuras/química , Gelatina/química , Células RAW 264.7
7.
Braz J Biol ; 84: e279967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39140500

RESUMEN

Scaffolds are 3D biomaterials that provide an environment for cell regeneration. In the context of bone remodeling, poly(e-caprolactone) (PCL) combined with graphene has been developed as the scaffold. It is imperative for scaffolds to possess antibacterial properties in order to properly reduce the risk of potential infections.Therefore, this study aims to analyze the antibacterial characteristics of PCL/graphene scaffolds against Staphylococcus aureus (S. aureus) and Porphyromonas gingivalis (P. gingivalis) in vitro. In this study, five different groups were used, including PCL (K-), Amoxicillin (K+), PCL/Graphene 0.5 wt%, PCL/graphene 1 wt% and PCL/Graphene 1.5 wt%. All experiments were performed in triplicates and were repeated three times, and the diffusion method by Kirby-Bauer test was used. The disc was incubated with S. aureus and P. gingivalis for 24 hours and then the diameter of the inhibition zone was measured. The results showed that the PCL/graphene scaffolds exhibited dose-dependent antibacterial activity against S. aureus and P. gingivalis. The inhibition zone diameter (IZD) against S. aureus of PCL/graphene 1 wt% was 9.53 ± 0.74 mm, and increased to 11.93 ± 0.92 mm at a concentration of 1.5 wt% of graphene. The PCL/graphene scaffold with 1.5 wt% exhibited a greater inhibitory effect, with an IZD of 12.56 ± 0.06 mm against P. gingivalis, while the inhibitory activity of the 1 wt% variant was relatively lower at 10.46 ± 0.24 mm. The negative control, PCL, and PCL/graphene 0.5 wt% exhibited no antibacterial activity sequentially (p = 1). Scaffolds of poly(e-caprolactone)/graphene exhibited an antibacterial activity at 1, and 1.5 wt% on S. aureus and P. gingivalis. The antibacterial properties of this scaffold make it a promising candidate for regenerating bone tissue.


Asunto(s)
Antibacterianos , Grafito , Poliésteres , Porphyromonas gingivalis , Staphylococcus aureus , Andamios del Tejido , Grafito/química , Grafito/farmacología , Porphyromonas gingivalis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Andamios del Tejido/química , Antibacterianos/farmacología , Antibacterianos/química , Poliésteres/química , Poliésteres/farmacología , Regeneración Ósea/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Pruebas de Sensibilidad Microbiana
8.
Sci Rep ; 14(1): 19055, 2024 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154029

RESUMEN

Beta-tricalcium phosphate (ß-TCP) scaffolds manufactured through the foam replication method are widely employed in bone tissue regeneration. The mechanical strength of these scaffolds is a significant challenge, partly due to the rheological properties of the original suspension. Various strategies have been explored to enhance the mechanical properties. In this research, ß-TCP scaffolds containing varying concentrations (0.25-1.00 wt%) of multi-walled carbon nanotubes (MWCNT) were developed. The findings indicate that the addition of MWCNTs led to a concentration-dependent improvement in the viscosity of ß-TCP suspensions. All the prepared slurries exhibited viscoelastic behavior, with the storage modulus surpassing the loss modulus. The three time interval tests revealed that MWCNT-incorporated ß-TCP suspensions exhibited faster structural recovery compared to pure ß-TCP slurries. Introducing MWCNT modified compressive strength, and the optimal improvement was obtained using 0.75 wt% MWCNT. The in vitro degradation of ß-TCP was also reduced by incorporating MWCNT. While the inclusion of carbon nanotubes had a marginal negative impact on the viability and attachment of MC3T3-E1 cells, the number of viable cells remained above 70% of the control group. Additionally, the results demonstrated that the scaffold increased the expression level of osteocalcin, osteoponthin, and alkaline phosphatase genes of adiposed-derived stem cells; however, higher levels of gene expersion were obtained by using MWCNT. The suitability of MWCNT-modified ß-TCP suspensions for the foam replication method can be assessed by evaluating their rheological behavior, aiding in determining the critical additive concentration necessary for a successful coating process.


