Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 9(1): 79-103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31561038

RESUMEN

BACKGRAOUD & AIMS: Aberrant epithelial bicarbonate (HCO3-) secretion caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is associated with several diseases including cystic fibrosis and pancreatitis. Dynamically regulated ion channel activity and anion selectivity of CFTR by kinases sensitive to intracellular chloride concentration ([Cl-]i) play an important role in epithelial HCO3- secretion. However, the molecular mechanisms of how [Cl-]i-dependent mechanisms regulate CFTR are unknown. METHODS: We examined the mechanisms of the CFTR HCO3- channel regulation by [Cl-]i-sensitive kinases using an integrated electrophysiological, molecular, and computational approach including whole-cell, outside-out, and inside-out patch clamp recordings and molecular dissection of WNK1 and CFTR proteins. In addition, we analyzed the effects of pancreatitis-causing CFTR mutations on the WNK1-mediated regulation of CFTR. RESULTS: Among the WNK1, SPAK, and OSR1 kinases that constitute a [Cl-]i-sensitive kinase cascade, the expression of WNK1 alone was sufficient to increase the CFTR bicarbonate permeability (PHCO3/PCl) and conductance (GHCO3) in patch clamp recordings. Molecular dissection of the WNK1 domains revealed that the WNK1 kinase domain is responsible for CFTR PHCO3/PCl regulation by direct association with CFTR, while the surrounding N-terminal regions mediate the [Cl-]i-sensitivity of WNK1. Furthermore, the pancreatitis-causing R74Q and R75Q mutations in the elbow helix 1 of CFTR hampered WNK1-CFTR physical associations and reduced WNK1-mediated CFTR PHCO3/PCl regulation. CONCLUSION: The CFTR HCO3- channel activity is regulated by [Cl-]i and a WNK1-dependent mechanism. Our results provide new insights into the regulation of the ion selectivity of CFTR and the pathogenesis of CFTR-related disorders.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Pancreatitis/patología , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Bicarbonatos/metabolismo , Cloruros/metabolismo , Cristalografía por Rayos X , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/aislamiento & purificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Mutación , Pancreatitis/genética , Técnicas de Placa-Clamp , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Proteína Quinasa Deficiente en Lisina WNK 1/aislamiento & purificación
2.
J Biol Chem ; 295(7): 1985-1991, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31882543

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel protein that is defective in individuals with cystic fibrosis (CF). To advance the rational design of CF therapies, it is important to elucidate how mutational defects in CFTR lead to its impairment and how pharmacological compounds interact with and alter CFTR. Here, using a helical-hairpin construct derived from CFTR's transmembrane (TM) helices 3 and 4 (TM3/4) and their intervening loop, we investigated the structural effects of a patient-derived CF-phenotypic mutation, E217G, located in the loop region of CFTR's membrane-spanning domain. Employing a single-molecule FRET assay to probe the folding status of reconstituted hairpins in lipid bilayers, we found that the E217G hairpin exhibits an altered adaptive packing behavior stemming from an additional GXXXG helix-helix interaction motif created in the mutant hairpin. This observation suggested that the misfolding and functional defects caused by the E217G mutation arise from an impaired conformational adaptability of TM helical segments in CFTR. The addition of the small-molecule corrector Lumacaftor exerts a helix stabilization effect not only on the E217G mutant hairpin, but also on WT TM3/4 and other mutations in the hairpin. This finding suggests a general mode of action for Lumacaftor through which this corrector efficiently improves maturation of various CFTR mutants.


Asunto(s)
Aminofenoles/química , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Fibrosis Quística/genética , Secuencia de Aminoácidos/genética , Aminofenoles/farmacología , Aminopiridinas/química , Benzodioxoles/química , Línea Celular , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Humanos , Conformación Molecular/efectos de los fármacos , Mutación/genética , Pliegue de Proteína/efectos de los fármacos , Relación Estructura-Actividad
3.
Dev Cell ; 51(4): 421-430.e3, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31679858

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel central to the development of secretory diarrhea and cystic fibrosis. The oldest CFTR ortholog identified is from dogfish shark, which retains similar structural and functional characteristics to the mammalian protein, thereby highlighting CFTR's critical role in regulating epithelial ion transport in vertebrates. However, the identification of an early CFTR ortholog with altered structure or function would provide critical insight into the evolution of epithelial anion transport. Here, we describe the earliest known CFTR, expressed in sea lamprey (Petromyzon marinus), with unique structural features, altered kinetics of activation and sensitivity to inhibition, and altered single-channel conductance compared to human CFTR. Our data provide the earliest evolutionary evidence of CFTR, offering insight regarding changes in gene and protein structure that underpin evolution from transporter to anion channel. Importantly, these data provide a unique platform to enhance our understanding of vertebrate phylogeny over a critical period of evolutionary expansion.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Evolución Molecular , Humanos , Lampreas
4.
Biochemistry ; 57(43): 6234-6246, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30281975

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, crucial to epithelial salt and water homeostasis, and defective due to mutations in its gene in patients with cystic fibrosis, is a unique member of the large family of ATP-binding cassette transport proteins. Regulation of CFTR channel activity is stringently controlled by phosphorylation and nucleotide binding. Structural changes that underlie transitions between active and inactive functional states are not yet fully understood. Indeed the first 3D structures of dephosphorylated, ATP-free, and phosphorylated ATP-bound states were only recently reported. Here we have determined the structure of inactive and active states of a thermally stabilized CFTR, the latter with a very high channel open probability, confirmed after reconstitution into proteoliposomes. These structures, obtained at nominal resolution of 4.3 and 6.6 Å, reveal a unique repositioning of the transmembrane helices and regulatory domain density that provide insights into the structural transition between active and inactive functional states of CFTR. Moreover, we observe an extracellular vestibule that may provide anion access to the pore due to the conformation of transmembrane helices 7 and 8 that differs from the previous orthologue CFTR structures. In conclusion, our work contributes detailed structural information on an active, open state of the CFTR anion channel.


Asunto(s)
Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón/métodos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Animales , Pollos , Activación del Canal Iónico , Fosforilación
5.
PLoS Comput Biol ; 13(6): e1005594, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28640808

RESUMEN

Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF). Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF) and develop an inward (IWF) facing model employing an integrated experimental-molecular dynamics simulation (200 ns) approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs) of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.


Asunto(s)
Membrana Celular/química , Cloro/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Modelos Químicos , Simulación de Dinámica Molecular , Secuencias de Aminoácidos , Sitios de Unión , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular , Difusión , Unión Proteica
7.
PLoS Comput Biol ; 8(4): e1002477, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22532795

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and "correctors"), but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called "stabilizers") that rescue ΔF508-CFTR activity. To design the "stabilizers", we extended our structural ensemble-based computational protein redesign algorithm K* to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Diseño de Fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Dominios PDZ , Péptidos/química , Proteínas Adaptadoras Transductoras de Señales , Sitios de Unión , Simulación por Computador , Proteínas de la Matriz de Golgi , Proteínas de Transporte de Membrana , Modelos Químicos , Modelos Moleculares , Unión Proteica
8.
Mol Biol Cell ; 20(8): 2337-50, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19244346

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, DeltaF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells.


Asunto(s)
Polaridad Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endocitosis , Células Epiteliales/citología , Células Epiteliales/metabolismo , Intestinos/citología , Proteínas de Unión al GTP rab/metabolismo , Animales , Bioensayo , Línea Celular , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Células Epiteliales/ultraestructura , Fluorescencia , Genes Dominantes , Humanos , Separación Inmunomagnética , Activación del Canal Iónico , Proteínas Mutantes/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Ratas , Vesículas Secretoras/ultraestructura
9.
PLoS Comput Biol ; 4(2): e1000008, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18463704

RESUMEN

The absence of a functional ATP Binding Cassette (ABC) protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) from apical membranes of epithelial cells is responsible for cystic fibrosis (CF). Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1). Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of NBD1-DeltaF508 are essential information in correcting this pathogenic mutant.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Modelos Químicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestructura , Sustitución de Aminoácidos , Simulación por Computador , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mutación , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Relación Estructura-Actividad
10.
Pflugers Arch ; 456(1): 163-77, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18057957

RESUMEN

Application of atomic force microscopy (AFM) on isolated plasma membranes is a valuable method to study membrane proteins down to single-molecule level in their native environment. The cystic fibrosis transmembrane conductance regulator (CFTR), a protein of the adenosine triphosphate-binding cassette transporter superfamily, is known to play a crucial role in maintaining the salt and water balance on the epithelium and to influence processes such as cell volume regulation. A mutation in the gene encoding for CFTR results in cystic fibrosis (CF), a very common lethal genetic disease. Identification of CFTR within the cell membrane at the single-molecule level makes it feasible to visualize the distribution and organization of CFTR proteins within the cell membrane of healthy individuals and CF patients. We were able to show that human red blood cells have a CFTR distribution comparable to that of epithelial cells and that the number of CFTR in cells derived from CF patients is strongly reduced. Studies on CFTR-expressing oocytes disclose CFTR dynamics upon CFTR activation. We observed that cyclic adenosine monophosphate induces an insertion of CFTR in the plasma membrane and the formation of heteromeric CFTR-containing structures with yet unknown stoichiometry. The structure of CFTR was identified by high-resolution scans of immunogold-labeled CFTR, revealing that CFTR forms a tail-to-tail dimer with a central pore. In conclusion, these studies show that AFM experiments on isolated plasma membranes allow not only quantification and localization of membrane proteins but also provide insight in their dynamics at a single-molecule level.


Asunto(s)
Membrana Celular/ultraestructura , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Microscopía de Fuerza Atómica , Animales , Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Eritrocitos/ultraestructura , Femenino , Humanos , Oocitos/citología , Oocitos/metabolismo , Oocitos/ultraestructura , Xenopus laevis
11.
Glycobiology ; 10(2): 149-57, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10642606

RESUMEN

A mechanistic model of mucous granule exocytosis by columnar epithelial cells must take into account the unique physical-chemical properties of mucin glycoproteins and the resultant mucus gel. In particular, any model must explain the intracellular packaging and the kinetics of release of these large, heavily charged species. We studied mucous granule exocytosis in gallbladder epithelium, a model system for mucus secretion by columnar epithelial cells. Mucous granules released mucus by merocrine exocytosis in mouse gallbladder epithelium when examined by transmission electron microscopy. Spherules of secreted mucus larger than intracellular granules were noted on scanning electron microscopy. Electron probe microanalysis demonstrated increased calcium concentrations within mucous granules. Immunofluorescence microscopic studies revealed intracellular colocalization of mucins and the cystic fibrosis transmembrane conductance regulator (CFTR). Confocal laser immunofluorescence microscopy confirmed colocalization. These observations suggest that calcium in mucous secretory granules provides cationic shielding to keep mucus tightly packed. The data also suggests CFTR chloride channels are present in granule membranes. These observations support a model in which influx of chloride ions into the granule disrupts cationic shielding, leading to rapid swelling, exocytosis and hydration of mucus. Such a model explains the physical-chemical mechanisms involved in mucous granule exocytosis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Gránulos Citoplasmáticos/metabolismo , Exocitosis , Vesícula Biliar/fisiología , Mucinas/biosíntesis , Animales , Calcio/metabolismo , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Gránulos Citoplasmáticos/ultraestructura , Perros , Microanálisis por Sonda Electrónica , Células Epiteliales/fisiología , Células Epiteliales/ultraestructura , Vesícula Biliar/citología , Vesícula Biliar/ultraestructura , Membranas Intracelulares/fisiología , Membranas Intracelulares/ultraestructura , Cinética , Masculino , Ratones , Microscopía Confocal , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Mucinas/análisis
12.
Proc Natl Acad Sci U S A ; 95(19): 11235-40, 1998 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-9736719

RESUMEN

We have used freeze-fracture electron microscopy to examine the oligomeric structure and molecular asymmetry of integral plasma membrane proteins. Recombinant plasma membrane proteins were functionally expressed in Xenopus laevis oocytes, and the dimensions of their freeze-fracture particles were analyzed. To characterize the freeze-fracture particles, we compared the particle cross-sectional area of proteins with alpha-helical transmembrane domains (opsin, aquaporin 1, and a connexin) with their area obtained from existing maps calculated from two-dimensional crystals. We show that the cross-sectional area of the freeze-fracture particles corresponds to the area of the transmembrane domain of the protein, and that the protein cross-sectional area varies linearly with the number membrane-spanning helices. On average, each helix occupies 1.40 +/- 0.03 nm2. By using this information, we examined members from three classes of plasma membrane proteins: two ion channels, the cystic fibrosis transmembrane conductance regulator and connexin 50 hemi-channel; a water channel, the major intrinsic protein (the aquaporin 0); and a cotransporter, the Na+/glucose cotransporter. Our results suggest that the cystic fibrosis transmembrane conductance regulator is a dimer containing 25 +/- 2 transmembrane helices, connexin 50 is a hexamer containing 24 +/- 3 helices, the major intrinsic protein is a tetramer containing 24 +/- 3 helices, and the Na+/glucose cotransporter is an asymmetrical monomer containing 15 +/- 2 helices.


Asunto(s)
Membrana Celular/química , Proteínas de la Membrana/ultraestructura , Animales , Acuaporina 1 , Acuaporinas/ultraestructura , Conexinas/ultraestructura , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Proteínas del Ojo/ultraestructura , Congelación , Canales Iónicos/ultraestructura , Glicoproteínas de Membrana/ultraestructura , Microscopía Electrónica , Proteínas de Transporte de Monosacáridos/ultraestructura , Oocitos/química , Tamaño de la Partícula , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/ultraestructura , Transportador 1 de Sodio-Glucosa , Xenopus laevis
13.
Mol Membr Biol ; 13(1): 33-40, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-9147660

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated C1(-) channel. Malfunction of CFTR causes cystic fibrosis (CF). CFTR belongs to an ATP-binding cassette (ABC) transporter superfamily which includes P-glycoprotein (Pgp), the molecule that is responsible for multidrug resistance in cancer cells. P-glycoprotein molecules have been suggested to have more than one topology and function. In this study, we analysed the early stages of membrane insertion, processing, and topology of human CFTR using rabbit reticulocyte lysate and wheat germ extract translation systems supplemented with canine pancreatic microsomal membranes. Our results suggest that CFTR contains an uncleavable signal sequence and its membrane targeting and insertion may depend on the signal recognition particle (SRP) and SRP receptor. The topology of CFTR in microsomal membranes is the same as the one predicted based on hydropathy plot analysis. These results, together with our previous findings on Pgp, indicate that (1) the topologies of mammalian ABC transporters can be dissected and studied using protein fusion chimeras in a cell-tree system; and (2) the membrane targeting and insertion of CFTR and Pgp may take the same pathway, i.e., the SRP-dependent pathway, but the membrane folding mechanism of these two proteins in microsomal membranes is probably different.


Asunto(s)
Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/ultraestructura , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Sitios de Unión , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Citoplasma/metabolismo , Perros , Retículo Endoplásmico Rugoso/ultraestructura , Glicosilación , Humanos , Microsomas/ultraestructura , Biosíntesis de Proteínas , Conformación Proteica , Conejos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/ultraestructura , Partícula de Reconocimiento de Señal/metabolismo , Transducción de Señal , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA