Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.381
Filtrar
1.
Genes (Basel) ; 14(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38137043

RESUMEN

Bacteriophage λ's CI repressor protein controls a genetic switch between the virus's lysogenic and lytic lifecycles, in part, by selectively binding to six different DNA sequences within the phage genome-collectively referred to as operator sites. However, the minimal level of information needed for CI to recognize and specifically bind these six unique-but-related sequences is unclear. In a previous study, we introduced an algorithm that extracts the minimal direct readout information needed for λ-CI to recognize and bind its six binding sites. We further revealed direct readout information shared among three evolutionarily related lambdoid phages: λ-phage, Enterobacteria phage VT2-Sakai, and Stx2 converting phage I, suggesting that the λ-CI protein could bind to the operator sites of these other phages. In this study, we show that λ-CI can indeed bind the other two phages' cognate binding sites as predicted using our algorithm, validating the hypotheses from that paper. We go on to demonstrate the importance of specific hydrogen bond donors and acceptors that are maintained despite changes to the nucleobase itself, and another that has an important role in recognition and binding. This in vitro validation of our algorithm supports its use as a tool to predict alternative binding sites for DNA-binding proteins.


Asunto(s)
Bacteriófago lambda , Regiones Operadoras Genéticas , Regiones Operadoras Genéticas/genética , Bacteriófago lambda/genética , Proteínas de Unión al ADN/genética , Sitios de Unión
2.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298400

RESUMEN

Social networks have greatly expanded in the last ten years the need for sharing multimedia data. However, on open networks such as the Internet, where security is frequently compromised, it is simple for eavesdroppers to approach the actual contents without much difficulty. Researchers have created a variety of encryption methods to strengthen the security of this transmission and make it difficult for eavesdroppers to get genuine data. However, these conventional approaches increase computing costs and communication overhead and do not offer protection against fresh threats. The problems with current algorithms encourage academics to further investigate the subject and suggest new algorithms that are more effective than current methods, that reduce overhead, and which are equipped with features needed by next-generation multimedia networks. In this paper, a genetic operator-based encryption method for multimedia security is proposed. It has been noted that the proposed algorithm produces improved key strength results. The investigations using attacks on data loss, differential assaults, statistical attacks, and brute force attacks show that the encryption technique suggested has improved security performance. It focuses on two techniques, bitplane slicing and followed by block segmentation and scrambling. The suggested method first divides the plaintext picture into several blocks, which is then followed by block swapping done by the genetic operator used to combine the genetic information of two different images to generate new offspring. The key stream is produced from an iterative chaotic map with infinite collapse (ICMIC). Based on a close-loop modulation coupling (CMC) approach, a three-dimensional hyperchaotic ICMIC modulation map is proposed. By using a hybrid model of multidirectional circular permutation with this map, a brand-new colour image encryption algorithm is created. In this approach, a multidirectional circular permutation is used to disrupt the image's pixel placements, and genetic operations are used to replace the pixel values. According to simulation findings and security research, the technique can fend off brute-force, statistical, differential, known-plaintext, and chosen-plaintext assaults, and has a strong key sensitivity.


Asunto(s)
Seguridad Computacional , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Regiones Operadoras Genéticas , Algoritmos , Simulación por Computador
3.
Proc Natl Acad Sci U S A ; 119(11): e2119980119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263224

RESUMEN

SignificanceA gene regulatory system is an important tool for the engineering of biosynthetic pathways of organisms. Here, we report the development of an inducible-ON/OFF regulatory system using a malO operator as a key element. We identified and modulated sequence, position, numbers, and spacing distance of malO operators, generating a series of activating or repressive promoters with tunable strength. The stringency and robustness are both guaranteed in this system, a maximal induction factor of 790-fold was achieved, and nine proteins from different organisms were expressed with high yields. This system can be utilized as a gene switch, promoter enhancer, or metabolic valve in synthetic biology applications. This operator-based engineering strategy can be employed for developing similar regulatory systems in different microorganisms.


