Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(9): 5038-5056, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34009296

RESUMEN

ERG family proteins (ERG, FLI1 and FEV) are a subfamily of ETS transcription factors with key roles in physiology and development. In Ewing sarcoma, the oncogenic fusion protein EWS-FLI1 regulates both transcription and alternative splicing of pre-messenger RNAs. However, whether wild-type ERG family proteins might regulate splicing is unknown. Here, we show that wild-type ERG proteins associate with spliceosomal components, are found on nascent RNAs, and induce alternative splicing when recruited onto a reporter minigene. Transcriptomic analysis revealed that ERG and FLI1 regulate large numbers of alternative spliced exons (ASEs) enriched with RBFOX2 motifs and co-regulated by this splicing factor. ERG and FLI1 are associated with RBFOX2 via their conserved carboxy-terminal domain, which is present in EWS-FLI1. Accordingly, EWS-FLI1 is also associated with RBFOX2 and regulates ASEs enriched in RBFOX2 motifs. However, in contrast to wild-type ERG and FLI1, EWS-FLI1 often antagonizes RBFOX2 effects on exon inclusion. In particular, EWS-FLI1 reduces RBFOX2 binding to the ADD3 pre-mRNA, thus increasing its long isoform, which represses the mesenchymal phenotype of Ewing sarcoma cells. Our findings reveal a RBFOX2-mediated splicing regulatory function of wild-type ERG family proteins, that is altered in EWS-FLI1 and contributes to the Ewing sarcoma cell phenotype.


Asunto(s)
Empalme Alternativo , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Factores de Empalme de ARN/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Línea Celular , Línea Celular Tumoral , Células HeLa , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Dominios Proteicos , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Regulador Transcripcional ERG/química , Regulador Transcripcional ERG/metabolismo
2.
Structure ; 29(5): 404-412.e4, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33275876

RESUMEN

ETS family transcription factors of ERG and FLI1 play a key role in oncogenesis of prostate cancer and Ewing sarcoma by binding regulatory DNA sites and interfering with function of other factors. Mithramycin (MTM) is an anti-cancer, DNA binding natural product that functions as a potent antagonist of ERG and FLI1 by an unknown mechanism. We present a series of crystal structures of the DNA binding domain (DBD) of ERG/FLI1 culminating in a structure of a high-order complex of the ERG/FLI1 DBD, transcription factor Runx2, core-binding factor beta (Cbfß), and MTM on a DNA enhancer site, along with supporting DNA binding studies using MTM and its analogues. Taken together, these data provide insight into allosteric mechanisms underlying ERG and FLI1 transactions and their disruption by MTM analogues.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Plicamicina/farmacología , Proteína Proto-Oncogénica c-fli-1/química , Regulación Alostérica/efectos de los fármacos , Antibióticos Antineoplásicos/química , Sitios de Unión , Subunidad alfa 1 del Factor de Unión al Sitio Principal/química , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/química , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Plicamicina/química , Unión Proteica , Proteína Proto-Oncogénica c-fli-1/metabolismo , Regulador Transcripcional ERG/química , Regulador Transcripcional ERG/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(15): 8584-8592, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32220959

RESUMEN

The androgen receptor (AR) is a type I nuclear hormone receptor and the primary drug target in prostate cancer due to its role as a lineage survival factor in prostate luminal epithelium. In prostate cancer, the AR cistrome is reprogrammed relative to normal prostate epithelium and particularly in cancers driven by oncogenic ETS fusion genes. The molecular basis for this change has remained elusive. Using purified proteins, we report a minimal cell-free system that demonstrates interdomain cooperativity between the ligand (LBD) and DNA binding domains (DBD) of AR, and its autoinhibition by the N terminus of AR. Furthermore, we identify ERG as a cofactor that activates AR's ability to bind DNA in both high and lower affinity contexts through direct interaction within a newly identified AR-interacting motif (AIM) in the ETS domain, independent of ERG's own DNA binding ability. Finally, we present evidence that this interaction is conserved among ETS factors whose expression is altered in prostate cancer. Our work highlights, at a biochemical level, how tumor-initiating ETS translocations result in reprogramming of the AR cistrome.


Asunto(s)
ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptores Androgénicos/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , ADN/genética , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-ets/genética , Receptores Androgénicos/química , Receptores Androgénicos/genética , Regulador Transcripcional ERG/química , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo , Células Tumorales Cultivadas
4.
Int J Mol Sci ; 20(14)2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295848

RESUMEN

Human ether a-go-go related gene (hERG) or KV11.1 potassium channels mediate the rapid delayed rectifier current (IKr) in cardiac myocytes. Drug-induced inhibition of hERG channels has been implicated in the development of acquired long QT syndrome type (aLQTS) and fatal arrhythmias. Several marketed drugs have been withdrawn for this reason. Therefore, there is considerable interest in developing better tests for predicting drugs which can block the hERG channel. The drug-binding pocket in hERG channels, which lies below the selectivity filter, normally contains K+ ions and water molecules. In this study, we test the hypothesis that these water molecules impact drug binding to hERG. We developed 3D QSAR models based on alignment independent descriptors (GRIND) using docked ligands in open and closed conformations of hERG in the presence (solvated) and absence (non-solvated) of water molecules. The ligand-protein interaction fingerprints (PLIF) scheme was used to summarize and compare the interactions. All models delineated similar 3D hERG binding features, however, small deviations of about ~0.4 Å were observed between important hotspots of molecular interaction fields (MIFs) between solvated and non-solvated hERG models. These small changes in conformations do not affect the performance and predictive power of the model to any significant extent. The model that exhibits the best statistical values was attained with a cryo_EM structure of the hERG channel in open state without water. This model also showed the best R2 of 0.58 and 0.51 for the internal and external validation test sets respectively. Our results suggest that the inclusion of water molecules during the docking process has little effect on conformations and this conformational change does not impact the predictive ability of the 3D QSAR models.


Asunto(s)
Antineoplásicos/química , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Agua/química , Antineoplásicos/farmacología , Humanos , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Solubilidad , Regulador Transcripcional ERG/antagonistas & inhibidores , Regulador Transcripcional ERG/química , Flujo de Trabajo
5.
Int J Mol Med ; 43(3): 1253-1262, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30628647

RESUMEN

Congenital long QT syndrome (LQTS) is a cardiac channelopathy that often results in fatal arrhythmias. LQTS mutations not only lead to abnormal myocardial electrical activities but are associated with heart contraction abnormalities, cardiomyopathy and congenital heart defects. In vivo and in vitro studies have found that LQTS mutations are associated with cardiomyocyte apoptosis, cardiac developmental disorders and even embryonic mortality. Cardiac delayed rectifier potassium channel dysfunction due to the human ether­à­go­go­related gene (hERG) mutation causes congenital LQTS type 2. The majority of LQTS 2 mutations are characterized by mutant protein accumulation in the endoplasmic reticulum (ER). Unfolded or misfolded protein retention in the ER causes an unfolded protein reaction, which is characteristic of ER stress (ERS). Therefore, the present study hypothesized that LQTS mutations can cause cardiac structural abnormalities via ERS­mediated cardiomyocyte apoptosis. To test this hypothesis, 293 cells were transiently transfected with an L539fs/47­hERG plasmid to generate an LQTS 2 model. L539fs/47­hERG is an LQTS 2 mutation, which consists of a 19­bp deletion at 1619­1637 and a point mutation at 1692. Using confocal laser scanning microscopy analysis, it was verified that the L539fs/47­hERG protein was retained in the ER. Hoechst 33342 apoptosis staining indicated that apoptosis was increased in the L539fs/47­hERG­transfected cells, and this be reversed by treatment with 4­phenyl butyric acid. Western blot analysis revealed increased expression levels of the ERS chaperone glucose regulated protein 78 and pro­apoptotic ERS­induced factors, including protein kinase R­like endoplasmic reticulum kinase, eukaryotic translation­initiation factor­2α and C/EBP homologous protein, in the L539fs/47­hERG­transfected cells. The B­cell lymphoma (Bcl­2)­associated X protein/Bcl­2 ratio and caspase­12 were also increased in the mutated cells. These results demonstrate that L539fs/47­hERG induces cell apoptosis and the potential molecular mechanism involves the activation of ERS and ERS­mediated cell apoptosis.


Asunto(s)
Apoptosis/genética , Estrés del Retículo Endoplásmico/genética , Mutación , Sustitución de Aminoácidos , Secuencia de Bases , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Modelos Biológicos , Análisis de Secuencia de ADN , Regulador Transcripcional ERG/química , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo , Respuesta de Proteína Desplegada
6.
Oncotarget ; 8(26): 42438-42454, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28465491

RESUMEN

Genomic alterations involving translocations of the ETS-related gene ERG occur in approximately half of prostate cancer cases. These alterations result in aberrant, androgen-regulated production of ERG protein variants that directly contribute to disease development and progression. This study describes the discovery and characterization of a new class of small molecule ERG antagonists identified through rational in silico methods. These antagonists are designed to sterically block DNA binding by the ETS domain of ERG and thereby disrupt transcriptional activity. We confirmed the direct binding of a lead compound, VPC-18005, with the ERG-ETS domain using biophysical approaches. We then demonstrated VPC-18005 reduced migration and invasion rates of ERG expressing prostate cancer cells, and reduced metastasis in a zebrafish xenograft model. These results demonstrate proof-of-principal that small molecule targeting of the ERG-ETS domain can suppress transcriptional activity and reverse transformed characteristics of prostate cancers aberrantly expressing ERG. Clinical advancement of the developed small molecule inhibitors may provide new therapeutic agents for use as alternatives to, or in combination with, current therapies for men with ERG-expressing metastatic castration-resistant prostate cancer.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Descubrimiento de Drogas , Motivo ETS , Neoplasias de la Próstata/metabolismo , Dominios y Motivos de Interacción de Proteínas , Regulador Transcripcional ERG/química , Regulador Transcripcional ERG/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Descubrimiento de Drogas/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Modelos Moleculares , Conformación Molecular , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Unión Proteica , Relación Estructura-Actividad , Regulador Transcripcional ERG/genética , Pez Cebra
7.
Mol Biosyst ; 12(12): 3600-3610, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27714012

RESUMEN

The ETS family of transcription factors regulate gene targets by binding to a core GGAA DNA-sequence. The ETS factor ERG is required for homeostasis and lineage-specific functions in endothelial cells, some subset of haemopoietic cells and chondrocytes; its ectopic expression is linked to oncogenesis in multiple tissues. To date details of the DNA-binding process of ERG including DNA-sequence recognition outside the core GGAA-sequence are largely unknown. We combined available structural and experimental data to perform molecular dynamics simulations to study the DNA-binding process of ERG. In particular we were able to reproduce the ERG DNA-complex with a DNA-binding simulation starting in an unbound configuration with a final root-mean-square-deviation (RMSD) of 2.1 Å to the core ETS domain DNA-complex crystal structure. This allowed us to elucidate the relevance of amino acids involved in the formation of the ERG DNA-complex and to identify Arg385 as a novel key residue in the DNA-binding process. Moreover we were able to show that water-mediated hydrogen bonds are present between ERG and DNA in our simulations and that those interactions have the potential to achieve sequence recognition outside the GGAA core DNA-sequence. The methodology employed in this study shows the promising capabilities of modern molecular dynamics simulations in the field of protein DNA-interactions.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Regulador Transcripcional ERG/química , Secuencia de Bases , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Enlace de Hidrógeno , Conformación Molecular , Simulación del Acoplamiento Molecular , Mutación , Dominios y Motivos de Interacción de Proteínas , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...