Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.811
Filtrar
1.
J Biol Chem ; 299(6): 104777, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142222

RESUMEN

Mycobacterium tuberculosis (Mtb) WhiB3 is an iron-sulfur cluster-containing transcription factor belonging to a subclass of the WhiB-Like (Wbl) family that is widely distributed in the phylum Actinobacteria. WhiB3 plays a crucial role in the survival and pathogenesis of Mtb. It binds to the conserved region 4 of the principal sigma factor (σA4) in the RNA polymerase holoenzyme to regulate gene expression like other known Wbl proteins in Mtb. However, the structural basis of how WhiB3 coordinates with σA4 to bind DNA and regulate transcription is unclear. Here we determined crystal structures of the WhiB3:σA4 complex without and with DNA at 1.5 Å and 2.45 Å, respectively, to elucidate how WhiB3 interacts with DNA to regulate gene expression. These structures reveal that the WhiB3:σA4 complex shares a molecular interface similar to other structurally characterized Wbl proteins and also possesses a subclass-specific Arg-rich DNA-binding motif. We demonstrate that this newly defined Arg-rich motif is required for WhiB3 binding to DNA in vitro and transcriptional regulation in Mycobacterium smegmatis. Together, our study provides empirical evidence of how WhiB3 regulates gene expression in Mtb by partnering with σA4 and engaging with DNA via the subclass-specific structural motif, distinct from the modes of DNA interaction by WhiB1 and WhiB7.


Asunto(s)
Proteínas Bacterianas , Modelos Moleculares , Mycobacterium tuberculosis , Factores de Transcripción , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Estructura Cuaternaria de Proteína , Factor sigma/química , Factor sigma/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
2.
Fish Shellfish Immunol ; 134: 108639, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36841518

RESUMEN

High temperature is a main cause to result in the outbreak of tilapia streptococcal disease. However, the underlying mechanisms are not well understood. In this study, we first confirmed that tilapia infected with Streptococcus agalactiae (S. agalactiae) had a higher mortality at high temperature (35 °C) than that at normal temperature (28 °C). Subsequently, the effects of high temperature on gene expression pattern of S. agalactiae and intestinal microbiota of tilapia were respectively detected by RNA-seq and 16S rDNA sequencing. RNA-seq identified 357 differentially expressed genes (DEGs) in S. agalactiae cultured at 28 °C and 35 °C. GO and KEGG analysis showed that these DEGs were highly involved in metabolic processes, including glucose, lipid and amino acid metabolisms, which indicates that S. agalactiae have stronger vitality and are likely to be more infectious under high temperature. Microbiota analysis revealed that high temperature could influence the bacterial community composition of tilapia intestine, accompanied by changes in intestinal structure. Compared to feed at 28 °C, the total bacterial species as well as pathogens, such as norank_f__Rhizobiales_Incertae_Sedis, Pseudorhodoplanes, Ancylobacter, in tilapia intestine were significantly increased at 35 °C, which may weaken the immune resistance of tilapia. Taken together, our results suggest that high temperature evoked tilapia susceptible to S. agalactiae should be the combined effect of enhanced S. agalactiae metabolism and dysregulated tilapia intestinal microbiota.


Asunto(s)
Brotes de Enfermedades , Enfermedades de los Peces , Regulación Bacteriana de la Expresión Génica , Calor , Infecciones Estreptocócicas , Streptococcus agalactiae , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Tilapia , Microbioma Gastrointestinal/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Biodiversidad , Animales
3.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35145026

RESUMEN

Bacteroides thetaiotaomicron is a gut symbiont that inhabits the mucus layer and adheres to and metabolizes food particles, contributing to gut physiology and maturation. Although adhesion and biofilm formation could be key features for B. thetaiotaomicron stress resistance and gut colonization, little is known about the determinants of B. thetaiotaomicron biofilm formation. We previously showed that the B. thetaiotaomicron reference strain VPI-5482 is a poor in vitro biofilm former. Here, we demonstrated that bile, a gut-relevant environmental cue, triggers the formation of biofilm in many B. thetaiotaomicron isolates and common gut Bacteroidales species. We determined that bile-dependent biofilm formation involves the production of the DNase BT3563 or its homologs, degrading extracellular DNA (eDNA) in several B. thetaiotaomicron strains. Our study therefore shows that, although biofilm matrix eDNA provides a biofilm-promoting scaffold in many studied Firmicutes and Proteobacteria, BT3563-mediated eDNA degradation is required to form B. thetaiotaomicron biofilm in the presence of bile.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/enzimología , Bilis/metabolismo , Biopelículas/crecimiento & desarrollo , Desoxirribonucleasas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Bacterianas/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiología , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Desoxirribonucleasas/genética , Regulación Enzimológica de la Expresión Génica/fisiología
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35131853

