Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.420
Filtrar
1.
Stem Cell Res Ther ; 15(1): 135, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715130

RESUMEN

BACKGROUND: Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS: The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS: The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS: The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.


Asunto(s)
Regeneración Ósea , Regeneración Ósea/efectos de los fármacos , Animales , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Membranas Artificiales , Regeneración Tisular Dirigida/métodos , Andamios del Tejido/química , Poliésteres/química , Poliésteres/farmacología , Ratas
2.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735969

RESUMEN

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Asunto(s)
Macrófagos , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Poliuretanos , Ratas Sprague-Dawley , Células de Schwann , Animales , Regeneración Nerviosa/efectos de los fármacos , Poliuretanos/química , Ratas , Macrófagos/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Nanofibras/química , Nervio Ciático/efectos de los fármacos , Regeneración Tisular Dirigida/métodos , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Andamios del Tejido/química , Ratones , Células RAW 264.7
3.
Front Immunol ; 15: 1396759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736888

RESUMEN

Guided bone regeneration (GBR) is one of the most widely used and thoroughly documented alveolar bone augmentation surgeries. However, implanting GBR membranes inevitably triggers an immune response, which can lead to inflammation and failure of bone augmentation. It has been shown that GBR membranes may significantly improve in vivo outcomes as potent immunomodulators, rather than solely serving as traditional barriers. Macrophages play crucial roles in immune responses and participate in the entire process of bone injury repair. The significant diversity and high plasticity of macrophages complicate our understanding of the immunomodulatory mechanisms underlying GBR. This review provides a comprehensive summary of recent findings on the potential role of macrophages in GBR for bone defects in situ. Specifically, macrophages can promote osteogenesis or fibrous tissue formation in bone defects and degradation or fibrous encapsulation of membranes. Moreover, GBR membranes can influence the recruitment and polarization of macrophages. Therefore, immunomodulating GBR membranes are primarily developed by improving macrophage recruitment and aggregation as well as regulating macrophage polarization. However, certain challenges remain to be addressed in the future. For example, developing more rational and sophisticated sequential delivery systems for macrophage activation reagents; addressing the interference of bone graft materials and dental implants; and understanding the correlations among membrane degradation, macrophage responses, and bone regeneration.


Asunto(s)
Regeneración Ósea , Macrófagos , Humanos , Regeneración Ósea/inmunología , Macrófagos/inmunología , Animales , Regeneración Tisular Dirigida/métodos , Osteogénesis
4.
Int J Biol Macromol ; 268(Pt 1): 131655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636763

RESUMEN

This research aims to develop guided tissue regeneration (GTR) membranes from bacterial cellulose (BC), a natural polysaccharide-based biopolymer. A double-layered BC composite membrane was prepared by coating the BC membrane with mixed carboxymethyl cellulose/poly(ethylene oxide) (CMC/PEO) fibers via electrospinning. The CMC/PEO-BC membranes were then characterized for their chemical and physical characteristics. The 8 % (wt/v) CMC/PEO (1:1) aqueous solution yielded well-defined electrospun CMC/PEO nanofibers (125 ± 10 nm) without beads. The CMC/PEO-BC membranes exhibited good mechanical and swelling properties as well as good cytocompatibility against human periodontal ligament cells (hPDLs). Its functionalizability via carboxyl entities in CMC was tested using the calcium-binding domain of plant-derived recombinant human osteopontin (p-rhOPN-C122). As evaluated by enzyme-linked immunosorbent assay, a 98-99 % immobilization efficiency was achieved in a concentration-dependent manner over an applied p-rhOPN-C122 concentration range of 7.5-30 ng/mL. The biological function of the membrane was assessed by determining the expression levels of osteogenic-related gene transcripts using quantitative real-time reverse-transcriptase polymerase chain reaction. Mineralization assay indicated that the p-rhOPN-C122 immobilized CMC/PEO-BC membrane promoted hPDLs osteogenic differentiation. These results suggested that the developed membrane could serve as a promising GTR membrane for application in bone tissue regeneration.


