Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 175(2): 748-62, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19590039

RESUMEN

Myotonic dystrophy 2 (DM2) is a multisystem skeletal muscle disease caused by an expansion of tetranucleotide CCTG repeats, the transcription of which results in the accumulation of untranslated CCUG RNA. In this study, we report that CCUG repeats both bind to and misregulate the biological functions of cytoplasmic multiprotein complexes. Two CCUG-interacting complexes were subsequently purified and analyzed. A major component of one of the complexes was found to be the 20S catalytic core complex of the proteasome. The second complex was found to contain CUG triplet repeat RNA-binding protein 1 (CUGBP1) and the translation initiation factor eIF2. Consistent with the biological functions of the 20S proteasome and the CUGBP1-eIF2 complexes, the stability of short-lived proteins and the levels of the translational targets of CUGBP1 were shown to be elevated in DM2 myoblasts. We found that the overexpression of CCUG repeats in human myoblasts from unaffected patients, in C2C12 myoblasts, and in a DM2 mouse model alters protein translation and degradation, similar to the alterations observed in DM2 patients. Taken together, these findings show that RNA CCUG repeats misregulate protein turnover on both the levels of translation and proteasome-mediated protein degradation.


Asunto(s)
Repeticiones de Microsatélite , Distrofia Miotónica/metabolismo , Biosíntesis de Proteínas , Proteínas/metabolismo , Regiones no Traducidas/metabolismo , Animales , Secuencia de Bases , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Ratones , Mioblastos/metabolismo , Distrofia Miotónica/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Regiones no Traducidas/genética
2.
Methods Mol Biol ; 540: 15-24, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19381549

RESUMEN

One of the most versatile riboswitch classes refers to purine nucleoside metabolism. In the cell, purine riboswitches of the respective mRNAs either act at the transcriptional or translational level and off- or on-regulate genes upon binding to their dedicated ligands. Biophysical studies on ligand-induced folding of these RNA domains in vitro contribute to understanding their regulation mechanisms in vivo. For such studies, in particular, for approaches using fluorescence spectroscopy, the preparation of large RNAs with site-specific chemical modifications is required. Here, we describe a strategy for the preparation of riboswitch aptamers and aptamers adjoined to their expression platforms by chemical synthesis and enzymatic ligation. The modular design enables fast access to a large number of purine riboswitch derivatives with the modification of interest at any strand position. We exemplarily provide a detailed protocol for the preparation of adenosine deaminase (add) A-riboswitch variants with 2-aminopurine (AP) modifications at the 40-nmol scale.


Asunto(s)
ADN Ligasas/metabolismo , Biología Molecular/métodos , Purinas/metabolismo , ARN Ligasa (ATP)/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico/genética , Regiones no Traducidas/química , Regiones no Traducidas/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Espectrometría de Masas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Purinas/química
3.
Methods Mol Biol ; 540: 25-37, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19381550

RESUMEN

Riboswitches are recently discovered messenger RNA motifs involved in gene regulation. They modulate gene expression at various levels, such as transcription, translation, splicing, and mRNA degradation. Because riboswitches exhibit relatively complex structures, they are able to form highly complex ligand-binding sites, which enable the specific recognition of target metabolites in a complex cellular environment. Practically in all studied cases, riboswitches use ligand-induced conformational changes to control gene expression. To monitor the structural reorganization of riboswitches, we use the local fluorescent reporter 2-aminopurine (2AP), which is a structural analog of adenine. The 2AP fluorescence is strongly quenched when the fluorophore is involved in stacking interactions with surrounding bases, and can, therefore, be used to monitor local structural rearrangements. Here, we show specific examples in which 2AP fluorescence can be used to monitor structural changes in the aptamer domain of the S-adenosyl methionine (SAM) riboswitch and where it can be used as a ligand for the guanine riboswitch.