RESUMEN

Bacterial cells interact with solid surfaces and change their lifestyle from single free-swimming cells to sessile communal structures (biofilms). Cyclic di-guanosine monophosphate (c-di-GMP) is central to this process, yet we lack tools for direct dynamic visualization of c-di-GMP in single cells. Here, we developed a fluorescent protein-based c-di-GMP-sensing system for Escherichia coli that allowed us to visualize initial signaling events and assess the role played by the flagellar motor. The sensor was pH sensitive, and the events that appeared on a seconds' timescale were alkaline spikes in the intracellular pH. These spikes were not apparent when signals from different cells were averaged. Instead, a signal appeared on a minutes' timescale that proved to be due to an increase in intracellular c-di-GMP. This increase, but not the alkaline spikes, depended upon a functional flagellar motor. The kinetics and the amplitude of both the pH and c-di-GMP responses displayed cell-to-cell variability indicative of the distinct ways the cells approached and interacted with the surface. The energetic status of a cell can modulate these events. In particular, the alkaline spikes displayed an oscillatory behavior and the c-di-GMP increase was modest in the presence of glucose.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transducción de Señal/fisiología , GMP Cíclico/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Vidrio , Concentración de Iones de Hidrógeno , Sistemas de Mensajero Secundario/fisiología , Propiedades de Superficie
5.
Elife ; 112022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35080493

RESUMEN

Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , ARN sin Sentido/metabolismo , Transcripción Genética/fisiología , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Endopeptidasa Clp/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , ARN sin Sentido/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Factores de Transcripción/metabolismo , Virulencia
6.
PLoS Pathog ; 18(1): e1010170, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986198

RESUMEN

Pseudomonas aeruginosa is an important opportunistic pathogen capable of causing variety of infections in humans. The type III secretion system (T3SS) is a critical virulence determinant of P. aeruginosa in the host infections. Expression of the T3SS is regulated by ExsA, a master regulator that activates the expression of all known T3SS genes. Expression of the exsA gene is controlled at both transcriptional and posttranscriptional levels. Here, we screened a P. aeruginosa transposon (Tn5) insertional mutant library and found rplI, a gene coding for the ribosomal large subunit protein L9, to be a repressor for the T3SS gene expression. Combining real-time quantitative PCR (qPCR), western blotting and lacZ fusion assays, we show that RplI controls the expression of exsA at the posttranscriptional level. Further genetic experiments demonstrated that RplI mediated control of the exsA translation involves 5' untranslated region (5' UTR). A ribosome immunoprecipitation assay and qPCR revealed higher amounts of a 24 nt fragment from exsA mRNA being associated with ribosomes in the ΔrplI mutant. An interaction between RplI and exsA mRNA harboring its 24 nt, but not 12 nt, 5' UTR was confirmed by RNA Gel Mobility Shift and Microscale Thermophoresis assays. Overall, this study identifies the ribosomal large subunit protein L9 as a novel T3SS repressor that inhibits ExsA translation in P. aeruginosa.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas aeruginosa/patogenicidad , Proteínas Ribosómicas/metabolismo , Transactivadores/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Regiones no Traducidas 5' , Células HeLa , Humanos , Pseudomonas aeruginosa/metabolismo , Transcripción Genética , Virulencia/fisiología , Factores de Virulencia/metabolismo
7.
World J Microbiol Biotechnol ; 38(3): 50, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35098381

RESUMEN

Avilamycin, an excellent growth-promoting feed additive, produced by Streptomyces viridochromogenes, was widely used to promote the growth of poultry by inhibiting Gram-positive bacteria. In this work, the methods of combinational mutagenesis of UV (Ultraviolet) and ARTP (Atmospheric and room temperature plasma), and rational screening by high concentrations of CaCl2 were utilized to promote the production of avilamycin. The avilamycin high-yielding mutant strains of Z-6 (29.31 mg/L), A-9 (36.84 mg/L) and F-23 (45.73 mg/L) were screened out, with yields of avilamycin improved by 57.92%, 98.49% and 146.39%, respectively, compared with the wild strain (WT). The performance comparison showed that Z-6, A-9 and F-23 mutant strains had stronger abilities of substrate consumption, cell growth and antibiotic synthesis than WT. Furthermore, the composition of fermentation medium, inoculation parameters, supplementation strategies of oxygen vectors, glucose and precursors (L-valine, D-xylose and sodium acetate) had been optimized and the avilamycin yield of the mutant strain F-23 was significantly enhanced by 41.87% by fermentation optimization. In summary, the strategy of increasing the production of avilamycin in S. viridochromogenes in this work might provide an alternative method to enhance the synthesis of secondary metabolites in other Streptomyces.