Asunto(s)
Fosfatos de Calcio , Nanotubos de Carbono , Ingeniería de Tejidos , Andamios del Tejido , Fosfatos de Calcio/química , Nanotubos de Carbono/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Animales , Ratones , Línea Celular , Huesos/metabolismo , Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales , Regeneración Ósea/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Viscosidad
9.
J Appl Oral Sci ; 32: e20230442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109750

RESUMEN

OBJECTIVE: A combination of peripheral blood mesenchymal stem cells (PBMSCs) and platelet rich fibrin matrix (PRFM) could be a probable periodontal regenerative material with the synergy of the added benefits of each material. This randomized controlled clinical trial aimed to evaluate the regenerative capacity of supercell (PRFM and PBMSCs) compared with that of PRFM alone in human periodontal mandibular intraosseous defects (IOD). METHODOLOGY: This study included 17 patients of both sexes (12 men, 5 women) aged 30-55 years (mean age = 37.7±4.4 years) who fulfilled the inclusion criteria (radiographic and clinical evaluation for bilateral IOD with probing pocket depth (PPD ≥ 6 mm). A split-mouth design was used in each patient. A total of 34 sites in the mandibular arch randomly received PRFM alone + open flap debridement (OFD) [Control sites] or supercell (PRFM+PBMSCs) + OFD [Test sites]. The clinical parameters plaque index (PI), gingival index (GI), PPD, clinical attachment level (CAL), and in the radiographic parameters; defect depth (DD) and defect fill percentage (DFP) were recorded at baseline, 3 and 6 months postoperatively. Early wound healing index (EHI) was used at 1 week to assess wound healing ability. RESULTS: At 6 months, radiographic parameters revealed significant reduction in DD (P<0.001) and significant DFP values in the test group compared with the control group. The supercell showed significant improvement in PPD and CAL at the end of 6 months (P<0.001). EHI scores at 1 week showed no statistically significant difference between the test and control groups. CONCLUSION: Supercell can be considered a regenerative material in the treatment of periodontal IODs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Fibrina Rica en Plaquetas , Humanos , Persona de Mediana Edad , Femenino , Masculino , Adulto , Resultado del Tratamiento , Factores de Tiempo , Trasplante de Células Madre Mesenquimatosas/métodos , Reproducibilidad de los Resultados , Estadísticas no Paramétricas , Regeneración Tisular Guiada Periodontal/métodos , Pérdida de Hueso Alveolar/terapia , Pérdida de Hueso Alveolar/cirugía , Células Madre Mesenquimatosas , Regeneración Ósea/fisiología , Regeneración Ósea/efectos de los fármacos , Valores de Referencia , Índice Periodontal , Índice de Placa Dental , Cicatrización de Heridas/fisiología
10.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125634

RESUMEN

Mesoporous bioactive glass nanoparticles (MBGNs) doped with therapeutical ions present multifunctional systems that enable a synergistic outcome through the dual delivery of drugs and ions. The aim of this study was to evaluate influence of co-doping with strontium and magnesium ions (SrMg-MBGNs) on the properties of MBGNs. A modified microemulsion-assisted sol-gel synthesis was used to obtain particles, and their physicochemical properties, bioactivity, and drug-loading/release ability were evaluated. Indirect biological assays using 2D and 3D cell culture models on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and endothelial EA.hy926 cells, respectively, were used to determine biocompatibility of MBGNs, their influence on alkaline phosphatase (ALP) production, calcium deposition, and cytoskeletal organization. Results showed that Sr,Mg-doping increased pore volume and solubility, and changed the mesoporous structure from worm-like to radial-dendritic, which led to a slightly accelerated drug release compared to pristine MBGNs. Biological assays confirmed that particles are biocompatible, and have ability to slightly induce ALP production and calcium deposition of hBM-MSCs, as well as to significantly improve the proliferation of EA.hy926 compared to biochemical stimulation via vascular endothelial growth factor (VEGF) administration or regular media. Fluorescence staining revealed that SrMg-MBGNs had a similar effect on EA.hy926 cytoskeletal organization to the VEGF group. In conclusion, Sr,Mg-MBGNs might be considered promising biomaterial for biomedical applications.