Asunto(s)
Celulosa , Membranas Artificiales , Ligamento Periodontal , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Celulosa/química , Celulosa/farmacología , Regeneración Tisular Dirigida/métodos , Osteogénesis/efectos de los fármacos , Osteopontina/metabolismo , Osteopontina/genética , Polietilenglicoles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanofibras/química , Carboximetilcelulosa de Sodio/química
5.
Adv Sci (Weinh) ; 11(17): e2302988, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430538

RESUMEN

Peripheral nerve injury (PNI) remains a challenging area in regenerative medicine. Nerve guide conduit (NGC) transplantation is a common treatment for PNI, but the prognosis of NGC treatment is unsatisfactory due to 1) neuromechanical unmatching and 2) the intra-conduit inflammatory microenvironment (IME) resulting from Schwann cell pyroptosis and inflammatory-polarized macrophages. A neuromechanically matched NGC composed of regenerated silk fibroin (RSF) loaded with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (P:P) and dimethyl fumarate (DMF) are designed, which exhibits a matched elastic modulus (25.1 ± 3.5 MPa) for the peripheral nerve and the highest 80% elongation at break, better than most protein-based conduits. Moreover, the NGC can gradually regulate the intra-conduit IME by releasing DMF and monitoring sciatic nerve movements via piezoresistive sensing. The combination of NGC and electrical stimulation modulates the IME to support PNI regeneration by synergistically inhibiting Schwann cell pyroptosis and reducing inflammatory factor release, shifting macrophage polarization from the inflammatory M1 phenotype to the tissue regenerative M2 phenotype and resulting in functional recovery of neurons. In a rat sciatic nerve crush model, NGC promoted remyelination and functional and structural regeneration. Generally, the DMF/RSF/P:P conduit provides a new potential therapeutic approach to promote nerve repair in future clinical treatments.


Asunto(s)
Fibroínas , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Animales , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Ratas , Traumatismos de los Nervios Periféricos/terapia , Fibroínas/química , Fibroínas/farmacología , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Células de Schwann/metabolismo , Regeneración Tisular Dirigida/métodos , Inflamación , Andamios del Tejido/química , Nervio Ciático/lesiones
6.
J Control Release ; 368: 676-690, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458572

RESUMEN

Barrier membranes play a pivotal role in the success of guided periodontal tissue regeneration. The biodegradable barriers predominantly used in clinical practice often lack sufficient barrier strength, antibacterial properties, and bioactivity, frequently leading to suboptimal regeneration outcomes. Although with advantages in mechanical strength, biodegradability and plasticity, bioinert aliphatic polyesters as barrier materials are usually polymerized via toxic catalysts, hard to be functionalized and lack of antibacterial properties. To address these challenges, we propose a new concept that controlled release of bioactive substance on the whole degradation course can give a bioinert aliphatic polyester bioactivity. Thus, a Zn-based catalytic system for polycondensation of dicarboxylic acids and diols is created to prepare zinc covalent hybrid polyester (PBS/ZnO). The atomically-dispersed Zn2+ ions entering main chain of polyester molecules endow PBS/ZnO barrier with antibacterial properties, barrier strength, excellent biocompatibility and histocompatibility. Further studies reveal that relying on long-term controlled release of Zn2+ ions, the PBS/ZnO membrane greatly expedites osteogenetic effect in guided tissue regeneration (GTR) by enhancing the mitochondrial function of macrophages to induce M2 polarization. These findings show a novel preparation strategy of bioactive polyester biomaterials based on long term controlled release of bioactive substance that integrates catalysis, material structures and function customization.