Asunto(s)
Antibacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Oligosacáridos/metabolismo , Streptomyces/metabolismo , Técnicas Bacteriológicas , Fermentación , Mutagénesis , Streptomyces/genética
8.
World J Microbiol Biotechnol ; 38(3): 49, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35098385

RESUMEN

The surface of aboveground plant parts, known as the phyllosphere, is a habitat for various microorganisms called epiphytes establishing biotrophic interactions with their hosts. However, these communities can be affected by environmental and anthropogenic variations such as the application of agrochemicals. Thus, epiphytes have the capacity to survive in such environments. In this study, we obtained the genome of Pseudomonas sp. 14A, an epiphyte isolated from the pepper phyllosphere. The phylogenomic analyses suggested that Pseudomonas sp. 14A may be novel species closely related to P. moraviensis R28-S. Notably, the metabolic pathways proposed consistent with epiphytic lifestyle in Pseudomonas sp. 14A, were shared with other species displaying a different degree of phylogenetic relatedness. Furthermore, variations in configuration of metabolic gene clusters were observed, that could expand microbial metabolic diversity in close relatedness species, highlighting the relevance of microbial diversity associated with plants.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Pseudomonas/genética , Pseudomonas/metabolismo , Adaptación Fisiológica , ADN Bacteriano/genética , Estudio de Asociación del Genoma Completo , Filogenia , Especificidad de la Especie
9.
J Bacteriol ; 204(1): e0039821, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633868

RESUMEN

Stenotrophomonas maltophilia has recently arisen as a prominent nosocomial pathogen because of its high antimicrobial resistance and ability to cause chronic respiratory infections. Often the infections are worsened by biofilm formation which enhances antibiotic tolerance. We have previously found that mutation of the gpmA gene, encoding the glycolytic enzyme phosphoglycerate mutase, impacts the formation of this biofilm on biotic and abiotic surfaces at early time points. This finding, indicating an association between carbon source and biofilm formation, led us to hypothesize that metabolism would influence S. maltophilia biofilm formation and planktonic growth. In the present study, we tested the impact of various growth substrates on biofilm levels and growth kinetics to determine metabolic requirements for these processes. We found that S. maltophilia wild type preferred amino acids versus glucose for planktonic and biofilm growth and that gpmA deletion inhibited growth in amino acids. Furthermore, supplementation of the ΔgpmA strain by glucose or ribose phenotypically complemented growth defects. These results suggest that S. maltophilia shuttles amino acid carbon through gluconeogenesis to an undefined metabolic pathway supporting planktonic and biofilm growth. Further evaluation of these metabolic pathways might reveal novel metabolic activities of this pathogen. IMPORTANCE Stenotrophomonas maltophilia is a prominent opportunistic pathogen that often forms biofilms during infection. However, the molecular mechanisms of virulence and biofilm formation are poorly understood. The glycolytic enzyme phosphoglycerate mutase appears to play a role in biofilm formation, and we used a mutant in its gene (gpmA) to probe the metabolic circuitry potentially involved in biofilm development. The results of our study indicate that S. maltophilia displays unique metabolic activities, which could be exploited for inhibiting growth and biofilm formation of this pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/fisiología , Redes y Vías Metabólicas/fisiología , Stenotrophomonas maltophilia/fisiología , Aminoácidos/metabolismo , Aminoácidos/farmacología , Proteínas Bacterianas/genética , Medios de Cultivo , Ribosa/metabolismo , Ribosa/farmacología , Stenotrophomonas maltophilia/genética
10.
J Bacteriol ; 204(1): e0037621, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633867

RESUMEN

Pathogenic bacteria have acquired a vast array of eukaryotic-protein-like proteins via intimate interaction with host cells. Bacterial effector proteins that function as ubiquitin ligases and deubiquitinases (DUBs) are remarkable examples of such molecular mimicry. LotA, a Legionella pneumophila effector, belongs to the ovarian tumor (OTU) superfamily, which regulates diverse ubiquitin signals by their DUB activities. LotA harbors two OTU domains that have distinct reactivities; the first one is responsible for the cleavage of the K6-linked ubiquitin chain, and the second one shows an uncommon preference for long chains of ubiquitin. Here, we report the crystal structure of a middle domain of LotA (LotAM), which contains the second OTU domain. LotAM consists of two distinct subdomains, a catalytic domain having high structural similarity with human OTU DUBs and an extended helical lobe (EHL) domain, which is characteristically conserved only in Legionella OTU DUBs. The docking simulation of LotAM with ubiquitin suggested that hydrophobic and electrostatic interactions between the EHL of LotAM and the C-terminal region of ubiquitin are crucial for the binding of ubiquitin to LotAM. The structure-based mutagenesis demonstrated that the acidic residue in the characteristic short helical segment termed the "helical arm" is essential for the enzymatic activity of LotAM. The EHL domain of the three Legionella OTU DUBs, LotA, LotB, and LotC, share the "helical arm" structure, suggesting that the EHL domain defines the Lot-OTUs as a unique class of DUBs. IMPORTANCE To successfully colonize, some pathogenic bacteria hijack the host ubiquitin system. Legionella OTU-like-DUBs (Lot-DUBs) are novel bacterial deubiquitinases found in effector proteins of L. pneumophila. LotA is a member of Lot-DUBs and has two OTU domains (OTU1 and OTU2). We determined the structure of a middle fragment of LotA (LotAM), which includes OTU2. LotAM consists of the conserved catalytic domain and the Legionella OTUs-specific EHL domain. The docking simulation with ubiquitin and the mutational analysis suggested that the acidic surface in the EHL is essential for enzymatic activity. The structure of the EHL differs from those of other Lot-DUBs, suggesting that the variation of the EHL is related to the variable cleaving specificity of each DUB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Legionella pneumophila/enzimología , Ubiquitina/metabolismo , Proteínas Bacterianas/genética , Cristalización , Enzimas Desubicuitinizantes/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
11.
J Bacteriol ; 204(1): e0035021, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633869