Asunto(s)
Mediciones Luminiscentes/métodos , Secuencias Reguladoras de Ácido Ribonucleico/genética , Regiones no Traducidas/metabolismo , 2-Aminopurina/química , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , Electroforesis en Gel de Poliacrilamida , Ligandos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Espectrometría de Fluorescencia , Transcripción Genética , Regiones no Traducidas/química , Regiones no Traducidas/genética
4.
Biophys J ; 96(2): L7-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19167285

RESUMEN

Riboswitches are noncoding RNAs that regulate gene expression in response to changing concentrations of specific metabolites. Switching activity is affected by the interplay between the aptamer domain and expression platform of the riboswitch. The aptamer domain binds the metabolite, locking the riboswitch in a ligand-bound conformation. In absence of the metabolite, the expression platform forms an alternative secondary structure by sequestering the 3' end of a nonlocal helix called P1. We use all-atom structure-based simulations to characterize the folding, unfolding, and metabolite binding of the aptamer domain of the S-adenosylmethionine-1 (SAM-1) riboswitch. Our results suggest that folding of the nonlocal helix (P1) is rate-limiting in aptamer domain formation. Interestingly, SAM assists folding of the P1 helix by reducing the associated free energy barrier. Because the 3' end of the P1 helix is sequestered by an alternative helix in the absence of metabolites, this observed ligand-control of P1 formation provides a mechanistic explanation of expression platform regulation.


Asunto(s)
Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/metabolismo , S-Adenosilmetionina/metabolismo , Regiones no Traducidas/química , Regiones no Traducidas/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Simulación por Computador , Modelos Moleculares , Termodinámica
5.
Genome Biol ; 9(12): R169, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19055728

RESUMEN

BACKGROUND: There is increasing realization that regulation of genes is done partly at the RNA level by sense-antisense binding. Studies typically concentrate on the role of non-coding RNAs in regulating coding RNA. But the majority of transcripts in a cell are likely to be coding. Is it possible that coding RNA might regulate other coding RNA by short perfect sense-antisense binding? Here we compare all well-described human protein coding mRNAs against all others to identify sites 15-25 bp long that could potentially perfectly match sense-antisense. RESULTS: From 24,968 protein coding mRNA RefSeq sequences, none failed to find at least one match in the transcriptome. By randomizations generating artificial transcripts matched for G+C content and length, we found that there are more such trans short sense-antisense pairs than expected. Several further features are consistent with functionality of some of the putative matches. First, transcripts with more potential partners have lower expression levels, and the pair density of tissue specific genes is significantly higher than that of housekeeping genes. Further, the single nucleotide polymorphism density is lower in short pairing regions than it is in flanking regions. We found no evidence that the sense-antisense pairing regions are associated with small RNAs derived from the protein coding genes. CONCLUSIONS: Our results are consistent with the possibility of common short perfect sense-antisense pairing between transcripts of protein coding genes.


Asunto(s)
Regulación de la Expresión Génica , Proteínas/genética , ARN sin Sentido/metabolismo , ARN Mensajero/metabolismo , Elementos Alu , Emparejamiento Base , Humanos , Polimorfismo de Nucleótido Simple , Regiones no Traducidas/metabolismo
6.
PLoS Biol ; 6(10): e255, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18959479

RESUMEN

RNA-binding proteins (RBPs) have roles in the regulation of many post-transcriptional steps in gene expression, but relatively few RBPs have been systematically studied. We searched for the RNA targets of 40 proteins in the yeast Saccharomyces cerevisiae: a selective sample of the approximately 600 annotated and predicted RBPs, as well as several proteins not annotated as RBPs. At least 33 of these 40 proteins, including three of the four proteins that were not previously known or predicted to be RBPs, were reproducibly associated with specific sets of a few to several hundred RNAs. Remarkably, many of the RBPs we studied bound mRNAs whose protein products share identifiable functional or cytotopic features. We identified specific sequences or predicted structures significantly enriched in target mRNAs of 16 RBPs. These potential RNA-recognition elements were diverse in sequence, structure, and location: some were found predominantly in 3'-untranslated regions, others in 5'-untranslated regions, some in coding sequences, and many in two or more of these features. Although this study only examined a small fraction of the universe of yeast RBPs, 70% of the mRNA transcriptome had significant associations with at least one of these RBPs, and on average, each distinct yeast mRNA interacted with three of the RBPs, suggesting the potential for a rich, multidimensional network of regulation. These results strongly suggest that combinatorial binding of RBPs to specific recognition elements in mRNAs is a pervasive mechanism for multi-dimensional regulation of their post-transcriptional fate.