Asunto(s)
Bacillus subtilis , Vías Biosintéticas , Regulación Bacteriana de la Expresión Génica , Maltosa , Ingeniería Metabólica , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Vías Biosintéticas/genética , Elementos de Facilitación Genéticos , Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Maltosa/metabolismo , Maltosa/farmacología , Ingeniería Metabólica/métodos , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas/genética , Biología Sintética
4.
Science ; 375(6579): 442-445, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084952

RESUMEN

Sequence-specific binding of proteins to DNA is essential for accessing genetic information. We derive a model that predicts an anticorrelation between the macroscopic association and dissociation rates of DNA binding proteins. We tested the model for thousands of different lac operator sequences with a protein binding microarray and by observing kinetics for individual lac repressor molecules in single-molecule experiments. We found that sequence specificity is mainly governed by the efficiency with which the protein recognizes different targets. The variation in probability of recognizing different targets is at least 1.7 times as large as the variation in microscopic dissociation rates. Modulating the rate of binding instead of the rate of dissociation effectively reduces the risk of the protein being retained on nontarget sequences while searching.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Represoras Lac/metabolismo , Regiones Operadoras Genéticas , Secuencia de Bases , Proteínas de Unión al ADN/química , Cinética , Represoras Lac/química , Modelos Biológicos , Análisis por Matrices de Proteínas , Unión Proteica
5.
Gene ; 809: 146010, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34688814

RESUMEN

Synthetic biology requires well-characterized biological parts that can be combined into functional modules. One type of biological parts are transcriptional regulators and their cognate operator elements, which enable to either generate an input-specific response or are used as actuator modules. A range of regulators has already been characterized and used for orthogonal gene expression engineering, however, previous efforts have mostly focused on bacterial regulators. This work aims to design and explore the use of an archaeal TetR family regulator, FadRSa from Sulfolobus acidocaldarius, in a bacterial system, namely Escherichia coli. This is a challenging objective given the fundamental difference between the bacterial and archaeal transcription machinery and the lack of a native TetR-like FadR regulatory system in E. coli. The synthetic σ70-dependent bacterial promoter proD was used as a starting point to design hybrid bacterial/archaeal promoter/operator regions, in combination with the mKate2 fluorescent reporter enabling a readout. Four variations of proD containing FadRSa binding sites were constructed and characterized. While expressional activity of the modified promoter proD was found to be severely diminished for two of the constructs, constructs in which the binding site was introduced adjacent to the -35 promoter element still displayed sufficient basal transcriptional activity and showed up to 7-fold repression upon expression of FadRSa. Addition of acyl-CoA has been shown to disrupt FadRSa binding to the DNA in vitro. However, extracellular concentrations of up to 2 mM dodecanoate, subsequently converted to acyl-CoA by the cell, did not have a significant effect on repression in the bacterial system. This work demonstrates that archaeal transcription regulators can be used to generate actuator elements for use in E. coli, although the lack of ligand response underscores the challenge of maintaining biological function when transferring parts to a phylogenetically divergent host.


Asunto(s)
Proteínas Arqueales/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Factores de Transcripción/genética , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Regulación Bacteriana de la Expresión Génica , Isopropil Tiogalactósido/farmacología , Lauratos/farmacología , Microorganismos Modificados Genéticamente , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Sulfolobus acidocaldarius/genética
6.
Microbiology (Reading) ; 167(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665112

RESUMEN

MSMEG_2295 is a TetR family protein encoded by the first gene of a Mycobacterium smegmatis (Msm) operon that expresses the gene for DinB2 (MSMEG_2294), a translesion DNA repair enzyme. We have carried out investigations to understand its function by performing DNA binding studies and gene knockout experiments. We found that the protein binds to a conserved inverted repeat sequence located upstream of the dinB2 operon and several other genes. Using a knockout of MSMEG_2295, we show that MSMEG_2295 controls the expression of at least five genes, the products of which could potentially influence carbohydrate and fatty acid metabolism as well as antibiotic and oxidative stress resistance. We have demonstrated that MSMEG_2295 is a repressor by performing complementation analysis. Knocking out of MSMEG_2295 had a significant impact on pyruvate metabolism. Pyruvate dehydrogenase activity was virtually undetectable in ΔMSMEG_2295, although in the complemented strain, it was high. We also show that knocking out of MSMEG_2295 causes resistance to H2O2, reversed in the complemented strain. We have further found that the mycobacterial growth inhibitor plumbagin, a compound of plant origin, acts as an inducer of MSMEG_2295 regulated genes. We, therefore, establish that MSMEG_2295 functions by exerting its role as a repressor of multiple Msm genes and that by doing so, it plays a vital role in controlling pyruvate metabolism and response to oxidative stress.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Mutación , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , Naftoquinonas/farmacología , Regiones Operadoras Genéticas , Operón/genética , Regiones Promotoras Genéticas , Ácido Pirúvico/metabolismo , Proteínas Represoras/genética , Superóxidos/metabolismo
7.
Microbiologyopen ; 10(5): e1245, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34713608