Asunto(s)
Regeneración Tisular Dirigida , Óxido de Zinc , Zinc , Poliésteres/química , Preparaciones de Acción Retardada , Antibacterianos/farmacología , Antibacterianos/química , Iones , Regeneración Ósea
7.
Int J Biol Macromol ; 266(Pt 2): 130978, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508565

RESUMEN

Guided bone regeneration (GBR) membranes are widely used to treat bone defects. In this study, sequential electrospinning and electrospraying techniques were used to prepare a dual-layer GBR membrane composed of gelatin (Gel) and chitosan (CS) containing simvastatin (Sim)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (Sim@PLGA/Gel-CS). As a GBR membrane, Sim@PLGA/Gel-CS could act as a barrier to prevent soft tissue from occupying regions of bone tissue. Furthermore, compared with traditional GBR membranes, Sim@PLGA/Gel-CS played an active role on stimulating osteogenesis and angiogenesis. Determination of the physical, chemical, and biological properties of Sim@PLGA/Gel-CS membranes revealed uniform sizes of the nanofibers and microspheres and appropriate morphologies. Fourier-transform infrared spectroscopy was used to characterize the interactions between Sim@PLGA/Gel-CS molecules and the increase in the number of amide groups in crosslinked membranes. The thermal stability and tensile strength of the membranes increased after N-(3-dimethylaminopropyl)-N9- ethylcarbodiimide/N-hydroxysuccinimide crosslinking. The increased fiber density of the barrier layer decreased fibroblast migration compared with that in the osteogenic layer. Osteogenic function was indicated by the increased alkaline phosphatase activity, calcium deposition, and neovascularization. In conclusion, the multifunctional effects of Sim@PLGA/Gel-CS on the barrier and bone microenvironment were achieved via its dual-layer structure and simvastatin coating. Sim@PLGA/Gel-CS has potential applications in bone tissue regeneration.


Asunto(s)
Quitosano , Gelatina , Membranas Artificiales , Neovascularización Fisiológica , Osteogénesis , Quitosano/química , Gelatina/química , Osteogénesis/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Simvastatina/química , Simvastatina/farmacología , Regeneración Ósea/efectos de los fármacos , Regeneración Tisular Dirigida/métodos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Humanos , Animales , Andamios del Tejido/química , Nanofibras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Microesferas , Angiogénesis
8.
Dent Mater ; 40(4): 728-738, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401993

RESUMEN

OBJECTIVES: Guided Tissue Regeneration (GTR) is a popular clinical procedure for periodontal tissue regeneration. However, its key component, the barrier membrane, is largely collagen-based and is still quite expensive, posing a financial burden to the patients as well as healthcare systems and negatively impacting the patient's decision-making. Thus, our aim is to prepare a novel biomimetic GTR membrane utilizing a natural biomaterial, soluble eggshell membrane protein (SEP), which is economical as it comes from an abundant industrial waste from food and poultry industries, unlike collagen. Additive polymer, poly (lactic-co-glycolic acid) (PLGA), and a bioceramic, nano-hydroxyapatite (HAp), were added to improve its mechanical and biological properties. METHODS: For this barrier membrane preparation, we initially screened the significant factors affecting its mechanical properties using Taguchi orthogonal array design and further optimized the significant factors using response surface methodology. Furthermore, this membrane was characterized using SEM, EDAX, and ATR-FTIR, and tested for proliferation activity of human periodontal ligament fibroblasts (HPLFs). RESULTS: Optimization using response surface methodology predicted that the maximal tensile strength of 3.1 MPa and modulus of 39.9 MPa could be obtained at membrane composition of 8.9 wt% PLGA, 7.2 wt% of SEP, and 2 wt% HAp. Optimized PLGA/SEP/HAp membrane specimens that were electrospun on a static collector showed higher proliferation activity of HPLFs compared to tissue culture polystyrene and a commercial collagen membrane. SIGNIFICANCE: From the results observed, we can conclude that SEP-based nanofibrous GTR membrane could be a promising, environment-friendly, and cost-effective alternative for commercial collagen-based GTR membrane products.


Asunto(s)
Materiales Biocompatibles , Regeneración Tisular Dirigida , Animales , Humanos , Materiales Biocompatibles/farmacología , Cáscara de Huevo , Ensayo de Materiales , Colágeno , Durapatita
9.
Biomed Phys Eng Express ; 10(3)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38224615

RESUMEN

Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.


Asunto(s)
Regeneración Tisular Dirigida , Membranas Artificiales , Regeneración Tisular Dirigida/métodos , Materiales Biocompatibles , Huesos , Regeneración Ósea
10.
Macromol Biosci ; 24(5): e2300458, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38198834

RESUMEN

This study aims to obtain a cyto-compatible 3D printable bio-resin for the manufacturing of meshes designed from acquired real patients' bone defect to be used in future for guided bone regeneration (GBR), achieving the goal of personalized medicine, decreasing surgical, recovery time, and patient discomfort. To this purpose, a biobased, biocompatible, and photo-curable resin made of acrylated epoxidized soybean oil (AESO) diluted with soybean oil (SO) is developed and 3D printed using a commercial digital light processing (DLP) 3D printer. 3D printed samples show good thermal properties, allowing for thermally-based sterilization process and mechanical properties typical of crosslinked natural oils (i.e., E = 12 MPa, UTS = 1.5 MPa), suitable for the GBR application in the oral surgery. The AESO-SO bio-resin proves to be cytocompatible, allowing for fibroblast cells proliferation (viability at 72 h > 97%), without inducing severe inflammatory response when co-cultured with macrophages, as demonstrated by cytokine antibody arrays, that is anyway resolved in the first 24 h. Moreover, accelerated degradation tests prove that the bio-resin is biodegradable in hydrolytic environments.


Asunto(s)
Regeneración Ósea , Impresión Tridimensional , Aceite de Soja , Regeneración Ósea/efectos de los fármacos , Aceite de Soja/química , Humanos , Procedimientos Quirúrgicos Orales/métodos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regeneración Tisular Dirigida/métodos , Ratones , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
11.
Adv Healthc Mater ; 13(13): e2303867, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38258406

RESUMEN

Peripheral nerve regeneration and functional recovery rely on the chemical, physical, and structural properties of nerve guidance conduits (NGCs). However, the limited support for long-distance nerve regeneration and axonal guidance has hindered the widespread use of NGCs. This study introduces a novel nerve guidance conduit with oriented lateral walls, incorporating multi-walled carbon nanotubes (MWCNTs) within core-shell fibers prepared in a single step using a modified electrohydrodynamic (EHD) printing technique to promote peripheral nerve regeneration. The structured conduit demonstrated exceptional stability, mechanical properties, and biocompatibility, significantly enhancing the functionality of NGCs. In vitro cell studies revealed that RSC96 cells adhered and proliferated effectively along the oriented fibers, demonstrating a favorable response to the distinctive architectures and properties. Subsequently, a rat sciatic nerve injury model demonstrated effective efficacy in promoting peripheral nerve regeneration and functional recovery. Tissue analysis and functional testing highlighted the significant impact of MWCNT concentration in enhancing peripheral nerve regeneration and confirming well-matured aligned axonal growth, muscle recovery, and higher densities of myelinated axons. These findings demonstrate the potential of oriented lateral architectures with coaxial MWCNT fibers as a promising approach to support long-distance regeneration and encourage directional nerve growth for peripheral nerve repair in clinical applications.


Asunto(s)
Nanotubos de Carbono , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Ratas Sprague-Dawley , Nervio Ciático , Animales , Regeneración Nerviosa/fisiología , Nanotubos de Carbono/química , Ratas , Nervio Ciático/fisiología , Nervio Ciático/lesiones , Traumatismos de los Nervios Periféricos/terapia , Andamios del Tejido/química , Regeneración Tisular Dirigida/métodos , Axones/fisiología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
12.
Macromol Biosci ; 24(5): e2300476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38245857

