Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Cells ; 10(7)2021 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-34359924

RESUMEN

Complex interactions among DNA and nuclear proteins maintain genome organization and stability. The nuclear proteins, particularly the histones, organize, compact, and preserve the stability of DNA, but also allow its dynamic reorganization whenever the nuclear processes require access to it. Five histone classes exist and they are evolutionarily conserved among eukaryotes. The linker histones are the fifth class and over time, their role in chromatin has been neglected. Linker histones interact with DNA and the other histones and thus sustain genome stability and nuclear organization. Saccharomyces cerevisiae is a brilliant model for studying linker histones as the gene for it is a single-copy and is non-essential. We, therefore, created a linker histone-free yeast strain using a knockout of the relevant gene and traced the way cells age chronologically. Here we present our results demonstrating that the altered chromatin dynamics during the chronological lifespan of the yeast cells with a mutation in ARP4 (the actin-related protein 4) and without the gene HHO1 for the linker histone leads to strong alterations in the gene expression profiles of a subset of genes involved in DNA repair and autophagy. The obtained results further prove that the yeast mutants have reduced survival upon UVA/B irradiation possibly due to the accelerated decompaction of chromatin and impaired proliferation. Our hypothesis posits that the higher-order chromatin structure and the interactions among chromatin proteins are crucial for the maintenance of chromatin organization during chronological aging under optimal and UVA-B stress conditions.


Asunto(s)
Senescencia Celular/efectos de la radiación , Cromatina/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Rayos Ultravioleta , Ciclo Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Histonas/metabolismo , Mutación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Factores de Tiempo
2.
mSphere ; 6(4): e0058121, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34431694

RESUMEN

Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for microbial communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light can be exquisitely controlled in space and time. We report new plasmids for rapid integration of an optogenetic system into Saccharomyces cerevisiae to engineer light control of expression of a gene of interest. In a proof-of-principle study, we demonstrate the ability to control a model cooperative interaction, namely, the expression of the enzyme invertase (SUC2) which allows S. cerevisiae to hydrolyze sucrose and utilize it as a carbon source. We demonstrate that the strength of this cooperative interaction can be tuned in space and time by modulating light intensity and through spatial control of illumination. Spatial control of light allows cooperators and cheaters to be spatially segregated, and we show that the interplay between cooperative and inhibitory interactions in space can lead to pattern formation. Our strategy can be applied to achieve spatiotemporal control of expression of a gene of interest in S. cerevisiae to perturb both intercellular and interspecies interactions. IMPORTANCE Recent advances in microbial ecology have highlighted the importance of intercellular interactions in controlling the development, composition, and resilience of microbial communities. In order to better understand the role of these interactions in governing community development, it is critical to be able to alter them in a controlled manner. Optogenetically controlled interactions offer advantages over static perturbations or chemically controlled interactions, as light can be manipulated in space and time and does not require the addition of nutrients or antibiotics. Here, we report a system for rapidly achieving light control of a gene of interest in the important model organism Saccharomyces cerevisiae and demonstrate that by controlling expression of the enzyme invertase, we can control cooperative interactions. This approach will be useful for understanding intercellular and interspecies interactions in natural and synthetic microbial consortia containing S. cerevisiae and serves as a proof of principle for implementing this approach in other consortia.


Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de la radiación , Luz , Optogenética/métodos , Plásmidos/genética , Saccharomyces cerevisiae/genética , Prueba de Estudio Conceptual , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Sacarosa/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
3.
Fungal Genet Biol ; 152: 103570, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34004340