RESUMEN

Temperate phages are bacterial viruses that after infection either reside integrated into a bacterial genome as prophages forming lysogens or multiply in a lytic lifecycle. The decision between lifestyles is determined by a switch involving a phage-encoded repressor, CI, and a promoter region from which lytic and lysogenic genes are divergently transcribed. Here, we investigate the switch of phage ɸ13 from the human pathogen Staphylococcus aureus. ɸ13 encodes several virulence factors and is prevalent in S. aureus strains colonizing humans. We show that the ɸ13 switch harbors a cI gene, a predicted mor (modulator of repression) gene, and three high-affinity operator sites binding CI. To quantify the decision between lytic and lysogenic lifestyle, we introduced reporter plasmids that carry the 1.3 kb switch region from ɸ13 with the lytic promoter fused to lacZ into S. aureus and Bacillus subtilis. Analysis of ß-galactosidase expression indicated that decision frequency is independent of host factors. The white "lysogenic" phenotype, which relies on the expression of cI, could be switched to a stable blue "lytic" phenotype by DNA damaging agents. We have characterized lifestyle decisions of phage ɸ13, and our approach may be applied to other temperate phages encoding virulence factors in S. aureus.


Asunto(s)
Bacteriólisis , Lisogenia , Proteínas Represoras/genética , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/fisiología , Staphylococcus aureus/virología , Proteínas Virales/genética , Proteínas Reguladoras y Accesorias Virales/genética , Toxinas Bacterianas/genética , Daño del ADN , ADN Intergénico , Exotoxinas/genética , Genes Virales , Humanos , Leucocidinas/genética , Regiones Operadoras Genéticas , Fenotipo , Plásmidos , Profagos/fisiología , Proteínas Represoras/metabolismo , Staphylococcus aureus/crecimiento & desarrollo , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Factores de Virulencia/genética
8.
Sci Prog ; 104(2): 368504211023276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34143692

RESUMEN

Recent advancements in sequencing methods have led to significant increase in sequencing data. Increase in sequencing data leads to research challenges such as storage, transfer, processing, etc. data compression techniques have been opted to cope with the storage of these data. There have been good achievements in compression ratio and execution time. This fast-paced advancement has raised major concerns about the security of data. Confidentiality, integrity, authenticity of data needs to be ensured. This paper presents a novel lossless reference-free algorithm that focuses on data compression along with encryption to achieve security in addition to other parameters. The proposed algorithm uses preprocessing of data before applying general-purpose compression library. Genetic algorithm is used to encrypt the data. The technique is validated with experimental results on benchmark datasets. Comparative analysis with state-of-the-art techniques is presented. The results show that the proposed method achieves better results in comparison to existing methods.


Asunto(s)
Compresión de Datos , Algoritmos , Confidencialidad , Compresión de Datos/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Regiones Operadoras Genéticas
9.
Methods Mol Biol ; 2323: 67-73, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086274

RESUMEN

For structural, biochemical, or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows for efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA-protein coexpression in order to express and purify RNA by affinity in native condition. As a proof of concept, we present the expression and the purification of the AtRNA-mala in complex with the MS2 coat protein.