Asunto(s)
Regeneración Ósea , Sistemas de Liberación de Medicamentos , Vidrio , Magnesio , Células Madre Mesenquimatosas , Nanopartículas , Estroncio , Humanos , Regeneración Ósea/efectos de los fármacos , Nanopartículas/química , Estroncio/química , Estroncio/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Porosidad , Magnesio/química , Vidrio/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Línea Celular , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos
11.
ACS Appl Mater Interfaces ; 16(31): 40581-40601, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39074361

RESUMEN

Long-lasting, controlled-release, and minimally invasive injectable platforms that provide a stable blood concentration to promote bone regeneration are less well developed. Using hexagonal mesoporous silica (HMS) loaded with dexamethasone (DEX) and poly(lactic-co-glycolic acid) (PLGA), we prepared porous DEX/HMS/PLGA microspheres (PDHP). In contrast to HMS/PLGA microspheres (HP), porous HMS/PLGA microspheres (PHP), DEX/PLGA microspheres (DP), and DEX/HMS/PLGA microspheres (DHP), PDHP showed notable immuno-coordinated osteogenic capabilities and were best at promoting bone mesenchymal stem cell proliferation and osteogenic differentiation. PDHP were combined with methacrylated silk (SilMA) and sodium alginate (SA) to form an injectable photocurable dual-network hydrogel platform that could continuously release the drug for more than 4 months. By adjusting the content of the microspheres in the hydrogel, a zero-order release hydrogel platform was obtained in vitro for 48 days. When the microsphere content was 1%, the hydrogel platform exhibited the best biocompatibility and osteogenic effects. The expression levels of the osteogenic gene alkaline phosphatases, BMP-2 and OPN were 10 to 15 times higher in the 1% group than in the 0% group, respectively. In addition, the 1% microsphere hydrogel strongly stimulated macrophage polarization to the M2 phenotype, establishing an immunological milieu that supports bone regrowth. The aforementioned outcomes were also observed in vivo. The most successful method for correcting cranial bone abnormalities in SD rats was to use a hydrogel called SilMA/SA containing 1% drug-loaded porous microspheres (PDHP/SS). The angiogenic and osteogenic effects of this treatment were also noticeably greater in the PDHP/SS group than in the control and blank groups. In addition, PDHP/SS polarized M2 macrophages and suppressed M1 macrophages in vivo, which reduced the local immune-inflammatory response, promoted angiogenesis, and cooperatively aided in situ bone healing. This work highlights the potential application of an advanced hydrogel platform for long-term, on-demand, controlled release for bone tissue engineering.


Asunto(s)
Regeneración Ósea , Preparaciones de Acción Retardada , Dexametasona , Hidrogeles , Células Madre Mesenquimatosas , Microesferas , Osteogénesis , Dexametasona/química , Dexametasona/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Porosidad , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Inmunomodulación/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas Sprague-Dawley , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
12.
Int J Biol Macromol ; 275(Pt 1): 133597, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960232

RESUMEN

BACKGROUND: Bone tissue engineering endows alternates to support bone defects/injuries that are circumscribed to undergo orchestrated process of remodeling on its own. In this regard, hydrogels have emerged as a promising platform that can confront irregular defects and encourage in situ bone repair. METHODS: In this study, we aimed to develop a new approach for bone tissue regeneration by developing an alginate based composite hydrogel incorporating selenium doped biphasic calcium phosphate nanoparticles, and retinoic acid. The fabricated hydrogel was physiochemically evaluated for morphological, bonding, and mechanical behavior. Additionally, the biological response of the fabricated hydrogel was evaluated on MC3T3-E1 pre-osteoblast cells. RESULTS: The developed composite hydrogel confers excellent biocompatibility, and osteoconductivity owing to the presence of alginate, and biphasic calcium phosphate, while selenium presents pro osteogenic, antioxidative, and immunomodulatory properties. The hydrogels exhibited highly porous microstructure, superior mechanical attributes, with enhanced calcification, and biomineralization abilities in vitro. SIGNIFICANCE: By combining the osteoconductive properties of biphasic calcium phosphate with multifaceted benefits of selenium and retinoic acid, the fabricated composite hydrogel offers a potential transformation in the landscape of bone defect treatment. This strategy could direct a versatile and effective approach to tackle complex bone injuries/defects and present potential for clinical translation.