RESUMEN

Ustilago maydis encodes ten predicted light-sensing proteins. The biological functions of only a few of them are elucidated. Among the characterized ones are two DNA-photolyases and two rhodopsins that act as DNA-repair enzymes or green light-driven proton pumps, respectively. Here we report on the role of two other photoreceptors in U. maydis, namely White collar 1 (Wco1) and Phytochrome 1 (Phy1). We show that they bind flavins or biliverdin as chromophores, respectively. Both photoreceptors undergo a photocycle in vitro. Wco1 is the dominant blue light receptor in the saprophytic phase, controlling all of the 324 differentially expressed genes in blue light. U. maydis also responds to red and far-red light. However, the number of red or far-red light-controlled genes is less compared to blue light-regulated ones. Moreover, most of the red and far-red light-controlled genes not only depend on Phy1 but also on Wco1, indicating partial coregulation of gene expression by both photoreceptors. GFP-fused Wco1 is preferentially located in the nucleus, Phy1 in the cytosol, thus providing no hint that these photoreceptors directly interact or operate within the same complex. This is the first report on a functional characterization and coaction of White collar 1 and phytochrome orthologs in basidiomycetes.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Fitocromo/genética , Fitocromo/metabolismo , Ustilago/genética , Ustilago/metabolismo , Basidiomycota , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Genes Fúngicos/genética , Luz , Fitocromo/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Ustilago/efectos de los fármacos , Ustilago/efectos de la radiación
4.
J Biosci Bioeng ; 131(6): 613-621, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33582014

RESUMEN

The oleaginous yeast Lipomyces starkeyi is an intriguing lipid producer that can produce triacylglycerol (TAG), a feedstock for biodiesel production. We previously reported that the L. starkeyi mutant E15 with high levels of TAG production compared with the wild-type was efficiently obtained using Percoll density gradient centrifugation. However, considering its use for biodiesel production, it is necessary to further improve the lipid productivity of the mutant. In this study, we aimed to obtain mutants with better lipid productivity than E15, evaluate its lipid productivity, and analyze lipid synthesis-related gene expression in the wild-type and mutant strains. The mutants E15-11, E15-15, and E15-25 exhibiting higher lipid productivity than E15 were efficiently isolated from cells exposed to ultraviolet light using Percoll density gradient centrifugation. They exhibited approximately 4.5-fold higher lipid productivity than the wild-type on day 3. The obtained mutants did not exhibit significantly different fatty acid profiles than the wild-type and E15 mutant strains. E15-11, E15-15, and E15-25 exhibited higher expression of acyl-CoA synthesis- and Kennedy pathway-related genes than the wild-type and E15 mutant strains. Activation of the pentose phosphate pathway, which supplies NADPH, was also observed. These results suggested that the increased expression of acyl-CoA synthesis- and Kennedy pathway-related genes plays a vital role in lipid productivity in the oleaginous yeast L. starkeyi.


Asunto(s)
Lípidos/biosíntesis , Lipomyces , Rayos Ultravioleta , Biocombustibles , Ácidos Grasos/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/efectos de la radiación , Lípidos/efectos de la radiación , Lipomyces/genética , Lipomyces/aislamiento & purificación , Lipomyces/metabolismo , Lipomyces/efectos de la radiación , Ingeniería Metabólica , Organismos Modificados Genéticamente , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/efectos de la radiación , Triglicéridos/metabolismo , Levaduras/genética , Levaduras/metabolismo , Levaduras/efectos de la radiación
5.
ACS Synth Biol ; 10(2): 219-227, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33492138

RESUMEN

Dynamic control of engineered microbes using light via optogenetics has been demonstrated as an effective strategy for improving the yield of biofuels, chemicals, and other products. An advantage of using light to manipulate microbial metabolism is the relative simplicity of interfacing biological and computer systems, thereby enabling in silico control of the microbe. Using this strategy for control and optimization of product yield requires an understanding of how the microbe responds in real-time to the light inputs. Toward this end, we present mechanistic models of a set of yeast optogenetic circuits. We show how these models can predict short- and long-time response to varying light inputs and how they are amenable to use with model predictive control (the industry standard among advanced control algorithms). These models reveal dynamics characterized by time-scale separation of different circuit components that affect the steady and transient levels of the protein under control of the circuit. Ultimately, this work will help enable real-time control and optimization tools for improving yield and consistency in the production of biofuels and chemicals using microbial fermentations.


Asunto(s)
Ingeniería Metabólica/métodos , Modelos Teóricos , Optogenética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Algoritmos , Biocombustibles , Fermentación/efectos de la radiación , Expresión Génica/efectos de la radiación , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Cinética , Luz , Redes y Vías Metabólicas/efectos de la radiación , Saccharomyces cerevisiae/efectos de la radiación
6.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008859

RESUMEN

Pleurotus eryngii, a highly valued edible fungus, is one of the major commercially cultivated mushrooms in China. The development of P. eryngii, especially during the stage of primordium differentiation, is easily affected by light. However, the molecular mechanism underlying the response of primordium differentiation to light remains unknown. In the present study, primordium expression profiles under blue-light stimulation, red-light stimulation, and exposure to darkness were compared using high-throughput sequencing. A total of 16,321 differentially expressed genes (DEGs) were identified from three comparisons. GO enrichment analysis showed that a large number of DEGs were related to light stimulation and amino acid biosynthesis. KEGG analyses demonstrated that the MAPK signaling pathway, oxidative phosphorylation pathway, and RNA transport were most active during primordium differentiation. Furthermore, it was predicted that the blue-light photoreceptor WC-1 and Deoxyribodipyrimidine photolyase PHR play important roles in the primordium differentiation of P. eryngii. Taken together, the results of this study provide a speculative mechanism that light induces primordium differentiation and a foundation for further research on fruiting body development in P. eryngii.


Asunto(s)
Perfilación de la Expresión Génica , Genes Fúngicos , Estudios de Asociación Genética , Luz , Pleurotus/citología , Pleurotus/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Ontología de Genes , Anotación de Secuencia Molecular , Pleurotus/efectos de la radiación , Mapas de Interacción de Proteínas/genética
7.
Genes (Basel) ; 11(10)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992890

RESUMEN

The yeast Exophiala dermatitidis exhibits high resistance to γ-radiation in comparison to many other fungi. Several aspects of this phenotype have been characterized, including its dependence on homologous recombination for the repair of radiation-induced DNA damage, and the transcriptomic response invoked by acute γ-radiation exposure in this organism. However, these findings have yet to identify unique γ-radiation exposure survival strategies-many genes that are induced by γ-radiation exposure do not appear to be important for recovery, and the homologous recombination machinery of this organism is not unique compared to more sensitive species. To identify features associated with γ-radiation resistance, here we characterized the proteomes of two E. dermatitidis strains-the wild type and a hyper-resistant strain developed through adaptive laboratory evolution-before and after γ-radiation exposure. The results demonstrate that protein intensities do not change substantially in response to this stress. Rather, the increased resistance exhibited by the evolved strain may be due in part to increased basal levels of single-stranded binding proteins and a large increase in ribosomal content, possibly allowing for a more robust, induced response during recovery. This experiment provides evidence enabling us to focus on DNA replication, protein production, and ribosome levels for further studies into the mechanism of γ-radiation resistance in E. dermatitidis and other fungi.


Asunto(s)
Exophiala/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Rayos gamma/efectos adversos , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Proteoma/metabolismo , Tolerancia a Radiación , Transcriptoma/efectos de la radiación , ADN de Hongos/análisis , ADN de Hongos/genética , Exophiala/genética , Exophiala/metabolismo , Exophiala/efectos de la radiación , Proteínas Fúngicas/genética , Melaninas/metabolismo , Proteoma/análisis
8.
Biomolecules ; 10(9)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942733

RESUMEN

Recent transcriptomic and biochemical studies have revealed that light influences the global gene expression profile and metabolism of the white-rot fungus Cerrena unicolor. Here, we aimed to reveal the involvement of proteases and ubiquitin-mediated proteolysis by the 26S proteasome in the response of this fungus to white, red, blue and green lighting conditions and darkness. The changes in the expression profile of C. unicolor genes putatively engaged in proteolysis were found to be unique and specific to the applied wavelength of light. It was also demonstrated that the activity of proteases in the culture fluid and mycelium measured using natural and synthetic substrates was regulated by light and was substrate-dependent. A clear influence of light on protein turnover and the qualitative and quantitative changes in the hydrolytic degradation of proteins catalyzed by various types of proteases was shown. The analysis of activity associated with the 26S proteasome showed a key role of ATP-dependent proteolysis in the initial stages of adaptation of fungal cells to the stress factors. It was suggested that the light-sensing pathways in C. unicolor are cross-linked with stress signaling and secretion of proteases presumably serving as regulatory molecules.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Péptido Hidrolasas/genética , Polyporales/efectos de la radiación , Madera/microbiología , Criptocromos/genética , Criptocromos/metabolismo , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Ontología de Genes , Luz , Fototransducción , Anotación de Secuencia Molecular , Opsinas/genética , Opsinas/metabolismo , Péptido Hidrolasas/clasificación , Péptido Hidrolasas/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Enfermedades de las Plantas/microbiología , Polyporales/genética , Polyporales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de la radiación , Proteolisis/efectos de la radiación
9.
Fungal Biol ; 124(5): 263-272, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32389288

RESUMEN

Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.


Asunto(s)
Desoxirribodipirimidina Fotoliasa , Regulación Fúngica de la Expresión Génica , Luz , Metarhizium , Esporas Fúngicas , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Metarhizium/crecimiento & desarrollo , Metarhizium/efectos de la radiación , Presión Osmótica , Esporas Fúngicas/efectos de la radiación , Rayos Ultravioleta
10.
Fungal Biol ; 124(5): 338-351, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32389296

RESUMEN

The transcription of about 5-10 % of the genes in Phycomyces blakesleeanus is regulated by light. Among the most up-regulated, we have identified four genes, crgA-D, with similarity to crgA of Mucor circinelloides, a gene encoding a repressor of light-inducible carotenogenesis. The four proteins have the same structure with two RING RING Finger domains and a LON domain, suggesting that they could act as ubiquitin ligases, as their M. circinelloides homolog. The expression of these genes is induced by light with different thresholds as in other Mucoromycotina fungi like Blakeslea trispora and M. circinelloides. Only the P. blakesleeanus crgD gene could restore the wild type phenotype in a M. circinelloides null crgA mutant suggesting that P. blakesleeanus crgD is the functional homolog of crgA in M. circinelloides. Despite their sequence similarity it is possible that the P. blakesleeanus Crg proteins do not participate in the regulation of beta-carotene biosynthesis since none of the carotene-overproducing mutants of P. blakesleeanus had mutations in any of the crg genes. Our results provide further support of the differences in the regulation of the biosynthesis of beta-carotene in these two Mucoromycotina fungi.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Luz , Phycomyces , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Mucor/genética , Mucor/efectos de la radiación , Mucorales/genética , Mucorales/efectos de la radiación , Phycomyces/genética , Phycomyces/efectos de la radiación
11.
Int J Mol Sci ; 21(5)2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-32121417

RESUMEN

Light influences developmental pathways in fungi. Recent transcriptomic and biochemical analyses have demonstrated that light influences the metabolism of a white-rot basidiomycete Cerrena unicolor. However, the expression profile of genes involved in the growth and development, or micromorphological observations of the mycelium in response to variable lighting and culturing media, have not performed. We aim to reveal the effect of light and nutrients on C. unicolor growth and a potential relationship between the culture medium and lighting conditions on fungus micromorphological structures. Confocal laser scanning microscopy and scanning electron microscopy were employed for morphological observations of C. unicolor mycelium cultivated in red, blue, green, and white light and darkness on mineral and sawdust media. A comprehensive analysis of C. unicolor differentially expressed genes (DEGs) was employed to find global changes in the expression profiles of genes putatively involved in light-dependent morphogenesis. Both light and nutrients influenced C. unicolor growth and development. Considerable differences in the micromorphology of the mycelia were found, which were partially reflected in the functional groups of DEGs observed in the fungus transcriptomes. A complex cross-interaction of nutritional and environmental signals on C. unicolor growth and morphology was suggested. The results are a promising starting point for further investigations of fungus photobiology.


Asunto(s)
Basidiomycota/ultraestructura , Micelio/ultraestructura , Nutrientes/farmacología , Polyporaceae/ultraestructura , Basidiomycota/genética , Basidiomycota/crecimiento & desarrollo , Basidiomycota/efectos de la radiación , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Luz , Metabolismo/efectos de los fármacos , Metabolismo/efectos de la radiación , Microscopía Confocal , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/efectos de la radiación , Polyporaceae/efectos de los fármacos , Polyporaceae/genética , Polyporaceae/efectos de la radiación
12.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085660

RESUMEN

Verticillium dahliae (V. dahliae) infects roots and colonizes the vascular vessels of host plants, significantly reducing the economic yield of cotton and other crops. In this study, the protein VdTHI20, which is involved in the thiamine biosynthesis pathway, was characterized by knocking out the corresponding VdTHI20 gene in V. dahliae via Agrobacterium tumefaciens-mediated transformation (ATMT). The deletion of VdTHI20 resulted in several phenotypic defects in vegetative growth and conidiation and in impaired virulence in tobacco seedlings. We show that VdTHI20 increases the tolerance of V. dahliae to UV damage. The impaired vegetative growth of ΔVdTHI20 mutant strains was restored by complementation with a functional copy of the VdTHI20 gene or by supplementation with additional thiamine. Furthermore, the root infection and colonization of the ΔVdTHI20 mutant strains were suppressed, as indicated by green fluorescent protein (GFP)-labelling under microscope observation. When the RNAi constructs of VdTHI20 were used to transform Nicotiana benthamiana, the transgenic lines expressing dsVdTHI20 showed elevated resistance to V. dahliae. Together, these results suggest that VdTHI20 plays a significant role in the pathogenicity of V. dahliae. In addition, the pathogenesis-related gene VdTHI20 exhibits potential for controlling V. dahliae in important crops.


Asunto(s)
Vías Biosintéticas , Reparación del ADN , Proteínas Fúngicas/metabolismo , Pirimidinas/biosíntesis , Verticillium/metabolismo , Verticillium/patogenicidad , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Reparación del ADN/efectos de los fármacos , Fluorescencia , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación/genética , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Tiamina/farmacología , Nicotiana/microbiología , Rayos Ultravioleta , Verticillium/efectos de los fármacos , Verticillium/crecimiento & desarrollo , Virulencia/efectos de los fármacos , Virulencia/genética , Virulencia/efectos de la radiación
13.
Curr Genet ; 66(1): 141-153, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31256233

RESUMEN

Reversible phosphorylation of proteins regulated by protein kinases and phosphatases mediate multiple biological events in eukaryotes. In this study, a dual-specificity cell division cycle 14 phosphatase, MaCdc14, was functionally characterized in Metarhizium acridum. Deletion of MaCdc14 decreased branch numbers, affected septum formation and resulted in multiple nuclei in each hyphal compartment, indicating nuclear division and cytokinesis defects. The spore production capacity was severely impaired with decreased conidial yield and delayed conidiation in MaCdc14-deletion mutant (ΔMaCdc14). The transcription levels of conidiation-related genes were significantly changed after MaCdc14 inactivation. The morphology of conidia was uneven in size and the germination rate of conidia was increased in ΔMaCdc14. In addition, ΔMaCdc14 displayed significantly enhanced conidial tolerance to ultraviolet (UV) irradiation but had no significant effect on the thermotolerance, the sensitivities to cell wall damage reagents, osmotic and oxidative stresses, and virulence compared to the wild-type strain and complementary transformant. Furthermore, the pigmentation of ΔMaCdc14 was increased by the upregulated expression of melanin synthesis-related genes, which may result in the enhanced UV-B tolerance of ΔMaCdc14. In summary, MaCdc14 negatively regulated UV-B tolerance by mediating the transcription of melanin synthesis-related genes, contributed to conidiation by regulating the expression levels of conidiation-related genes and also played important roles in cytokinesis and morphogenesis in Metarhizium acridum.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Melaninas/biosíntesis , Metarhizium/fisiología , Metarhizium/efectos de la radiación , Proteínas Tirosina Fosfatasas/genética , Rayos Ultravioleta , Adaptación Biológica , Proteínas de Ciclo Celular/metabolismo , Citocinesis/genética , Mutación , Filogenia , Proteínas Tirosina Fosfatasas/metabolismo , Esporas Fúngicas , Estrés Fisiológico , Virulencia
14.
Fungal Genet Biol ; 136: 103315, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816399

RESUMEN

Regulation of plant cell wall degradation is of utmost importance for understanding the carbon cycle in nature, but also to improve industrial processes aimed at enzyme production for next generation biofuels. Thereby, the transcription factor networks in different fungi show conservation as well as striking differences, particularly between Trichoderma reesei and Neurospora crassa. Here, we aimed to gain insight into the function of the transcription factors CLR1 and CLR2 in T. reesei, which are crucial for cellulase gene expression in N. crassa. We studied impacts on gene regulation with cellulose, xylan, pectin and chitin, growth on 95 different carbon sources as well as an involvement in regulation of secondary metabolism or development. We found that CLR1 is present in the genome of T. reesei and other Trichoderma spp., albeit with considerably lower homology compared to other ascomycetes. CLR1 and CLR2 regulate pectinase transcript levels upon growth on pectin, no major function was detected on chitin. CLR1 and CLR2 form a positive feedback cycle on xylan and were found to be responsible for balancing co-regulation of xylanase genes in light and darkness with distinct and in part opposite regulatory effects of up to 8fold difference. Our data suggest that CLR1 and CLR2 have evolved differently in T. reesei compared to other fungi. We propose a model in which their main function is in adjustment of regulation of xylanase gene expression to different light conditions and to balance transcript levels of genes involved in plant cell wall degradation according to their individual relevance for this process.


Asunto(s)
Endo-1,4-beta Xilanasas/genética , Hypocreales/genética , Luz , Poligalacturonasa/genética , Factores de Transcripción/genética , Pared Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Genes Fúngicos , Hypocreales/metabolismo , Hypocreales/efectos de la radiación , Mutación , Filogenia , Poligalacturonasa/metabolismo , Metabolismo Secundario/genética , Factores de Transcripción/metabolismo , Xilanos/metabolismo
15.
Biotechnol Bioeng ; 117(3): 886-893, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31788779

RESUMEN

Optogenetic tools for controlling gene expression are ideal for tuning synthetic biological networks due to the exquisite spatiotemporal control available with light. Here we develop an optogenetic system for gene expression control integrated with an existing yeast toolkit allowing for rapid, modular assembly of light-controlled circuits in the important chassis organism Saccharomyces cerevisiae. We reconstitute activity of a split synthetic zinc-finger transcription factor (TF) using light-induced dimerization mediated by the proteins CRY2 and CIB1. We optimize function of this split TF and demonstrate the utility of the toolkit workflow by assembling cassettes expressing the TF activation domain and DNA-binding domain at different levels. Utilizing this TF and a synthetic promoter we demonstrate that light intensity and duty cycle can be used to modulate gene expression over the range currently available from natural yeast promoters. This study allows for rapid generation and prototyping of optogenetic circuits to control gene expression in S. cerevisiae.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Optogenética/métodos , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Clonación Molecular , Criptocromos/genética , Criptocromos/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
16.
PLoS Genet ; 15(10): e1008419, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31609971

RESUMEN

Microorganisms sense environmental fluctuations in nutrients and light, coordinating their growth and development accordingly. Despite their critical roles in fungi, only a few G-protein coupled receptors (GPCRs) have been characterized. The Aspergillus nidulans genome encodes 86 putative GPCRs. Here, we characterise a carbon starvation-induced GPCR-mediated glucose sensing mechanism in A. nidulans. This includes two class V (gprH and gprI) and one class VII (gprM) GPCRs, which in response to glucose promote cAMP signalling, germination and hyphal growth, while negatively regulating sexual development in a light-dependent manner. We demonstrate that GprH regulates sexual development via influencing VeA activity, a key light-dependent regulator of fungal morphogenesis and secondary metabolism. We show that GprH and GprM are light-independent negative regulators of sterigmatocystin biosynthesis. Additionally, we reveal the epistatic interactions between the three GPCRs in regulating sexual development and sterigmatocystin production. In conclusion, GprH, GprM and GprI constitute a novel carbon starvation-induced glucose sensing mechanism that functions upstream of cAMP-PKA signalling to regulate fungal development and mycotoxin production.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Aspergillus nidulans/fisiología , Proteínas Fúngicas/metabolismo , Luz , Receptores Acoplados a Proteínas G/metabolismo , Carbono/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Glucosa/metabolismo , Morfogénesis , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de la radiación , Esterigmatocistina/biosíntesis
17.
Environ Microbiol ; 21(8): 2977-2996, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31136051

RESUMEN

The fungus Verticillium dahliae causes vascular wilt disease on more than 200 plant species worldwide. This fungus can survive for years in soil as melanized microsclerotia. We found that VdCmr1, a transcription factor, is required for the melanin production and increased survival following UV irradiation in V. dahliae but not for microsclerotia production or virulence. Here, we provided evidence how VdCmr1 protects against high temperature (HT) and UV irradiation in V. dahliae. The results indicate that VdCmr1 mediates entry to the diapause period in V. dahliae in response to HT and contributes to the expression of proteins to minimize protein misfolding and denaturation. VdCmr1 deletion results in the misregulation of DNA repair machinery, suggestive of reduced DNA repair capacity following UV irradiation and in correlation with the low survival rate of UV-treated VdCmr1 mutants. We discovered a putative VdCmr1-dependent gene cluster associated with secondary metabolism and stress responses. We also functionally characterized two VdCmr1-responsive genes participating in HT and UV response. These results shed further light on the roles of VdCmr1 in protection from HT or UV irradiation, and the additional insights into the mechanisms of this protection may be useful to exploit for more effective disease control.


Asunto(s)
Proteínas Fúngicas/metabolismo , Calor , Rayos Ultravioleta , Verticillium/efectos de la radiación , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Enfermedades de las Plantas/microbiología , Eliminación de Secuencia , Factores de Transcripción/genética , Verticillium/genética , Virulencia/genética
18.
mBio ; 10(2)2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967462

RESUMEN

The filamentous fungus Alternaria alternata is a common postharvest contaminant of food and feed, and some strains are plant pathogens. Many processes in A. alternata are triggered by light. Interestingly, blue light inhibits sporulation, and red light reverses the effect, suggesting interactions between light-sensing systems. The genome encodes a phytochrome (FphA), a white collar 1 (WC-1) orthologue (LreA), an opsin (NopA), and a cryptochrome (CryA) as putative photoreceptors. Here, we investigated the role of FphA and LreA and the interplay with the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway. We created loss-of function mutations for fphA, lreA, and hogA using CRISPR-Cas9 technology. Sporulation was reduced in all three mutant strains already in the dark, suggesting functions of the photoreceptors FphA and LreA independent of light perception. Germination of conidia was delayed in red, blue, green, and far-red light. We found that light induction of ccgA (clock-controlled gene in Neurospora crassa and light-induced gene in Aspergillus nidulans) and the catalase gene catA depended on FphA, LreA, and HogA. Light induction of ferA (a putative ferrochelatase gene) and bliC (bli-3, light regulated, unknown function) required LreA and HogA but not FphA. Blue- and green-light stimulation of alternariol formation depended on LreA. A lack of FphA or LreA led to enhanced resistance toward oxidative stress due to the upregulation of catalases and superoxide dismutases. Light activation of FphA resulted in increased phosphorylation and nuclear accumulation of HogA. Our results show that germination, sporulation, and secondary metabolism are light regulated in A. alternata with distinct and overlapping roles of blue- and red-light photosensors.IMPORTANCE Light controls many processes in filamentous fungi. The study of light regulation in a number of model organisms revealed an unexpected complexity. Although the molecular components for light sensing appear to be widely conserved in fungal genomes, the regulatory circuits and the sensitivity of certain species toward specific wavelengths seem different. In N. crassa, most light responses are triggered by blue light, whereas in A. nidulans, red light plays a dominant role. In Alternaria alternata, both blue and red light appear to be important. In A. alternata, photoreceptors control morphogenetic pathways, the homeostasis of reactive oxygen species, and the production of secondary metabolites. On the other hand, high-osmolarity sensing required FphA and LreA, indicating a sophisticated cross talk between light and stress signaling.


Asunto(s)
Alternaria/crecimiento & desarrollo , Alternaria/efectos de la radiación , Luz , Fotorreceptores Microbianos/metabolismo , Fitocromo/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de la radiación , Alternaria/genética , Alternaria/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo
19.
Sci Rep ; 9(1): 6385, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015536

RESUMEN

Cryptococcus neoformans is a basidiomycete fungus that is highly resistant to ionizing radiation and has been identified in highly radioactive environments. Transcription factors (TFs) are master regulators of gene expression by binding to specific DNA sequences within promoters of target genes. A library of 322 signature-tagged gene deletion strains for 155 C. neoformans TF genes has been established. Previous phenome-based functional analysis of the C. neoformans TF mutant library identified key TFs important for various phenotypes, such as growth, differentiation, virulence-factor production, and stress responses. Here, utilizing the established TF mutant library, we identified 5 TFs that are important for radiation sensitivity, including SRE1, BZP2, GAT5, GAT6, and HCM1. Interestingly, BZP2, GAT5 and GAT6 all belong to the GATA-type transcription factors. These factors regulate transcription of nitrogen catabolite repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. In addition to radiation, we found that specific GATA factors are important for other stressors such as rapamycin, fluconazole, and hydroxyurea treatment. Using real-time PCR method, we studied the expression of GATA down-stream genes after radiation exposure and identified that AAP4, AAP5 and URO1 were differentially expressed in the GAT5 and GAT6 mutants compared to the wild type cells. In summary, our data suggest that GATA TFs are important for radiation sensitivity in C. neoformans by regulating specific downstream AAP genes.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/efectos de la radiación , Proteínas Fúngicas/genética , Factores de Transcripción GATA/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Tolerancia a Radiación/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Cryptococcus neoformans/efectos de los fármacos , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Biblioteca de Genes , Hidroxiurea/farmacología , Mutación/genética , Filogenia , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación , Sirolimus/farmacología
20.
J Biotechnol ; 296: 7-13, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30853634

RESUMEN

Xylitol is a sugar alcohol that is used as a sweetener in food and confections. Industrially, xylitol is manufactured by chemical hydrogenation of d-xylose, which requires expensive separation and purification steps as well as high pressure and temperature. The microbial production of xylitol has been examined as an alternative to the chemical process. In this study, a xylitol over-producing strain is breeded by mutagenesis of a newly isolated yeast Candida tropicalis with a new mutation breeding system named atmospheric and room temperature plasma. The highest yield strain T31 was screened among more than 200 mutants with a xylitol yield of 0.61 g/g, which represents a yield increase of 22%. Furthermore, a two-stage dissolved oxygen supply strategy was used in a fermentation process resulting the maximum xylitol yield 0.79 g/g, which makes it a promising candidate for xylitol production. Further biochemical analysis indicating the relative gene expression and the enzyme activity of xylose reductase were higher in mutants than those in the original strain, which partly explained the high yield of xylitol. Thus, this study provides a new strategy to breed the over-producing strains for the xylitol industry.


Asunto(s)
Candida tropicalis/genética , Mutagénesis/efectos de la radiación , Gases em Plasma , Xilitol/biosíntesis , Aldehído Reductasa/genética , Candida tropicalis/efectos de los fármacos , Fermentación , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Temperatura , Xilitol/química , Xilosa/química , Xilosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...