Asunto(s)
Cromatografía de Afinidad/métodos , Clonación Molecular/métodos , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/química , Proteínas de Unión al ARN/aislamiento & purificación , ARN/aislamiento & purificación , Ampicilina/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Cápside , Cloranfenicol/farmacología , Simulación por Computador , Farmacorresistencia Microbiana/genética , Electroforesis en Gel de Poliacrilamida/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Levivirus/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Operadoras Genéticas , Plásmidos/genética , ARN/biosíntesis , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Viral/genética , ARN Viral/aislamiento & purificación , Proteínas de Unión al ARN/biosíntesis
10.
J Bacteriol ; 203(10)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33649145

RESUMEN

The bacterium Listeria monocytogenes ubiquitously occurs in the environment but can cause severe invasive disease in susceptible individuals when ingested. We recently identified the L. monocytogenes genes lieAB and lftRS, encoding a multidrug resistance ABC transporter and a regulatory module, respectively. These genes jointly mediate resistance against aurantimycin, an antibiotic produced by the soil-dwelling species Streptomyces aurantiacus, and thus contribute to the survival of L. monocytogenes in its natural habitat, the soil. Repression of lieAB and lftRS is exceptionally tight but strongly induced in the presence of aurantimycin. Repression depends on LftR, which belongs to subfamily 2 of the PadR-like transcriptional repressors. To better understand this interesting class of transcriptional repressors, we here deduce the LftR operator sequence from a systematic truncation and mutation analysis of the P lieAB promoter. The sequence identified is also present in the P lftRS promoter but not found elsewhere in the chromosome. Mutational analysis of the putative operator in the P lftRS promoter confirmed its relevance for LftR-dependent repression. The proposed operator sequence was sufficient for DNA binding by LftR in vitro, and a mutation in this sequence affected aurantimycin resistance. Our results provide further insights into the transcriptional adaptation of an important human pathogen to survive the conditions in its natural reservoir.IMPORTANCEListeria monocytogenes is an environmental bacterium that lives in the soil but can infect humans upon ingestion, and this can lead to severe invasive disease. Adaptation to these entirely different habitats involves massive reprogramming of transcription. Among the differentially expressed genes is the lieAB operon, which encodes a transporter for the detoxification of aurantimycin, an antimicrobial compound produced by soil-dwelling competitors. While lieAB is important for survival in the environment, its expression is detrimental during infection. We here identify critical elements in the lieAB promoter and its transcriptional regulator LftR that contribute to habitat-specific expression of the lieAB genes. These results further clarify the molecular mechanisms underlying the aurantimycin resistance of L. monocytogenes.


Asunto(s)
Antibacterianos/farmacología , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Proteínas Represoras/química
11.
Sci Rep ; 11(1): 4255, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608564

RESUMEN

Several DNA-binding proteins show the affinities for their specific DNA sites that positively depend on the length of DNA harboring the sites, i. e. antenna effect. DNA looping can cause the effect for proteins with two or more DNA binding sites, i. e. the looping mechanism. One-dimensional diffusion also has been suggested to cause the effect for proteins with single DNA sites, the diffusion mechanism, which could violate detailed balance. We addressed which mechanism is possible for E. coli TrpR showing 104-fold antenna effect with a single DNA binding site. When a trpO-harboring DNA fragment was connected to a nonspecific DNA with biotin-avidin connection, the otherwise sevenfold antenna effect disappeared. This result denies the looping mechanism with an unknown second DNA binding site. The 3.5-fold repression by TrpR in vivo disappeared when a tight LexA binding site was introduced at various sites near the trpO, suggesting that the binding of LexA blocks one-dimensional diffusion causing the antenna effect. These results are consistent with the chemical ratchet recently proposed for TrpR-trpO binding to solve the deviation from detailed balance, and evidence that the antenna effect due to one-dimensional diffusion exists in cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Regiones Operadoras Genéticas , Proteínas Represoras/metabolismo , Algoritmos , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/genética , Cinética , Modelos Biológicos , Modelos Teóricos , Conformación de Ácido Nucleico , Unión Proteica , Serina Endopeptidasas/metabolismo
12.
Nat Commun ; 12(1): 325, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436562