Asunto(s)
ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Bases de Datos de Proteínas , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Regiones no Traducidas/genética , Regiones no Traducidas/metabolismo
7.
Trends Plant Sci ; 13(10): 526-33, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18778966

RESUMEN

Riboswitches are natural RNA sensors that affect post-transcriptional processes via their capacity to bind small molecules. To date, these mRNA structures have been shown to regulate the biosynthesis of essential metabolites, including vitamins and amino acids. Although bacterial riboswitches are widespread and characterized, only a single eukaryotic, thiamin-pyrophosphate-binding riboswitch has recently been discovered to direct gene expression by regulating mRNA splicing in fungi, green algae and land plants. It is unclear how widespread riboswitches are and what additional roles they have in eukaryotes. When engineered in plants, riboswitches can function autonomously to modulate gene expression. These discoveries not only trigger novel findings regarding RNA switches in plants, but also spur the exploitation of riboswitches for monitoring metabolite concentrations in planta.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , ARN Mensajero/metabolismo , Tiamina Pirofosfato/metabolismo , Regiones no Traducidas/metabolismo , Evolución Molecular , Ingeniería Genética , ARN de Planta/metabolismo
8.
Biochem Biophys Res Commun ; 374(4): 758-62, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18671938

RESUMEN

There are seven genes encoding eight protein isoforms of the translation initiation factor 4E (eIF4E) in Drosophila. One of these genes, eIF4E-1,2, gives rise to three mRNAs with different 5'-untranslated regions (5'UTRs) through alternative splicing regulated by Haf pint (Hfp) in the ovary. eIF4E-1a and eIF4E-1b mRNAs encode the eIF4E-I protein, whereas eIF4E-2 mRNA encodes the eIF4E-II protein. We report here that Hfp regulates alternative splicing of eIF4E-1,2 pre-mRNA during Drosophila development in a sex-independent way. Hfp RNA interference-mediated knockdown in Drosophila S2 cells reproduces the eIF4E-1,2 gene expression found in development. Interestingly, 5'UTRs of eIF4E-1a and -1b isoforms, unlike the eIF4E-2 5'UTR, promote a significant increase in the translation efficiency of a luciferase-encoding chimeric mRNA. Thus, these results suggest that the eIF4E-1,2 gene is regulated by Hfp through a mechanism linked to transcription control and 3' splice site selection, which determines the pattern and translation efficiency of eIF4E-1,2 mRNAs.


Asunto(s)
Empalme Alternativo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Factor 4E Eucariótico de Iniciación/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Animales , Drosophila melanogaster/genética , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Masculino , Sitios de Empalme de ARN , Regiones no Traducidas/metabolismo
10.
Nat Genet ; 40(8): 977-86, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18641648

RESUMEN

We have determined the high-resolution strand-specific transcriptome of the fission yeast S. pombe under multiple growth conditions using a novel RNA-DNA hybridization mapping (HybMap) technique. HybMap uses an antibody against an RNA-DNA hybrid to detect RNA molecules hybridized to a high-density DNA oligonucleotide tiling microarray. HybMap showed exceptional dynamic range and reproducibility, and allowed us to identify strand-specific coding, noncoding and structural RNAs, as well as previously unknown RNAs conserved in distant yeast species. Notably, we found that virtually the entire euchromatic genome (including intergenics) is transcribed, with heterochromatin dampening intergenic transcription. We identified features including large numbers of condition-specific noncoding RNAs, extensive antisense transcription, new properties of antisense transcripts and induced divergent transcription. Furthermore, our HybMap data informed the efficiency and locations of RNA splicing genome-wide. Finally, we observed strand-specific transcription islands around tRNAs at heterochromatin boundaries inside centromeres. Here, we discuss these new features in terms of organism fitness and transcriptome evolution.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hibridación de Ácido Nucleico/métodos , Schizosaccharomyces/genética , Mapeo Cromosómico , Cromosomas Fúngicos/metabolismo , Procesamiento Postranscripcional del ARN , Schizosaccharomyces/metabolismo , Transcripción Genética , Regiones no Traducidas/metabolismo
11.
Science ; 319(5871): 1795-7, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18369140