Asunto(s)
Alginatos , Regeneración Ósea , Hidrogeles , Selenio , Tretinoina , Regeneración Ósea/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Alginatos/química , Tretinoina/farmacología , Tretinoina/química , Animales , Ratones , Selenio/química , Selenio/farmacología , Osteogénesis/efectos de los fármacos , Hidroxiapatitas/química , Hidroxiapatitas/farmacología , Calcificación Fisiológica/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Línea Celular , Osteoblastos/efectos de los fármacos , Ingeniería de Tejidos/métodos , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Andamios del Tejido/química
13.
Int J Biol Macromol ; 275(Pt 1): 133502, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960259

RESUMEN

Bone defects resulting from trauma, illness or congenital abnormalities represent a significant challenge to global health. Conventional treatments such as autographs and allografts have limitations, leading to the exploration of bone tissue engineering (BTE) as an alternative approach. This review aims to provide a comprehensive analysis of bone regeneration mechanisms with a focus on the role of chitosan-based biomaterials and mesenchymal stem cells (MSCs) in BTE. In addition, the physiochemical and biological properties of chitosan, its potential for bone regeneration when combined with other materials and the mechanisms through which MSCs facilitate bone regeneration were investigated. In addition, different methods of scaffold development and the incorporation of MSCs into chitosan-based scaffolds were examined. Chitosan has remarkable biocompatibility, biodegradability and osteoconductivity, making it an attractive choice for BTE. Interactions between transcription factors such as Runx2 and Osterix and signaling pathways such as the BMP and Wnt pathways regulate the differentiation of MSCs and bone regeneration. Various forms of scaffolding, including porous and fibrous injections, have shown promise in BTE. The synergistic combination of chitosan and MSCs in BTE has significant potential for addressing bone defects and promoting bone regeneration, highlighting the promising future of clinical challenges posed by bone defects.


Asunto(s)
Regeneración Ósea , Quitosano , Células Madre Mesenquimatosas , Ingeniería de Tejidos , Andamios del Tejido , Quitosano/química , Regeneración Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Ingeniería de Tejidos/métodos , Animales , Andamios del Tejido/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos
14.
Biofabrication ; 16(4)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39079546

RESUMEN

The field of bone tissue engineering aims to develop an effective and aesthetical bone graft substitute capable of repairing large mandibular defects. However, graft failure resulting from necrosis and insufficient integration with native tissue due to lack of oxygen and nutrient transportation remains a concern. To overcome these drawbacks, this study aims to develop a 3D printed polycaprolactone layered construct with a LEGO®-inspired interlocking mechanism enabling spatial distribution of biological components. To highlight itsin vitroosteogenic potential, human mesenchymal stromal cells are cultured onto Bio-Gide®Compressed collagen (Col) membranes, which are embedded within the layered construct for 28 d. The osteogenic response is assessed through the measurement of proliferation, relevant markers for osteogenesis including alkaline phosphatase (ALP) activity, expression of transcriptional genes (SP7, RUNX2/SOX9) as well matrix-related genes (COL1A1, ALPL IBSP, SPP1), osteoprotegerin secretion.In vitroosteogenic differentiation results showed increased levels of these osteogenic markers, indicating the layered construct's potential to support osteogenesis. In this study, a novel workflow of 3D printing a patient-specific LEGO®-inspired layered construct that can spatially deliver biological elements was successfully demonstrated. These layered constructs have the potential to be employed as a bone tissue engineering strategy, with particular focus on the repair of large mandibular defects.


Asunto(s)
Colágeno , Mandíbula , Células Madre Mesenquimatosas , Osteogénesis , Poliésteres , Impresión Tridimensional , Andamios del Tejido , Humanos , Poliésteres/química , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Colágeno/química , Andamios del Tejido/química , Ingeniería de Tejidos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Células Cultivadas
15.
ACS Appl Mater Interfaces ; 16(31): 40682-40694, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046105

RESUMEN

We propose a hydrogel immobilized with manganese porphyrin (MnP), a biomimetic superoxide dismutase (SOD), and catalase (CAT) to modulate reactive oxygen species (ROS) and hypoxia that impede the repair of large bone defects. Our hydrogel synthesis involved thiolated chitosan and polyethylene glycol-maleimide conjugated with MnPs (MnP-PEG-MAL), which enabled in situ gelation via a click reaction. Through optimization, a hydrogel with mechanical properties and catalytic effects favorable for bone repair was selected. Additionally, the hydrogel was incorporated with risedronate to induce synergistic effects of ROS scavenging, O2 generation, and sustained drug release. In vitro studies demonstrated enhanced proliferation and differentiation of MG-63 cells and suppressed proliferation and differentiation of RAW 264.7 cells in ROS-rich environments. In vivo evaluation of a calvarial bone defect model revealed that this multifunctional hydrogel facilitated significant bone regeneration. Therefore, the hydrogel proposed in this study is a promising strategy for addressing complex wound environments and promoting effective bone healing.