RESUMEN

Peripheral nerve injuries (PNI) represent a prevalent and severe category of damage resulting from traumatic incidents. Predominantly, the deficiency in nerve regeneration can be ascribed to enduring inflammatory reactions, hence imposing substantial clinical implications for patients. Fisetin, a flavonoid derived from plants, is naturally present in an array of vegetables and fruits, including strawberries, apples, onions, and cucumbers. It exhibits immunomodulatory properties through the reduction of inflammation and oxidative stress. In the present research, a nerve defect is addressed for the first time utilizing a scaffold primed for controlled fisetin release. In this regard, fisetin-loaded chitosan hydrogels are incorporated into the lumen of polycaprolactone (PCL) nerve guide conduits (NGCs). The hydrogel maintained a steady release of an appropriate fisetin dosage. The study outcomes indicated that the fisetin/chitosan/polycaprolactone (FIS/CS/PCL) NGCs amplified Schwann cell proliferation and neural expression, curtailed oxidative stress, alleviated inflammation, and improved functions, electrophysiological properties, and morphology. This pioneering scaffold has the potential to contribute significantly to the field of neuroengineering.


Asunto(s)
Quitosano , Flavonoles , Hidrogeles , Inflamación , Regeneración Nerviosa , Estrés Oxidativo , Poliésteres , Flavonoles/farmacología , Quitosano/química , Quitosano/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Regeneración Nerviosa/efectos de los fármacos , Poliésteres/química , Poliésteres/farmacología , Inflamación/tratamiento farmacológico , Inflamación/patología , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Andamios del Tejido/química , Ratas , Regeneración Tisular Dirigida/métodos , Proliferación Celular/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/química , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia
13.
AAPS PharmSciTech ; 25(1): 27, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291317

RESUMEN

Antibiotic administration is an adjacent therapy to guided tissue regeneration (GTR) in the management of periodontitis. This is due to the major role of pathogen biofilm in aggravating periodontal defects. This study aimed to fabricate a GTR membrane for sustained delivery of doxycycline hydrochloride (DOX) while having a space-maintaining function. The membranes were prepared using a polymeric blend of polycaprolactone/polyvinyl alcohol/chitosan by the electrospinning technique. The obtained membranes were characterized in terms of physicochemical and biological properties. Nanofibers showed a mean diameter in the submicron range of < 450 nm while having uniform randomly aligned morphology. The obtained membranes showed high strength and flexibility. A prolonged in vitro release profile during 68 h was observed for manufactured formulations. The prepared membranes showed a cell viability of > 70% at different DOX concentrations. The formulations possessed antimicrobial efficacy against common pathogens responsible for periodontitis. In vivo evaluation also showed prolonged release of DOX for 14 days. The histopathological evaluation confirmed the biocompatibility of the GTR membrane. In conclusion, the developed nanofibrous DOX-loaded GTR membranes may have beneficial characteristics in favour of both sustained antibiotic delivery and periodontal regeneration by space-maintaining function without causing any irritation and tissue damage.


Asunto(s)
Regeneración Tisular Dirigida , Nanofibras , Periodontitis , Ratas , Animales , Doxiciclina/química , Nanofibras/química , Antibacterianos/química , Regeneración Tisular Dirigida/métodos , Periodontitis/tratamiento farmacológico
14.
J Dent ; 141: 104735, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37804939

RESUMEN

OBJECTIVE: To compare the outcomes of open healing to complete closure for collagen membrane coverage for immediate implant placements with simultaneous guided bone regeneration (GBR) in two retrospective cohorts. METHODS: The subjects included 118 patients who received Bio-Gide® collagen membrane coverage for immediate implant placements and GBR in 20 anterior and 98 posterior teeth. For 58 patients, gingival flaps were released to achieve full coverage of collagen membrane (CC group). For 60 patients, no efforts were made to release the gingival flaps and collagen membrane was left exposed for open healing (OH group). Antibiotics and analgesics were prescribed for 7 days after surgery. The width of crestal open wounds were measured after surgery (W0), and at 1, 2 and 16 weeks (W16). Changes in bone mass were assessed by cone-beam computed tomography after implant placement and again at W16. Gingival and bone tissues over the implant cover screws were harvested and assessed for 16 patients in the OH group at W16. RESULTS: No wound dehiscence occurred in the CC group from W0 to W16. Both the vertical and horizontal bone dimension changes were not significantly different between the OH and CC group. For the OH group, soft tissue was completely healed at W16 when the initial wound widths were ≤6 mm. For those with initial wound widths ≥ 7 mm, the cover screws were exposed in 5/16 patients at W16 but did not affect the final restorations. Tissue staining showed keratinized mucosa and new bone formation above the dental implant in the OH group. CONCLUSION: Open healing achieved healing outcomes similar to those of complete closure for collagen membrane coverage following immediate implant placements. CLINICAL SIGNIFICANCE: For immediate implant placement requiring bone grafting and collagen membrane coverage, it is unnecessary to release the gingival flaps or use tissue grafts to achieve full coverage of the crestal wounds. Open healing with exposed membrane could achieve similar outcomes with less pain and swelling.