RESUMEN

A crucial step towards engineering biological systems is the ability to precisely tune the genetic response to environmental stimuli. In the case of Escherichia coli inducible promoters, our incomplete understanding of the relationship between sequence composition and gene expression hinders our ability to predictably control transcriptional responses. Here, we profile the expression dynamics of 8269 rationally designed, IPTG-inducible promoters that collectively explore the individual and combinatorial effects of RNA polymerase and LacI repressor binding site strengths. We then fit a statistical mechanics model to measured expression that accurately models gene expression and reveals properties of theoretically optimal inducible promoters. Furthermore, we characterize three alternative promoter architectures and show that repositioning binding sites within promoters influences the types of combinatorial effects observed between promoter elements. In total, this approach enables us to deconstruct relationships between inducible promoter elements and discover practical insights for engineering inducible promoters with desirable characteristics.


Asunto(s)
Isopropil Tiogalactósido/farmacología , Lógica , Regiones Promotoras Genéticas , Sitios de Unión , Fenómenos Biofísicos , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Fluorescencia , Genes Reporteros , Mutación/genética , Regiones Operadoras Genéticas/genética , Unión Proteica , Reproducibilidad de los Resultados , Termodinámica , Factores de Transcripción/metabolismo
13.
Nucleic Acids Res ; 49(7): e39, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33511418

RESUMEN

Proteins that can bring together separate DNA sites, either on the same or on different DNA molecules, are critical for a variety of DNA-based processes. However, there are no general and technically simple assays to detect proteins capable of DNA looping in vivo nor to quantitate their in vivo looping efficiency. Here, we develop a quantitative in vivo assay for DNA-looping proteins in Escherichia coli that requires only basic DNA cloning techniques and a LacZ assay. The assay is based on loop assistance, where two binding sites for the candidate looping protein are inserted internally to a pair of operators for the E. coli LacI repressor. DNA looping between the sites shortens the effective distance between the lac operators, increasing LacI looping and strengthening its repression of a lacZ reporter gene. Analysis based on a general model for loop assistance enables quantitation of the strength of looping conferred by the protein and its binding sites. We use this 'loopometer' assay to measure DNA looping for a variety of bacterial and phage proteins.


Asunto(s)
Técnicas de Química Analítica , ADN Bacteriano/genética , Proteínas de Escherichia coli/química , Escherichia coli/genética , Operón Lac , Represoras Lac/química , Bacteriófago lambda/genética , Sitios de Unión , Proteínas de Escherichia coli/genética , Represoras Lac/genética , Conformación de Ácido Nucleico , Regiones Operadoras Genéticas , Unión Proteica , Proteínas Represoras/genética , Proteínas Reguladoras y Accesorias Virales/genética
14.
Nucleic Acids Res ; 49(3): 1397-1410, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33476373

RESUMEN

In most bacteria, efficient use of carbohydrates is primarily mediated by the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), which concomitantly phosphorylates the substrates during import. Therefore, transcription of the PTS-encoding genes is precisely regulated by transcriptional regulators, depending on the availability of the substrate. Fructose is transported mainly through the fructose-specific PTS (PTSFru) and simultaneously converted into fructose 1-phosphate (F1P). In Gammaproteobacteria such as Escherichia coli and Pseudomonas putida, transcription of the fru operon encoding two PTSFru components, FruA and FruB, and the 1-phosphofructokinase FruK is repressed by FruR in the absence of the inducer F1P. Here, we show that, contrary to the case in other Gammaproteobacteria, FruR acts as a transcriptional activator of the fru operon and is indispensable for the growth of Vibrio cholerae on fructose. Several lines of evidence suggest that binding of the FruR-F1P complex to an operator which is located between the -35 and -10 promoter elements changes the DNA structure to facilitate RNA polymerase binding to the promoter. We discuss the mechanism by which the highly conserved FruR regulates the expression of its target operon encoding the highly conserved PTSFru and FruK in a completely opposite direction among closely related families of bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Fructosafosfatos/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Activación Transcripcional , Vibrio cholerae/genética , Sitios de Unión , ADN Bacteriano/metabolismo , Fructosa/metabolismo , Regiones Operadoras Genéticas , Operón , Regiones Promotoras Genéticas , Unión Proteica , Vibrio cholerae/metabolismo
15.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260607