Asunto(s)
Hidrogeles , Especies Reactivas de Oxígeno , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Células RAW 264.7 , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Humanos , Oxígeno/química , Oxígeno/metabolismo , Porfirinas/química , Porfirinas/farmacología , Proliferación Celular/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Manganeso/química , Manganeso/farmacología , Diferenciación Celular/efectos de los fármacos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Superóxido Dismutasa/metabolismo
16.
ACS Appl Mater Interfaces ; 16(31): 40726-40738, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042094

RESUMEN

The development of an artificial ligament with a multifunction of promoting bone formation, inhibiting bone resorption, and preventing infection to obtain ligament-bone healing for anterior cruciate ligament (ACL) reconstruction still faces enormous challenges. Herein, a novel artificial ligament based on a PI fiber woven fabric (PIF) was fabricated, which was coated with a phytic acid-gallium (PA-Ga) network via a layer-by-layer assembly method (PFPG). Compared with PIF, PFPG with PA-Ga coating significantly suppressed osteoclastic differentiation, while it boosted osteoblastic differentiation in vitro. Moreover, PFPG obviously inhibited fibrous encapsulation and bone absorption while accelerating new bone regeneration for ligament-bone healing in vivo. PFPG remarkably killed bacteria and destroyed biofilm, exhibiting excellent antibacterial properties in vitro as well as anti-infection ability in vivo, which were ascribed to the release of Ga ions from the PA-Ga coating. The cooperative effect of the surface characteristics (e.g., hydrophilicity/surface energy and protein absorption) and sustained release of Ga ions for PFPG significantly enhanced osteogenesis while inhibiting osteoclastogenesis, thereby achieving ligament-bone integration as well as resistance to infection. In summary, PFPG remarkably facilitated osteoblastic differentiation, while it suppressed osteoclastic differentiation, thereby inhibiting osteoclastogenesis for bone absorption while accelerating osteogenesis for ligament-bone healing. As a novel artificial ligament, PFPG represented an appealing option for graft selection in ACL reconstruction and displayed considerable promise for application in clinics.


Asunto(s)
Osteogénesis , Ácido Fítico , Animales , Ácido Fítico/química , Ácido Fítico/farmacología , Ratones , Osteogénesis/efectos de los fármacos , Ligamentos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Regeneración Ósea/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología
17.
Acta Cir Bras ; 39: e393724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016360

RESUMEN

PURPOSE: To evaluate collagen fibers during the bone repair process in critical defects created in the tibias of rats, treated with zoledronic acid (AZ) associated with low-level laser therapy (LLLT). METHODS: Ten rats were distributed according to treatment: group 1) saline solution; group 2) LLLT; group 3) AZ; group 4) AZ and LLLT. AZ was administered at the dose of 0.035 mg/kg at fortnightly intervals over eight weeks. Next, 2-mm bone defects were created in the tibias of all animals. The bone defects in groups 2 and 4 were irradiated LLLT in the immediate postoperative period. After periods 14 and 28 of application, the animals were euthanized, and birefringence analysis was performed. RESULTS: Approximately 90% of the total area was occupied by collagen fibers within the red color spectrum, this area being statistically larger in relation to the area occupied by collagen fibers within the green and yellow spectrum, in the four groups. Over the 14-day period, there was no statistically significant difference between the groups. In the 28-day period, group 2 (14.02 ± 15.9%) was superior in quantifying green birefringent fibers compared to group 1 (3.06 ± 3.24%), with p = 0.009. CONCLUSIONS: LLLT associated with ZA is effective in stimulating the neoformation of collagen fibers. The LLLT group without the association with ZA showed a greater amount of immature and less organized matrix over a period of 28 days.


Asunto(s)
Conservadores de la Densidad Ósea , Colágeno , Difosfonatos , Imidazoles , Terapia por Luz de Baja Intensidad , Ratas Wistar , Ácido Zoledrónico , Animales , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Imidazoles/farmacología , Difosfonatos/farmacología , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Colágeno/efectos de los fármacos , Colágeno/efectos de la radiación , Masculino , Tibia/efectos de los fármacos , Tibia/efectos de la radiación , Tibia/cirugía , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/efectos de la radiación , Factores de Tiempo , Ratas , Reproducibilidad de los Resultados
18.
Biomed Mater ; 19(5)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38986475