Asunto(s)
Implantes Dentales , Regeneración Tisular Dirigida , Humanos , Implantación Dental Endoósea/métodos , Estudios Retrospectivos , Colágeno/uso terapéutico , Regeneración Tisular Dirigida/métodos , Regeneración Ósea
15.
Adv Mater ; 36(14): e2307805, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37750196

RESUMEN

Peripheral nerve injury potentially destroys the quality of life by inducing functional movement disorders and sensory capacity loss, which results in severe disability and substantial psychological, social, and financial burdens. Autologous nerve grafting has been commonly used as treatment in the clinic; however, its rare donor availability limits its application. A series of artificial nerve guidance conduits (NGCs) with advanced architectures are also proposed to promote injured peripheral nerve regeneration, which is a complicated process from axon sprouting to targeted muscle reinnervation. Therefore, exploring the interactions between sophisticated NGC complexes and versatile cells during each process including axon sprouting, Schwann cell dedifferentiation, nerve myelination, and muscle reinnervation is necessary. This review highlights the contribution of functional NGCs and the influence of microscale biomaterial architecture on biological processes of nerve repair. Progressive NGCs with chemical molecule induction, heterogenous topographical morphology, electroactive, anisotropic assembly microstructure, and self-powered electroactive and magnetic-sensitive NGCs are also collected, and they are expected to be pioneering features in future multifunctional and effective NGCs.


Asunto(s)
Regeneración Tisular Dirigida , Traumatismos de los Nervios Periféricos , Humanos , Regeneración Tisular Dirigida/métodos , Calidad de Vida , Traumatismos de los Nervios Periféricos/terapia , Materiales Biocompatibles/farmacología , Axones , Regeneración Nerviosa , Nervio Ciático/fisiología
16.
J Mech Behav Biomed Mater ; 149: 106230, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976993

RESUMEN

OBJECTIVES: Guided bone regeneration (GBR) is a well-established method for repairing hard tissue deficiency in reconstructive dentistry. The aim of this study was to investigate the barrier function, osteogenic activity and immunomodulatory ability of a novel bi-layered asymmetric membrane loaded with demineralized dentin matrix (DDM). METHODS: DDM particles were harvested from healthy, caries-free permanent teeth. Electrospinning technique was utilized to prepare bi-layered DDM-loaded poly(lactic-co-glycolic acid) (PLGA)/poly(lactic acid) (PLA) membranes (abbreviated as DPP bilayer membranes). We analyzed the membranes' surface properties, cytocompatibility and barrier function, and evaluated their osteogenic activity in vitro. In addition, its effects on the osteogenic immune microenvironment were also investigated. RESULTS: Synthetic DPP bilayer membranes presented suitable surface characteristics and satisfactory cytocompatibility. Transwell assays showed significant fewer migrated cells by the DPP bilayer membranes compared with blank control, with or without in vitro degradation (all P < 0.001). In vitro experiments indicated that our product elevated messenger ribonucleic acid (mRNA) expression levels of osteogenic genes alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) and runt-related transcription factor 2 (Runx2). Among all groups, 20% DPP bilayer membrane displayed highest ALP activity (P < 0.001). Furthermore, DPP bilayer membranes enhanced the mRNA expression of M2 macrophage markers and increased the proportion of CD206+ M2 macrophages by 100% (20% DPP: P < 0.001; 30% DPP: P < 0.001; 40% DPP: P < 0.05), thus exerting an inflammation suppressive effect. CONCLUSIONS: DPP bilayer membranes exhibited notable biological safety and osteogenic activity in vitro, and have potential as a prospective candidate for GBR approach in the future.