RESUMEN

Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina , Toxinas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano/genética , Modelos Biológicos , Regiones Operadoras Genéticas/genética , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Transcripción Genética
16.
J Biol Chem ; 295(50): 17298-17309, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33055234

RESUMEN

The faithful segregation, or "partition," of many low-copy number bacterial plasmids is driven by plasmid-encoded ATPases that are represented by the P1 plasmid ParA protein. ParA binds to the bacterial nucleoid via an ATP-dependent nonspecific DNA (nsDNA)-binding activity, which is essential for partition. ParA also has a site-specific DNA-binding activity to the par operator (parOP), which requires either ATP or ADP, and which is essential for it to act as a transcriptional repressor but is dispensable for partition. Here we examine how DNA binding by ParA contributes to the relative distribution of its plasmid partition and repressor activities, using a ParA with an alanine substitution at Arg351, a residue previously predicted to participate in site-specific DNA binding. In vivo, the parAR351A allele is compromised for partition, but its repressor activity is dramatically improved so that it behaves as a "super-repressor." In vitro, ParAR351A binds and hydrolyzes ATP, and undergoes a specific conformational change required for nsDNA binding, but its nsDNA-binding activity is significantly damaged. This defect in turn significantly reduces the assembly and stability of partition complexes formed by the interaction of ParA with ParB, the centromere-binding protein, and DNA. In contrast, the R351A change shows only a mild defect in site-specific DNA binding. We conclude that the partition defect is due to altered nsDNA binding kinetics and affinity for the bacterial chromosome. Furthermore, the super-repressor phenotype is explained by an increased pool of non-nucleoid bound ParA that is competent to bind parOP and repress transcription.


Asunto(s)
Bacteriófago P1/metabolismo , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Bacteriófago P1/química , Bacteriófago P1/genética , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , ADN Primasa/química , ADN Primasa/genética , ADN Primasa/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/virología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Missense , Regiones Operadoras Genéticas , Proteínas Virales/química , Proteínas Virales/genética
17.
Sci Rep ; 10(1): 15624, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973254

RESUMEN

We scrutinize the length dependency of the binding affinity of bacterial repressor TrpR protein to trpO (specific site) on DNA. A footprinting experiment shows that the longer the DNA length, the larger the affinity of TrpR to the specific site on DNA. This effect termed "antenna effect" might be interpreted as follows: longer DNA provides higher probability for TrpR to access to the specific site aided by one-dimensional diffusion along the nonspecific sites of DNA. We show that, however, the antenna effect cannot be explained while detailed balance holds among three kinetic states, that is, free protein/DNA, nonspecific complexes, and specific complex. We propose a working hypothesis that slow degree(s) of freedom in the system switch(es) different potentials of mean force causing transitions among the three states. This results in a deviation from detailed balance on the switching timescale. We then derive a simple reaction diffusion/binding model that describes the antenna effect on TrpR binding to its target operator. Possible scenarios for such slow degree(s) of freedom in TrpR-DNA complex are addressed.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Modelos Teóricos , Regiones Operadoras Genéticas , Proteínas Represoras/metabolismo , Sitios de Unión , Escherichia coli/genética , Unión Proteica
18.
Proc Natl Acad Sci U S A ; 117(34): 20576-20585, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32788352

RESUMEN

Temperate bacteriophages can enter one of two life cycles following infection of a sensitive host: the lysogenic or the lytic life cycle. The choice between the two alternative life cycles is dependent upon a tight regulation of promoters and their cognate regulatory proteins within the phage genome. We investigated the genetic switch of TP901-1, a bacteriophage of Lactococcus lactis, controlled by the CI repressor and the modulator of repression (MOR) antirepressor and their interactions with DNA. We determined the solution structure of MOR, and we solved the crystal structure of MOR in complex with the N-terminal domain of CI, revealing the structural basis of MOR inhibition of CI binding to the DNA operator sites. 15N NMR Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion and rotating frame R1ρ measurements demonstrate that MOR displays molecular recognition dynamics on two different time scales involving a repacking of aromatic residues at the interface with CI. Mutations in the CI:MOR binding interface impair complex formation in vitro, and when introduced in vivo, the bacteriophage switch is unable to choose the lytic life cycle showing that the CI:MOR complex is essential for proper functioning of the genetic switch. On the basis of sequence alignments, we show that the structural features of the MOR:CI complex are likely conserved among a larger family of bacteriophages from human pathogens implicated in transfer of antibiotic resistance.