RESUMEN

Using simple biochemical tricks, metabolite-binding riboswitches take on gene control functions that have long been thought to be the work of protein factors. Although modern riboswitches might be the last holdouts of primitive genetic elements, some are capable of sensory and regulatory feats that are competitive with their protein counterparts.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Regulación de la Expresión Génica , ARN Mensajero/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Regiones no Traducidas/genética , Empalme Alternativo , Bacterias/genética , Hongos/genética , Cinética , Ligandos , Conformación de Ácido Nucleico , Plantas/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Termodinámica , Regiones no Traducidas/química , Regiones no Traducidas/metabolismo
12.
Nucleic Acids Res ; 35(16): 5568-80, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17704135

RESUMEN

Guanine riboswitches negatively modulate transcription upon guanine binding. The aptamer domain is organized around a three-way junction which forms the ligand binding site. Using currently available 89 guanine aptamer sequences, a consensus secondary structure is deduced and reveals differences from the previously identified aptamer consensus. Three positions are found to display different nucleotide requirements. Using a 2-aminopurine binding assay, we show that variations are allowed depending on the aptamer context. However, changes at position 48 markedly decrease ligand binding in a context-independent fashion. This is consistent with previous observations with the adenine riboswitch in which position 48 was proposed to interact with position 74, which normally base pairs with the ligand. The in vivo transcriptional control of endogenous Bacillus subtilis guanine riboswitches was studied using RT-qPCR assays. The ratio of elongated/terminated transcripts is decreased in presence of a high concentration of guanine but is dependent on the riboswitch analyzed. In general, the aptamer-2AP complex affinity correlates well with the in vivo regulation efficiency of the corresponding riboswitch. These studies suggest that core variations of guanine aptamers are used to produce a spectrum of ligand binding affinities which is used in vivo by host riboswitches to perform gene regulation.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Guanina/química , Secuencias Reguladoras de Ácido Ribonucleico , Transcripción Genética , Regiones no Traducidas/química , 2-Aminopurina/química , Bacillus subtilis/genética , Secuencia de Bases , Secuencia de Consenso , Colorantes Fluorescentes/química , Ligandos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Regiones no Traducidas/metabolismo
13.
J Virol ; 81(16): 8396-405, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17537861

RESUMEN

Both untranslated regions (UTRs) of plus-strand RNA virus genomes jointly control translation and replication of viral genomes. In the case of the Enterovirus genus of the Picornaviridae family, the 5'UTR consists of a cloverleaf-like terminus preceding the internal ribosomal entry site (IRES) and the 3' terminus is composed of a structured 3'UTR and poly(A). The IRES and poly(A) have been implicated in translation control, and all UTR structures, in addition to cis-acting genetic elements mapping to the open reading frame, have been assigned roles in RNA replication. Viral UTRs are recognized by viral and host cell RNA-binding proteins that may co-determine genome stability, translation, plus- and minus-strand RNA replication, and scaffolding of viral replication complexes within host cell substructures. In this report, we describe experiments with coxsackie B viruses with a cell type-specific propagation deficit in Sk-N-Mc neuroblastoma cells conferred by the combination of a heterologous IRES and altered 3'UTR. Serial passage of these constructs in Sk-N-Mc cells yielded genetic adaptation by mutations within the viral nonstructural proteins 3A and 3C. Our data implicate 3A and/or 3C or their precursors 3AB and/or 3CD in a functional complex with the IRES and 3'UTR that drives viral propagation. Adaptation to neuroblastoma cells suggests an involvement of cell type-specific host factors or the host cell cytoplasmic milieu in this phenomenon.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Enterovirus Humano B/fisiología , ARN Viral/metabolismo , Regiones no Traducidas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo , Proteasas Virales 3C , Secuencia de Aminoácidos , Línea Celular Tumoral , Cisteína Endopeptidasas/genética , Enterovirus Humano B/genética , Genoma Viral/genética , Humanos , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , Regiones no Traducidas/química , Regiones no Traducidas/genética , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética , Replicación Viral
14.
Nucleic Acids Res ; 35(11): 3713-22, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17517779

RESUMEN

The thiM riboswitch contains an aptamer domain that adaptively binds the coenzyme thiamine pyrophosphate (TPP). The binding of TPP to the aptamer domain induces structural rearrangements that are relayed to a second domain, the so-called expression domain, thereby interfering with gene expression. The recently solved crystal structures of the aptamer domains of the thiM riboswitches in complex with TPP revealed how TPP stabilizes secondary and tertiary structures in the RNA ligand complex. To understand the global modes of reorganization between the two domains upon metabolite binding the structure of the entire riboswitch in presence and absence of TPP needs to be determined. Here we report the secondary structure of the entire thiM riboswitch from Escherichia coli in its TPP-free form and its transition into the TPP-bound variant, thereby depicting domains of the riboswitch that serve as communication links between the aptamer and the expression domain. Furthermore, structural probing provides an explanation for the lack of genetic control exerted by a riboswitch variant with mutations in the expression domain that still binds TPP.


Asunto(s)
Escherichia coli/genética , ARN Bacteriano/química , Secuencias Reguladoras de Ácido Ribonucleico , Regiones no Traducidas/química , Secuencia de Bases , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , ARN Bacteriano/metabolismo , Tiamina Pirofosfato/metabolismo , Regiones no Traducidas/metabolismo
15.
Biochemistry ; 46(22): 6488-99, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17488094

RESUMEN

More than four years have passed since the outbreak of the severe acute respiratory syndrome (SARS) epidemic, and still very little is known about the molecular biology and pathogenesis of this deadly virus. Among the accessory proteins of the SARS coronavirus (SARS-CoV), the 3a protein has been shown to interact with the spike, envelope, and membrane glycoprotein and has recently been established to be a structural component of capsid. Recent studies suggest that the 3a protein may function as an ion channel and may promote virus release. In order to further characterize the functional properties of this protein, we initiated studies to check its RNA binding activity. Using the yeast three-hybrid system, electrophoretic mobility shift assay (EMSA), and ultraviolet (UV) cross-linking techniques, we have shown that the 3a protein is capable of binding specifically to the 5' untranslated region (5'UTR) of the SARS virus genomic RNA. Further, we have mapped the interaction domain of the 3a protein responsible for this RNA-protein interaction using a series of deletion mutants and defined it to the central 75 amino acid region. This RNA binding motif of 3a does not share homology with any other known RNA binding protein and may have an important role in viral capsid assembly and pathogenesis.


Asunto(s)
Proteínas de la Nucleocápside/química , ARN Viral/química , Proteínas de Unión al ARN/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Regiones no Traducidas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ensayo de Cambio de Movilidad Electroforética , Eliminación de Gen , Regulación Viral de la Expresión Génica , Genoma , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Unión Proteica , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos , Rayos Ultravioleta , Regiones no Traducidas/genética , Regiones no Traducidas/metabolismo
16.
Microbiology (Reading) ; 153(Pt 3): 693-700, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17322189

RESUMEN

In vitro experiments have shown that the genes of the de novo pyrimidine biosynthetic pathway of Bacillus subtilis, the pyr genes, are regulated by a transcriptional attenuation mechanism. Specific regulatory sequences (binding loops, BLs) are located within three untranslated leader sequences at the beginning of pyr mRNA. These binding loops, BL1, BL2 and BL3, act as anti-antiterminators of transcription when stabilized by the regulator protein PyrR. In this work, the interaction of PyrR with BL1, BL2 and BL3 was qualitatively and quantitatively analysed in vivo using the yeast three-hybrid system. The results indicate that PyrR specifically binds to BL1, BL2 and BL3. Furthermore, the data suggest that the strength of interaction between PyrR and the three different BLs in vivo is within the same dimension. The yeast three-hybrid system also proved to be useful for the rapid analysis of structural requirements for PyrR-BL binding. Point mutations within the predicted critical regions of BL1, BL2 and BL3 led to drastically reduced binding of PyrR. In summary, it is shown that the yeast three-hybrid system is well suited to qualitatively and quantitatively analyse bacterial regulatory systems that are based on factor-independent transcriptional attenuation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Pentosiltransferasa/metabolismo , Pirimidinas/biosíntesis , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Regiones no Traducidas/metabolismo , Bacillus subtilis/genética , Sitios de Unión/genética , Modelos Biológicos , Mutación Puntual , Unión Proteica , ARN Bacteriano/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
J Neurosci Res ; 85(1): 173-83, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17086542

RESUMEN

Regulation of mRNA translation is a key step in mediating neuronal polarity during differentiation, insofar as neuronal polarity is partially determined by local translation of specific mRNA molecules as dendrites and axons are emanating. The multiplicity of mRNA-binding proteins in neurons plays an essential role in controlling mRNA translation. These proteins are associated with ribosomes and translation factors, thereby regulating both temporally and spatially the translation process. In a previous study, we have shown an association among the tau mRNA-binding proteins HuD, IMP1, and G3BP1 with translating polysomes in P19 neurons. In the present study, we determined the dynamics of the association among G3BP1, IMP1, and HuD with polysomes through P19 neuronal differentiation as well as the functional effect of these proteins on tau mRNA translation. We show a novel, differentiation-dependent association of these proteins with polysomes. In addition, we show a strong, negative effect on translation of the tau mRNA by IMP1, G3BP1, and HuD proteins in HEK-293 cells. To our knowledge this is the first observation of a direct translational role of G3BP1 for any mRNA and the first report of a translation inhibition by IMP1 and HuD on the tau mRNA in a cell system. The translation inhibition is shown to be mediated by the tau mRNA 3'untranslated regions (UTRs), thus giving a new, translational role for these sequences, which were previously implicated in mRNA stabilization. We also define a novel mechanism for IMP1 binding to tau mRNA, which suggests a conformational binding, which is not sequence dependent.


Asunto(s)
Diferenciación Celular/fisiología , Polirribosomas/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN/fisiología , Regiones no Traducidas/metabolismo , Proteínas tau/genética , Animales , Northern Blotting/métodos , Línea Celular Tumoral , Humanos , Ratones , Células Madre Neoplásicas , Neuronas/metabolismo , Estructura Terciaria de Proteína/fisiología , ARN Mensajero/metabolismo , Transfección/métodos
18.
Plant Cell ; 18(12): 3443-57, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17189340

RESUMEN

BEL1-like transcription factors interact with Knotted1 types to regulate numerous developmental processes. In potato (Solanum tuberosum), the BEL1 transcription factor St BEL5 and its protein partner POTH1 regulate tuber formation by mediating hormone levels in the stolon tip. The accumulation of St BEL5 RNA increases in response to short-day photoperiods, inductive for tuber formation. RNA detection methods and heterografting experiments demonstrate that BEL5 transcripts are present in phloem cells and move across a graft union to localize in stolon tips, the site of tuber induction. This movement of RNA to stolon tips is correlated with enhanced tuber production. Overexpression of BEL5 transcripts that include the untranslated sequences of the BEL5 transcript endows transgenic lines with the capacity to overcome the inhibitory effects of long days on tuber formation. Addition of the untranslated regions leads to preferential accumulation of the BEL5 RNA in stolon tips under short-day conditions. Using a leaf-specific promoter, the movement of BEL5 RNA to stolon tips was facilitated by a short-day photoperiod, and this movement was correlated with enhanced tuber production. These results implicate the transcripts of St BEL5 in a long-distance signaling pathway that are delivered to the target organ via the phloem stream.


Asunto(s)
Transporte de ARN , ARN de Planta/metabolismo , Transducción de Señal , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Glucuronidasa/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Floema/citología , Floema/efectos de la radiación , Fotoperiodo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/metabolismo , Tallos de la Planta/efectos de la radiación , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Transporte de ARN/efectos de la radiación , Transducción de Señal/efectos de la radiación , Solanum tuberosum/efectos de la radiación , Regiones no Traducidas/metabolismo
20.
Science ; 314(5807): 1903-8, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17185597

RESUMEN

Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by approximately 30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator or enzyme.


Asunto(s)
Apoferritinas/genética , Proteína 1 Reguladora de Hierro/química , Proteína 1 Reguladora de Hierro/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico , Elementos de Respuesta , Regiones no Traducidas/química , Regiones no Traducidas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Enlace de Hidrógeno , Hierro/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...