Asunto(s)
Regeneración Ósea , Regeneración Tisular Dirigida , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Osteogénesis , ARN Mensajero
17.
Molecules ; 28(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38005397

RESUMEN

Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction.


Asunto(s)
Regeneración Tisular Dirigida , Nanofibras , Nervio Ciático , Nanofibras/química , Regeneración Tisular Dirigida/métodos , Colágeno/farmacología , Andamios del Tejido/química , Regeneración Nerviosa
18.
J Appl Biomater Funct Mater ; 21: 22808000231211416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37978859

RESUMEN

BACKGROUND: Polycaprolactone (PCL) is a highly recognized synthetic polymer for its biocompatibility, ease of fabrication and mechanical strength in bone tissue engineering. Its applications have extended broadly, including regeneration of oral and maxillofacial lost tissues. Its usefulness has brought attention of researchers to regenerate periodontal lost tissues, including alveolar bone, periodontal ligament and cementum. The aim of this systematic review was to obtain an updated analysis of the contribution of PCL-based scaffolds in the alveolar bone regeneration process. METHODS: This review adheres to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic reviews. A computerized search of the PubMed, EBSCO, Scielo and Web of Science databases was performed, restricting literature search to published studies in English or Spanish between January 2002 and March 2023. Database search returned 248 studies which were screened based on title, author names and publication dates. RESULTS: Data from 17 studies were reviewed and tabulated. All studies combined PCL with other biomaterials (such as Alginate, hydroxyapatite, bioactive glass, poly (lactic-co-glycolic acid)), growth factors (BMP-2, rhCEMP1), and/or mesenchymal stromal cells (adipose-derived, bone marrow, periodontal ligament or gingiva mesenchymal stromal cells). PCL scaffolds showed higher cell viability and osteoinductive potential when combined with bioactive agents. Complementary, its degradation rates were affected by the addition or exposure to specific substances, such as: Dopamine, Cerium Oxide, PLGA and hydrogen peroxide. CONCLUSIONS: PCL is an effective biomaterial for alveolar bone regeneration in periodontally affected teeth. It could be part of a new generation of biomaterials with improved regenerative potential.


Asunto(s)
Regeneración Tisular Dirigida , Andamios del Tejido , Materiales Biocompatibles , Regeneración Ósea , Ingeniería de Tejidos
19.
Rev. cir. traumatol. buco-maxilo-fac ; 23(2): 8-16, abr./jun 2023. ilus, tab
Artículo en Inglés | LILACS, BBO - Odontología | ID: biblio-1537341

RESUMEN

Introduction: The intentionally exposed polypropylene (PP) membrane has been proposed for guided bone regeneration (GBR) of the alveo lar bone after extraction; however, there are biological limitations to this proposal. This study aimed to describe the effects of the PP membrane on neo-osteogenesis after tooth extraction, comparing to intentionally ex posed and primary soft tissue coverage techniques. Methodology: This clinical trial followed the TIDieR checklist and guide. Clinical and histo logical parameters of alveolar repair were compared between groups: 1 (control group), without regenerative procedure; 2, GBR; and 3, inten tionally exposed membrane. Results: Group 3 showed slight effect on the quality of new bone, compared to the control group. Although the GBR was underestimated by the early exposure of the membrane, alveo lar repair and newly formed bone were superior to the other groups. Poly propylene membrane intentionally exposed compromised the volume density of the immature and mineralized bone matrix, the osteoblast and osteocyte count, and stimulated the granulation tissue formation and local inflammatory infiltrate. Conclusions: Despite the exposure of the PP membrane in GBR, this technique improved the quality of new bone and alveolar repair compared to the surgical technique of intentional exposure and alveolus only sutured.