RESUMEN

Bacterial cells alter gene expression in response to changes in population density in a process called quorum sensing (QS). In Vibrio harveyi, LuxO, a low-cell-density activator of sigma factor-54 (RpoN), is required for transcription of five noncoding regulatory small RNAs (sRNAs), Qrr1 to Qrr5, which each repress translation of the master QS regulator, LuxR. Vibrio parahaemolyticus, the leading cause of bacterial seafoodborne gastroenteritis, also contains five Qrr sRNAs that control OpaR (the LuxR homolog), controlling capsule polysaccharide (CPS), motility, and metabolism. We show that in a ΔluxO deletion mutant, opaR was derepressed and CPS and biofilm were produced. However, in a ΔrpoN mutant, opaR was repressed, no CPS was produced, and less biofilm production was observed than in the wild type. To determine why opaR was repressed, expression analysis in ΔluxO showed that all five qrr genes were repressed, while in ΔrpoN the qrr2 gene was significantly derepressed. Reporter assays and mutant analysis showed that Qrr2 sRNA can act alone to control OpaR. Bioinformatics analysis identified a sigma-70 (RpoD) -35 -10 promoter overlapping the canonical sigma-54 (RpoN) -24 -12 promoter in the qrr2 regulatory region. The qrr2 sigma-70 promoter element was also present in additional Vibrio species, indicating that it is widespread. Mutagenesis of the sigma-70 -10 promoter site in the ΔrpoN mutant background resulted in repression of qrr2. Analysis of qrr quadruple deletion mutants, in which only a single qrr gene is present, showed that only Qrr2 sRNA can act independently to regulate opaR. Mutant and expression data also demonstrated that RpoN and the global regulator, Fis, act additively to repress qrr2. Our data have uncovered a new mechanism of qrr expression and show that Qrr2 sRNA is sufficient for OpaR regulation. IMPORTANCE The quorum sensing noncoding small RNAs (sRNAs) are present in all Vibrio species but vary in number and regulatory roles among species. In the Harveyi clade, all species contain five qrr genes, and in Vibrio harveyi these are transcribed by sigma-54 and are additive in function. In the Cholerae clade, four qrr genes are present, and in Vibrio cholerae the qrr genes are redundant in function. In Vibrio parahaemolyticus, qrr2 is controlled by two overlapping promoters. In an rpoN mutant, qrr2 is transcribed from a sigma-70 promoter that is present in all V. parahaemolyticus strains and in other species of the Harveyi clade, suggesting a conserved mechanism of regulation. Qrr2 sRNA can function as the sole Qrr sRNA to control OpaR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Percepción de Quorum/fisiología , ARN Bacteriano/metabolismo , Vibrio parahaemolyticus/fisiología , Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Mutación , Filogenia , ARN Polimerasa Sigma 54/genética , ARN Polimerasa Sigma 54/metabolismo , ARN Bacteriano/genética , Factor sigma/genética , Factor sigma/metabolismo , Vibrio parahaemolyticus/genética
12.
J Bacteriol ; 204(1): e0045621, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633870