Asunto(s)
Bacteriófagos/fisiología , Lisogenia , Proteínas Represoras/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Genoma Bacteriano , Interacciones Huésped-Patógeno , Cinética , Lactococcus lactis/virología , Simulación de Dinámica Molecular , Regiones Operadoras Genéticas , Conformación Proteica , Proteínas Represoras/química , Proteínas Reguladoras y Accesorias Virales/química
19.
J Biochem ; 168(6): 659-668, 2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-32702081

RESUMEN

Antirepressor proteins of bacteriophages are chiefly involved in interfering with the function of the repressor protein and forcing the bacteriophage to adopt the lytic cycle. The genome of Staphylococcus aureus phage, Phi11 has already been sequenced; from the genome sequence, we amplified gp07 gene and analysed its involvement in the developmental pathway of Phi11. Our results indicate that Gp07 functions as a novel antirepressor and regulates the developmental pathway of Phi11 by enhancing the binding of the Cro repressor protein to its cognate operator. We also report our finding that the CI repressor protein of Phi11 binds to the putative operator of Gp07 and regulates its expression. We further report that S.aureus transcriptional repressor LexA and coprotease RecA play a crucial role in the lytic-lysogenic switching in Phi11. We also identified that the N-terminal domain (Bro-N) of Gp07 is actually responsible for enhancing the binding of Cro repressor to its cognate operator. Our results suggest that Phi11 prophage induction is different from other bacteriophages. This study furnishes a first-hand report regarding the regulation involved in the developmental pathway of Phi11.


Asunto(s)
Regulación Viral de la Expresión Génica , Lisogenia/genética , Fagos de Staphylococcus/crecimiento & desarrollo , Fagos de Staphylococcus/genética , Staphylococcus aureus/virología , Proteínas Virales/metabolismo , Replicación Viral , Secuencia de Bases , Regiones Operadoras Genéticas , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Virales/genética , Integración Viral
20.
Nature ; 583(7818): 858-861, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581356

RESUMEN

Many proteins that bind specific DNA sequences search the genome by combining three-dimensional diffusion with one-dimensional sliding on nonspecific DNA1-5. Here we combine resonance energy transfer and fluorescence correlation measurements to characterize how individual lac repressor (LacI) molecules explore the DNA surface during the one-dimensional phase of target search. To track the rotation of sliding LacI molecules on the microsecond timescale, we use real-time single-molecule confocal laser tracking combined with fluorescence correlation spectroscopy (SMCT-FCS). The fluctuations in fluorescence signal are accurately described by rotation-coupled sliding, in which LacI traverses about 40 base pairs (bp) per revolution. This distance substantially exceeds the 10.5-bp helical pitch of DNA; this suggests that the sliding protein frequently hops out of the DNA groove, which would result in the frequent bypassing of target sequences. We directly observe such bypassing using single-molecule fluorescence resonance energy transfer (smFRET). A combined analysis of the smFRET and SMCT-FCS data shows that LacI hops one or two grooves (10-20 bp) every 200-700 µs. Our data suggest a trade-off between speed and accuracy during sliding: the weak nature of nonspecific protein-DNA interactions underlies operator bypassing, but also speeds up sliding. We anticipate that SMCT-FCS, which monitors rotational diffusion on the microsecond timescale while tracking individual molecules with millisecond resolution, will be applicable to the real-time investigation of many other biological interactions and will effectively extend the accessible time regime for observing these interactions by two orders of magnitude.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Regiones Operadoras Genéticas/genética , Especificidad por Sustrato , Sitios de Unión/genética , ADN/genética , Difusión , Transferencia Resonante de Energía de Fluorescencia , Cinética , Represoras Lac/metabolismo , Unión Proteica , Rotación , Imagen Individual de Molécula , Espectrometría de Fluorescencia , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...