RESUMEN Introducción: La membrana de polipropileno (PP) intencionalmente expuesta ha sido propuesta para la regeneración ósea guiada (GBR) del hueso alveolar después de la extracción; sin embargo, existen limitaciones biológicas a esta propuesta. Este estudio tuvo como objetivo describir los efectos de la membrana de PP en la neo-osteogénesis después de la extracción del diente, en comparación con las técnicas de cobertura de tejido blando primarias y expuestas intencionalmente. Metodología: Este ensayo clínico siguió la lista de verificación y la guía TIDieR. Se compararon los parámetros clínicos e histológicos de la reparación alveolar entre los grupos: 1 (grupo control), sin procedimiento regenerativo; 2, GBR; y 3, membrana expuesta intencionalmente. Resultados: el grupo 3 mostró un ligero efecto sobre la calidad del hueso nuevo, en comparación con el grupo de control. Aunque la GBR fue subestimada por la exposición temprana de la membrana, la reparación alveolar y el hueso neoformado fueron superiores a los otros grupos. La membrana de polipropileno expuesta intencionalmente comprometió la densidad de volumen de la matriz ósea inmadura y mineralizada, el recuento de osteoblastos y osteocitos, y estimuló la formación de tejido de granulación y el infiltrado inflamatorio local. Conclusiones: A pesar de la exposición de la membrana de PP en GBR, esta técnica mejoró la calidad del hueso nuevo y la reparación alveolar en comparación con la técnica quirúrgica de exposición intencional y alvéolo solo suturado.


Introdução: A membrana de polipropileno (PP) intencionalmente exposta tem sido proposta para regeneração óssea guiada (ROG) do osso alveolar após exodontia; no entanto, existem limitações biológicas a esta proposta. Este estudo teve como objetivo descrever os efeitos da membrana de PP na neo-osteogênese após a extração dentária, comparando com as técnicas de exposição intencional e cobertura primária de tecidos moles. Metodologia: Este ensaio clínico seguiu a lista de verificação e o guia TIDieR. Parâmetros clínicos e histológicos do reparo alveolar foram comparados entre os grupos: 1 (grupo controle), sem procedimento regenerativo; 2, GBR; e 3, membrana intencionalmente exposta. Resultados: O Grupo 3 apresentou leve efeito na qualidade do novo osso, em comparação com o grupo controle. Embora o GBR tenha sido subestimado pela exposição precoce da membrana, o reparo alveolar e o osso neoformado foram superiores aos outros grupos. A exposição intencional da membrana de polipropileno comprometeu a densidade volumétrica da matriz óssea imatura e mineralizada, a contagem de osteoblastos e osteócitos e estimulou a formação de tecido de granulação e infiltrado inflamatório local. Conclusões: Apesar da exposição da membrana PP na ROG, esta técnica melhorou a qualidade do novo osso e da reparação alveolar em comparação com a técnica cirúrgica de exposição intencional e alvéolo apenas suturado.


Asunto(s)
Humanos , Polipropilenos , Regeneración Ósea , Alveolo Dental , Regeneración Tisular Dirigida , Aumento de la Cresta Alveolar
20.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4057-4074, 2023 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-37877390

RESUMEN

Artificial nerve guidance conduits (NGCs) are synthetic nerve grafts that are capable of providing the structural and nutritional support for nerve regeneration. The ideal NGCs have plenty of requirements on biocompatibility, mechanical strength, topological structure, and conductivity. Therefore, it is necessary to continuously improve the design of NGCs and establish a better therapeutic strategy for peripheral nerve injury in order to meet clinical needs. Although current NGCs have made certain process in the treatment of peripheral nerve injury, their nerve regeneration and functional outcomes on repairing long-distance nerve injury remain unsatisfactory. Herein, we review the nerve conduit design from four aspects, namely raw material selection, structural design, therapeutic factor loading and self-powered component integration. Moreover, we summarize the research progress of NGCs in the treatment of peripheral nerve injury, in order to facilitate the iterative updating and clinical transformation of NGCs.


Asunto(s)
Regeneración Tisular Dirigida , Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/terapia , Regeneración Nerviosa/fisiología , Nervio Ciático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...