RESUMEN

The protective mechanisms of blood-brain barrier (BBB) prohibiting entry of pathogens into central nervous system (CNS) are critical for maintenance of brain homeostasis. These include various intracellular defense mechanisms that are vital to block transcytosis of neurotropic pathogens into the CNS. However, mechanistic details of coordination between these defense pathways remain unexplored. In this study, we established that BBB-driven ubiquitination acts as a major intracellular defense mechanism for clearance of Streptococcus pneumoniae, a critical neurotropic pathogen, during transit through BBB. Our findings suggest that the BBB employs differential ubiquitination with either K48- or K63-ubiquitin (Ub) chain topologies as an effective strategy to target S. pneumoniae toward diverse killing pathways. While K63-Ub decoration triggers autophagic killing, K48-Ub directs S. pneumoniae exclusively toward proteasomes. Time-lapse fluorescence imaging involving proteasomal marker LMP2 revealed that in the BBB, the majority of the ubiquitinated S. pneumoniae was cleared by proteasome. Fittingly, inhibition of proteasome and autophagy pathway led to accumulation of K48-Ub- and K63-Ub-marked S. pneumoniae, respectively, and triggered significant increases in intracellular S. pneumoniae burden. Moreover, genetic impairment of either K48- or K63-Ub chain formation demonstrated that although both chain types are key in disposal of intracellular S. pneumoniae, K48-Ub chains and subsequent proteasomal degradation have more pronounced contributions to intracellular S. pneumoniae killing in the BBB. Collectively, these observations, for the first time, illustrated a pivotal role of differential ubiquitination deployed by BBB in orchestrating a symphony of intracellular defense mechanisms for interception and degradation of S. pneumoniae, blocking its entry into the brain, which could be exploited to prevent bacterial CNS infections. IMPORTANCE The blood-brain barrier (BBB) represents a unique cellular barrier that provides structural integrity and protection to the CNS from pathogen invasion. Recently, ubiquitination, which is key for cellular homeostasis, was shown to be involved in pathogen clearance. In this study, we deciphered that the BBB deploys differential ubiquitination as an effective strategy to prevent S. pneumoniae trafficking into the brain. The different ubiquitin chain topologies formed on S. pneumoniae dictated the selection of downstream degradative pathways, namely, autophagy and proteasomes, among which the contribution of the proteasomal system in S. pneumoniae killing is more pronounced. Overall our study revealed how the BBB deploys differential ubiquitination as a strategy for synchronization of various intracellular defense pathways, which work in tandem to ensure the brain's identity as an immunologically privileged site.


Asunto(s)
Barrera Hematoencefálica/fisiología , Células Endoteliales/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Streptococcus pneumoniae/fisiología , Ubiquitinas/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Autofagia/efectos de los fármacos , Biomarcadores , Línea Celular , Supervivencia Celular/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Gentamicinas/administración & dosificación , Gentamicinas/farmacología , Humanos , Leupeptinas/farmacología , Imagen Óptica/métodos , Penicilinas/administración & dosificación , Penicilinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Ubiquitinas/química
13.
J Bacteriol ; 204(1): e0044721, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633871

RESUMEN

Haloferax volcanii AglD is currently the only archaeal dolichol phosphate (DolP)-mannose synthase shown to participate in N-glycosylation. However, the relation between AglD and Pyrococcus furiosus PF0058, the only archaeal DolP-mannose synthase for which structural information is presently available, was unclear. In this report, similarities between the PF0058 and AglD catalytic domains were revealed. At the same time, AglD includes a transmembrane domain far longer than that of PF0058 or other DolP-mannose synthases. To determine whether this extension affords AglD functions in addition to generating mannose-charged DolP, a series of Hfx. volcanii strains expressing truncated versions of AglD was generated. Mass spectrometry revealed that a version of AglD comprising the catalytic domain and only two of the six to nine predicted membrane-spanning domains could mediate mannose addition to DolP. However, in cells expressing this or other truncated versions of AglD, mannose was not transferred from the lipid to the protein-bound tetrasaccharide precursor of the N-linked pentasaccharide normally decorating Hfx. volcanii glycoproteins. These results thus point to AglD as contributing to additional aspects of Hfx. volcanii N-glycosylation beyond charging DolP with mannose. Accordingly, the possibility that AglD, possibly in coordination with AglR, translocates DolP-mannose across the plasma membrane is discussed.


Asunto(s)
Proteínas Arqueales/metabolismo , Monofosfato de Dolicol Manosa/metabolismo , Haloferax volcanii/enzimología , Manosiltransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Dominio Catalítico , Monofosfato de Dolicol Manosa/química , Etilenodiaminas , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Manosiltransferasas/genética , Fenoles , Conformación Proteica , Dominios Proteicos
14.
J Bacteriol ; 204(1): e0029721, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34723645

RESUMEN

Pseudomonas aeruginosa, an opportunistic bacterial pathogen, can synthesize and catabolize several small cationic molecules known as polyamines. In several clades of bacteria, polyamines regulate biofilm formation, a lifestyle-switching process that confers resistance to environmental stress. The polyamine putrescine and its biosynthetic precursors, l-arginine and agmatine, promote biofilm formation in Pseudomonas spp. However, it remains unclear whether the effect is a direct effect of polyamines or occurs through a metabolic derivative. Here, we used a genetic approach to demonstrate that putrescine accumulation, either through disruption of the spermidine biosynthesis pathway or the catabolic putrescine aminotransferase pathway, promoted biofilm formation in P. aeruginosa. Consistent with this observation, exogenous putrescine robustly induced biofilm formation in P. aeruginosa that was dependent on putrescine uptake and biosynthesis pathways. Additionally, we show that l-arginine, the biosynthetic precursor of putrescine, also promoted biofilm formation but did so by a mechanism independent of putrescine or agmatine conversion. We found that both putrescine and l-arginine induced a significant increase in the intracellular level of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) (c-di-GMP), a bacterial second messenger widely found in Proteobacteria that upregulates biofilm formation. Collectively these data show that putrescine and its metabolic precursor, arginine, promote biofilm and c-di-GMP synthesis in P. aeruginosa. IMPORTANCE Biofilm formation allows bacteria to physically attach to a surface, confer tolerance to antimicrobial agents, and promote resistance to host immune responses. As a result, the regulation of biofilm formation is often crucial for bacterial pathogens to establish chronic infections. A primary mechanism of biofilm promotion in bacteria is the molecule c-di-GMP, which promotes biofilm formation. The level of c-di-GMP is tightly regulated by bacterial enzymes. In this study, we found that putrescine, a small molecule ubiquitously found in eukaryotic cells, robustly enhances P. aeruginosa biofilm and c-di-GMP. We propose that P. aeruginosa may sense putrescine as a host-associated signal that triggers a lifestyle switch that favors chronic infection.


Asunto(s)
Arginina/farmacología , Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Putrescina/farmacología , GMP Cíclico/biosíntesis , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Regulación hacia Arriba
15.
J Bacteriol ; 204(1): e0048621, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34694900

RESUMEN

The survival of microbial cells under changing environmental conditions requires an efficient reprogramming of transcription, often mediated by alternative sigma factors. The Gram-positive human pathogen Listeria monocytogenes senses and responds to environmental stress mainly through the alternative sigma factor σB (SigB), which controls expression of the general stress response regulon. SigB activation is achieved through a complex series of phosphorylation/dephosphorylation events culminating in the release of SigB from its anti-sigma factor RsbW. At the top of the signal transduction pathway lies a large multiprotein complex known as the stressosome that is believed to act as a sensory hub for stresses. Following signal detection, stressosome proteins become phosphorylated. Resetting of the stressosome is hypothesized to be exerted by a putative phosphatase, RsbX, which presumably removes phosphate groups from stressosome proteins poststress. We addressed the role of the RsbX protein in modulating the activity of the stressosome and consequently regulating SigB activity in L. monocytogenes. We show that RsbX is required to reduce SigB activation levels under nonstress conditions and that it is required for appropriate SigB-mediated stress adaptation. A strain lacking RsbX displayed impaired motility and biofilm formation and also an increased survival at low pH. Our results could suggest that absence of RsbX alters the multiprotein composition of the stressosome without dramatically affecting its phosphorylation status. Overall, the data show that RsbX plays a critical role in modulating the signal transduction pathway by blocking SigB activation under nonstressed conditions. IMPORTANCE Pathogenic bacteria need to sense and respond to stresses to survive harsh environments and also to turn off the response when no longer facing stress. Activity of the stress sigma factor SigB in the human pathogen Listeria monocytogenes is controlled by a hierarchic system having a large stress-sensing multiprotein complex known as the stressosome at the top. Following stress exposure, proteins in the stressosome become phosphorylated, leading to SigB activation. We have studied the role of a putative phosphatase, RsbX, which is hypothesized to dephosphorylate stressosome proteins. RsbX is critical not only to switch off the stress response poststress but also to keep the activity of SigB low at nonstressed conditions to prevent unnecessary gene expression and save energy.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Listeria monocytogenes/metabolismo , Factor sigma/metabolismo , Estrés Fisiológico/fisiología , Biopelículas , Listeria monocytogenes/genética , Mutación , Factor sigma/genética
16.
J Bacteriol ; 204(1): e0037821, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34694902

RESUMEN

Salmonella enterica serovar Typhimurium invades the intestinal epithelium and induces inflammatory diarrhea using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Expression of the SPI1 T3SS is controlled by three AraC-like regulators, HilD, HilC, and RtsA, which form a feed-forward regulatory loop that leads to activation of hilA, encoding the main transcriptional regulator of the T3SS structural genes. This complex system is affected by numerous regulatory proteins and environmental signals, many of which act at the level of hilD mRNA translation or HilD protein function. Here, we show that the sRNA MicC blocks translation of the hilD mRNA by base pairing near the ribosome binding site. MicC does not induce degradation of the hilD message. Our data indicate that micC is transcriptionally activated by SlyA, and SlyA feeds into the SPI1 regulatory network solely through MicC. Transcription of micC is negatively regulated by the OmpR/EnvZ two-component system, but this regulation is dependent on SlyA. OmpR/EnvZ control SPI1 expression partially through MicC but also affect expression through other pathways, including an EnvZ-dependent, OmpR-independent mechanism. MicC-mediated regulation plays a role during infection, as evidenced by an SPI1 T3SS-dependent increase in Salmonella fitness in the intestine in the micC deletion mutant. These results further elucidate the complex regulatory network controlling SPI1 expression and add to the list of sRNAs that control this primary virulence factor. IMPORTANCE The Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS) is the primary virulence factor required for causing intestinal disease and initiating systemic infection. The system is regulated in response to a large variety of environmental and physiological factors such that the T3SS is expressed at only the appropriate time and place in the host during infection. Here, we show how the sRNA MicC affects expression of the system. This work adds to our detailed mechanistic studies aimed at a complete understanding of the regulatory circuit.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación hacia Abajo/fisiología , ARN Bacteriano/metabolismo , Salmonella typhimurium/metabolismo , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Regulación hacia Abajo/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Proteína de Factor 1 del Huésped , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Salmonella typhimurium/genética , Factores de Transcripción/genética , Sistemas de Secreción Tipo III/genética
17.
J Bacteriol ; 204(1): e0042021, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34694904

RESUMEN

Escherichia coli survives under acid stress conditions by the glutamic acid-dependent acid resistance (GAD) system, which enzymatically decreases intracellular protons. We found a linkage between GAD and flagellar systems in E. coli. The hdeD gene, one of the GAD cluster genes, encodes an uncharacterized membrane protein. A reporter assay showed that the hdeD promoter was induced in a GadE-dependent manner when grown in the M9 glycerol medium. Transcriptome analysis revealed that most of the transcripts were from genes involved in flagellum synthesis, and cell motility increased not only in the hdeD-deficient mutant but also in the gadE-deficient mutant. Defects in both the hdeD and gadE increased the intracellular level of FliA, an alternative sigma factor for flagellum synthesis, activated by the master regulator FlhDC. The promoter activity of the lrhA gene, which encodes repressor for the flhDC operon, was found to decrease in both the hdeD- and gadE-deficient mutants. Transmission electron microscopy showed that the number of flagellar filaments on the hdeD-, gadE-, and lrhA-deficient cells increased, and all three mutants showed higher motility than the parent strain. Thus, HdeD in the GAD system activates the lrhA promoter, resulting in a decrease in flagellar filaments in E. coli cells. We speculated that the synthesis of HdeD, stimulated in E. coli exposed to acid stress, could control the flagellum biosynthesis by sensing slight changes in pH at the cytoplasmic membrane. This could help in saving energy through termination of flagellum biosynthesis and improve bacterial survival efficiency within the animal digestive system. IMPORTANCE E. coli cells encounter various environments from the mouth down to the intestines within the host animals. The pH of gastric juice is lower than 2.0, and the bacterial must quickly respond and adapt to the following environmental changes before reaching the intestines. The quick response plays a role in cellular survival in the population, whereas adaptation may contribute to species survival. The GAD and flagellar systems are important for response to low pH in E. coli. Here, we identified the novel inner membrane regulator HdeD, encoding in the GAD cluster, to repress the synthesis of flagella. These insights provide a deeper understanding of how the bacteria enter the animal digestive system, survive, and form colonies in the intestines.


Asunto(s)
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Factores de Transcripción/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Proteínas de la Membrana/genética , Mutación , Factores de Transcripción/genética , Transcriptoma
18.
J Bacteriol ; 204(1): e0034721, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34662238

RESUMEN

Cells can use self recognition to achieve cooperative behaviors. Self-recognition genes are thought to principally evolve in tandem with partner self-recognition alleles. However, other constraints on protein evolution could exist. Here, we have identified an interaction outside self-recognition loci that could constrain the sequence variation of a self-recognition protein. We show that during collective swarm expansion in Proteus mirabilis, self-recognition signaling co-opts SdaC, a serine transporter. Serine uptake is crucial for bacterial survival and colonization. Single-residue variants of SdaC reveal that self recognition requires an open conformation of the protein; serine transport is dispensable. A distant ortholog from Escherichia coli is sufficient for self recognition; however, a paralogous serine transporter, YhaO, is not. Thus, SdaC couples self recognition and serine transport, likely through a shared molecular interface. Self-recognition proteins may follow the framework of a complex interaction network rather than an isolated two-protein system. Understanding the molecular and ecological constraints on self-recognition proteins lays the groundwork for insights into the evolution of self recognition and emergent collective behaviors. IMPORTANCE Bacteria can receive secret messages from kin during migration. For Proteus mirabilis, these messages are necessary for virulence in multispecies infections. We show that a serine transporter, conserved among gammaproteobacteria, enables self-recognition. Molecular co-option of nutrient uptake could limit the sequence variation of these message proteins. SdaC is the primary transporter for l-serine, a vital metabolite for colonization during disease. Unlike many self-recognition receptors, SdaC is sufficiently conserved between species to achieve recognition. The predicted open conformation is shared by transport and recognition. SdaC reveals the interdependence of communication and nutrient acquisition. As the broader interactions of self-recognition proteins are studied, features shared among microbial self-recognition systems, such as those of Dictyostelium spp. and Neurospora spp., could emerge.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Proteus mirabilis/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Locomoción , Proteínas de la Membrana/genética , Proteus mirabilis/genética
19.
J Bacteriol ; 204(1): e0020821, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34662237

RESUMEN

Organismal adaptations to environmental stimuli are governed by intracellular signaling molecules such as nucleotide second messengers. Recent studies have identified functional roles for the noncanonical 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) in both eukaryotes and prokaryotes. In Escherichia coli, 2',3'-cNMPs are produced by RNase I-catalyzed RNA degradation, and these cyclic nucleotides modulate biofilm formation through unknown mechanisms. The present work dissects cellular processes in E. coli and Salmonella enterica serovar Typhimurium that are modulated by 2',3'-cNMPs through the development of cell-permeable 2',3'-cNMP analogs and a 2',3'-cyclic nucleotide phosphodiesterase. Utilization of these chemical and enzymatic tools, in conjunction with phenotypic and transcriptomic investigations, identified pathways regulated by 2',3'-cNMPs, including flagellar motility and biofilm formation, and by oligoribonucleotides with 3'-terminal 2',3'-cyclic phosphates, including responses to cellular stress. Furthermore, interrogation of metabolomic and organismal databases has identified 2',3'-cNMPs in numerous organisms and homologs of the E. coli metabolic proteins that are involved in key eukaryotic pathways. Thus, the present work provides key insights into the roles of these understudied facets of nucleotide metabolism and signaling in prokaryotic physiology and suggest broad roles for 2',3'-cNMPs among bacteria and eukaryotes. IMPORTANCE Bacteria adapt to environmental challenges by producing intracellular signaling molecules that control downstream pathways and alter cellular processes for survival. Nucleotide second messengers serve to transduce extracellular signals and regulate a wide array of intracellular pathways. Recently, 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) were identified as contributing to the regulation of cellular pathways in eukaryotes and prokaryotes. In this study, we define previously unknown cell processes that are affected by fluctuating 2',3'-cNMP levels or RNA oligomers with 2',3'-cyclic phosphate termini in E. coli and Salmonella Typhimurium, providing a framework for studying novel signaling networks in prokaryotes. Furthermore, we utilize metabolomics databases to identify additional prokaryotic and eukaryotic species that generate 2',3'-cNMPs as a resource for future studies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , Nucleótidos Cíclicos/metabolismo , Salmonella typhimurium/enzimología , Proteínas Bacterianas/genética , Biopelículas , Endorribonucleasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos , Respuesta al Choque Térmico , Peróxido de Hidrógeno , Operón , ARN Bacteriano , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
20.
J Bacteriol ; 204(1): e0020621, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34662239

RESUMEN

Listeria monocytogenes produces both c-di-AMP and c-di-GMP to mediate many important cellular processes, but the levels of both nucleotides must be regulated. c-di-AMP accumulation attenuates virulence and diminishes stress response, and c-di-GMP accumulation impairs bacterial motility. An important regulatory mechanism to maintain c-di-AMP and c-di-GMP homeostasis is to hydrolyze them to the linear dinucleotides pApA and pGpG, respectively, but the fates of these hydrolytic products have not been examined in L. monocytogenes. We found that NrnA, a stand-alone DHH-DHHA1 phosphodiesterase, has a broad substrate range but with a strong preference for linear dinucleotides over cyclic dinucleotides. Although NrnA exhibited detectable cyclic dinucleotide hydrolytic activities in vitro, NrnA had negligible effects on their levels in the bacterial cell, even in the absence of the c-di-AMP phosphodiesterases PdeA and PgpH. The ΔnrnA mutant had a mammalian cell infection defect that was fully restored by Escherichia coli Orn. Together, our data indicate that L. monocytogenes NrnA is functionally orthologous to Orn, and its preferred physiological substrates are most likely linear dinucleotides. Furthermore, our findings revealed that, unlike some other c-di-AMP- and c-di-GMP-producing bacteria, L. monocytogenes does not employ their hydrolytic products to regulate their phosphodiesterases, at least at the pApA and pGpG levels in the ΔnrnA mutant. Finally, the ΔnrnA infection defect was overcome by constitutive activation of PrfA, the master virulence regulator, suggesting that accumulated linear dinucleotides inhibit the expression, stability, or function of PrfA-regulated virulence factors. IMPORTANCE Listeria monocytogenes produces both c-di-AMP and c-di-GMP and encodes specific phosphodiesterases that degrade them into pApA and pGpG, respectively, but the metabolism of these products has not been characterized in this bacterium. We found that L. monocytogenes NrnA degrades a broad range of nucleotides. Among the tested cyclic and linear substrates, it exhibits a strong biochemical and physiological preference for the linear dinucleotides pApA, pGpG, and pApG. Unlike in some other bacteria, these oligoribonucleotides do not appear to interfere with cyclic dinucleotide hydrolysis. The absence of NrnA is well tolerated by L. monocytogenes in broth cultures but impairs its ability to infect mammalian cells. These findings indicate a separation of cyclic dinucleotide signaling and oligoribonucleotide metabolism in L. monocytogenes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Listeria monocytogenes/enzimología , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Biopelículas , Mutación , Hidrolasas Diéster Fosfóricas/genética , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...