RESUMEN

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Fosfatos de Calcio , Diferenciación Celular , Proliferación Celular , Células Madre Mesenquimatosas , Osteoblastos , Poliésteres , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Óxido de Zinc , Andamios del Tejido/química , Fosfatos de Calcio/química , Poliésteres/química , Regeneración Ósea/efectos de los fármacos , Ingeniería de Tejidos/métodos , Células Madre Mesenquimatosas/citología , Óxido de Zinc/química , Materiales Biocompatibles/química , Diferenciación Celular/efectos de los fármacos , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Ensayo de Materiales , Huesos , Regeneración Tisular Dirigida/métodos , Humanos , Animales , Fosfatasa Alcalina/metabolismo , Módulo de Elasticidad , Porosidad , Propiedades de Superficie
19.
Acta Cir Bras ; 39: e392824, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046039

RESUMEN

PURPOSE: to evaluate biocompatibility and osteogenic potential of hydroxyapatite/alginate composite after its implantation on rat calvarian critical bone defect. METHODS: thirty adults male Wistar rats were randomly distributed into two groups: GHA - critical bone defect filled with hydroxyapatite/alginate composite granules (HA/Alg) and CG - critical bone defect without biomaterial; evaluated at biological points of 15, 45 and 120 days. RESULTS: the histomorphometrically analyses for GHA showed osteoid matrix deposition (OM) among the granules and towards the center of the defect in centripetal direction throughout the study, with evident new bone formation at 120 days, resulting in filling 4/5 of the initial bone defect. For CG, this finding was restricted to the edges of the bone margins and formation of connective tissue on the residual area was found in all biological points. Inflammatory response on GHA was chronic granulomatous type, discrete and regressive for all biological points. Throughout the study, the CG presented mononuclear inflammatory infiltrate diffuse and regressive. Histomorphometry analyses showed that OM percentage was evident for GHA group when compared to CG group in all analyzed periods (p > 0.05). CONCLUSIONS: the biomaterial evaluated at this study showed to be biocompatible, bioactive, osteoconductive and biodegradable synchronously with bone formation.


Asunto(s)
Alginatos , Materiales Biocompatibles , Regeneración Ósea , Sustitutos de Huesos , Durapatita , Ensayo de Materiales , Ratas Wistar , Animales , Masculino , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Alginatos/farmacología , Durapatita/farmacología , Durapatita/uso terapéutico , Materiales Biocompatibles/uso terapéutico , Sustitutos de Huesos/uso terapéutico , Distribución Aleatoria , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Ácidos Hexurónicos/farmacología , Ácido Glucurónico/farmacología , Cráneo/cirugía , Cráneo/efectos de los fármacos , Factores de Tiempo , Ratas , Reproducibilidad de los Resultados
20.
ACS Appl Mater Interfaces ; 16(29): 37707-37721, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39001812

RESUMEN

The utilization of micronano composite scaffolds has been extensively demonstrated to confer the superior advantages in bone repair compared to single nano- or micron-sized scaffolds. Nevertheless, the enhancement of bioactivities within these composite scaffolds remains challenging. In this study, we propose a novel approach to combine melt electrowriting (MEW) and solution electrospinning (SES) techniques for the fabrication of a composite scaffold incorporating hydroxyapatite (HAP), an osteogenic component, and roxithromycin (ROX), an antibacterial active component. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) confirmed the hierarchical architecture of the nanofiber-microgrid within the scaffold, as well as the successful loading of HAP and ROX. The incorporation of HAP enhanced the water absorption capacity of the composite scaffold, thus promoting cell adhesion and proliferation, as well as osteogenic differentiation. Furthermore, ROX resulted in effective antibacterial capability without any observable cytotoxicity. Finally, the scaffolds were applied to a rat calvarial defect model, and the results demonstrated that the 20% HAP group exhibited superior new bone formation without causing adverse reactions. Therefore, our findings present a promising strategy for designing and fabricating bioactive scaffolds for bone regeneration.


Asunto(s)
Antibacterianos , Durapatita , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido , Antibacterianos/farmacología , Antibacterianos/química , Animales , Andamios del Tejido/química , Osteogénesis/efectos de los fármacos , Ratas , Durapatita/química , Durapatita/farmacología , Regeneración Ósea/efectos de los fármacos , Ratas Sprague-Dawley , Roxitromicina/química , Roxitromicina/farmacología , Nanofibras/química , Staphylococcus aureus/efectos de los fármacos , Huesos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA