Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.103
Filtrar
1.
Medicine (Baltimore) ; 103(19): e38122, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728464

RESUMEN

BACKGROUND: Statins are the first-line treatment for dyslipidemia, which is a major modifiable risk factor for atherosclerotic cardiovascular disease. Studies have shown that in addition to the beneficial lipid-lowering effect, statins also exhibit a number of pleiotropic effects that may find application in other diseases, including osteoporosis. This study aimed to assess the effect of statins on bone turnover, as measured by the concentration of bone turnover markers, and to compare the effect of atorvastatin as a lipophilic statin and rosuvastatin as a hydrophilic statin. METHODS: This study included 34 postmenopausal women aged < 65 years with newly diagnosed dyslipidemia requiring statin therapy. Patients were randomly assigned to receive a statin drug. Statins were initiated at standard doses of 5 to 10 mg of rosuvastatin and 20 mg of atorvastatin. The levels of C-terminal telopeptide of type I collagen as a bone resorption marker and N-terminal propeptide of procollagen type I as a marker of bone formation, lipid concentrations and other biochemical parameters were assessed at baseline and after 6 and twelve months of treatment. RESULTS: There were no statistically significant differences between the levels of bone turnover markers before and 6 months after statin implementation (P > .05) - for all patients or subgroups according to statin use. Analysis of the results showed that after 12 months, there was a statistically significant decrease in N-terminal propeptide of procollagen type I concentration in all subjects (P = .004). By statin subgroup, a statistically significant decrease in N-terminal propeptide of procollagen type I was observed only in patients receiving rosuvastatin (P = .012) and not in those receiving atorvastatin (P = .25). Moreover, changes in bone turnover markers did not correlate with changes in lipid concentrations. CONCLUSIONS: These results may indicate the superiority of atorvastatin over rosuvastatin in inhibiting adverse changes in bone turnover in postmenopausal women. Confirmed by studies involving a larger population, the observed differences might find particular applications in clinical practice, and the choice of atorvastatin over rosuvastatin for women could be considered in the early postmenopausal period to reduce the risk of osteoporosis and subsequent osteoporotic fractures.


Asunto(s)
Atorvastatina , Remodelación Ósea , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Posmenopausia , Rosuvastatina Cálcica , Humanos , Rosuvastatina Cálcica/uso terapéutico , Rosuvastatina Cálcica/administración & dosificación , Femenino , Atorvastatina/uso terapéutico , Atorvastatina/farmacología , Persona de Mediana Edad , Remodelación Ósea/efectos de los fármacos , Posmenopausia/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Biomarcadores/sangre , Colágeno Tipo I/sangre , Osteoporosis Posmenopáusica/tratamiento farmacológico , Dislipidemias/tratamiento farmacológico , Dislipidemias/sangre
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731934

RESUMEN

Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.


Asunto(s)
Remodelación Ósea , Ritmo Circadiano , Remodelación Ósea/genética , Animales , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Humanos , Osteoblastos/metabolismo , Osteogénesis/genética , Osteoclastos/metabolismo , Regulación de la Expresión Génica , Huesos/metabolismo
3.
J Immunother Cancer ; 12(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702145

RESUMEN

BACKGROUND: Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS: An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS: During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION: Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.


Asunto(s)
Remodelación Ósea , Inhibidores de Puntos de Control Inmunológico , Humanos , Remodelación Ósea/efectos de los fármacos , Masculino , Femenino , Estudios Prospectivos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Anciano , Estudios Longitudinales , Neoplasias/tratamiento farmacológico , Adulto
4.
Front Endocrinol (Lausanne) ; 15: 1301213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742199

RESUMEN

Purpose: To investigate the relationship between bone turnover markers (BTMs) and thyroid indicators in Graves' disease (GD) and to further assess predictive value of changes in early stage retrospectively. Methods: We studied 435 patients with GD and 113 healthy physical examiners retrospectively and followed up these two groups of patients after 6 months. We investigated the correlations between BTMs and other 15 observed factors, and analyzed the predictive value of FT3 and FT4 before and after treatment (FT3-P/FT3-A, FT4-P/FT4-A) on whether BTMs recovered. Results: The levels of thyroid hormones and BTMs in GD group were significantly higher than those in control group (P < 0.05) and decreased after 6 months of treatment. FT3, W, Ca and ALP were independent factors in predicting the elevation of OST. Duration of disease, FT3, TSH and ALP were independent factors in predicting the elevation of P1NP. Age, duration of disease, TRAb and ALP were independent factors in predicting the elevation of CTX-1. The AUC of FT3-P/FT3-A and FT4-P/FT4-A for predicting OST recovery were 0.748 and 0.705 (P < 0.05), respectively, and the cut-off values were 0.51 and 0.595. There was no predictive value for P1NP and CTX-1 recovery (P > 0.05). Conclusion: BTMs were abnormally elevated in GD and were significantly correlated with serum levels of FT3, FT4, TRAb, Ca, and ALP. FT3 decreased more than 51% and FT4 dropped more than 59.5% after 6 months of treatment were independent predictors for the recovery of BTMs in GD.


Asunto(s)
Biomarcadores , Remodelación Ósea , Enfermedad de Graves , Valor Predictivo de las Pruebas , Humanos , Masculino , Femenino , Enfermedad de Graves/sangre , Enfermedad de Graves/tratamiento farmacológico , Enfermedad de Graves/metabolismo , Adulto , Biomarcadores/sangre , Estudios Retrospectivos , Persona de Mediana Edad , Glándula Tiroides/metabolismo , Huesos/metabolismo , Hormonas Tiroideas/sangre , Estudios de Casos y Controles , Pronóstico , Antitiroideos/uso terapéutico , Tiroxina/sangre , Triyodotironina/sangre , Estudios de Seguimiento
5.
PLoS One ; 19(5): e0300292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718051

RESUMEN

The aim of the study was to investigate the effect of returning to a balanced diet combined with chromium picolinate (CrPic) or chromium nanoparticles (CrNPs) supplementation at a pharmacologically relevant dose of 0.3 mg/kg body weight on the expression level of selected genes and bone turnover markers in the blood and bones of rats fed an obese diet. The results of the study showed that chronic intake of a high-fat obesogenic diet negatively affects bone turnover by impairing processes of both synthesis and degradation of bones. The switch to a healthy diet proved insufficient to regulate bone metabolism disorders induced by an obesogenic diet, even when it was supplemented with chromium, irrespective of its form. Supplementation with CrPic with no change in diet stimulated bone metabolism only at the molecular level, towards increased osteoclastogenesis (bone resorption). In contrast, CrNPs added to the high-fat diet effectively regulated bone turnover by increasing both osteoblastogenesis and osteoclastogenesis, with these changes directed more towards bone formation. The results of the study suggest that unfavourable changes in bone metabolism induced by chronic intake of a high-fat diet can be mitigated by supplementation with CrNPs, whereas a change in eating habits fails to achieve a similar effect.


Asunto(s)
Remodelación Ósea , Cromo , Dieta Alta en Grasa , Animales , Dieta Alta en Grasa/efectos adversos , Ratas , Cromo/administración & dosificación , Cromo/farmacología , Masculino , Remodelación Ósea/efectos de los fármacos , Nanopartículas/química , Fibras de la Dieta/farmacología , Ácidos Picolínicos/farmacología , Ácidos Picolínicos/administración & dosificación , Suplementos Dietéticos , Huesos/metabolismo , Huesos/efectos de los fármacos , Ratas Wistar , Nanopartículas del Metal/química , Nanopartículas del Metal/administración & dosificación , Osteogénesis/efectos de los fármacos
6.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732267

RESUMEN

Osteoporosis, characterized by reduced bone density and increased fracture risk, affects over 200 million people worldwide, predominantly older adults and postmenopausal women. The disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and vitamin D supplementation and specific drugs that either inhibit osteoclasts or stimulate osteoblasts. However, these treatments have limitations, including side effects and compliance issues. Natural products have emerged as potential osteoporosis therapeutics, but their mechanisms of action remain poorly understood. In this study, we investigate the efficacy of natural compounds in modulating molecular targets relevant to osteoporosis, focusing on the Mitogen-Activated Protein Kinase (MAPK) pathway and the gut microbiome's influence on bone homeostasis. Using an in silico and in vitro methodology, we have identified quercetin as a promising candidate in modulating MAPK activity, offering a potential therapeutic perspective for osteoporosis treatment.


Asunto(s)
Productos Biológicos , Remodelación Ósea , Osteoporosis , Humanos , Remodelación Ósea/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Quercetina/farmacología , Quercetina/uso terapéutico , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Huesos/metabolismo , Huesos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Animales
7.
Ulus Travma Acil Cerrahi Derg ; 30(5): 323-327, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738676

RESUMEN

BACKGROUND: We investigated the utility of specific biomarkers-namely, c-terminal telopeptide (CTX), n-telopeptide (NTX), deoxypyridinoline (DPD), and tartrate-resistant acid phosphatase (TRAP)-compared to conventional diagnostic methods. We hy-pothesized that these novel biomarkers could hold substantial value in the diagnosis, treatment, and monitoring of osteoporosis. METHODS: The study was conducted over a three-year period, from January 1, 2020, to January 1, 2023. We enrolled a total of 520 patients aged 50 years or older who had been diagnosed with osteoporosis. Patients undergoing steroid treatments, which are known to contribute to osteoporosis, were excluded from the study. Additionally, we carefully selected and matched a control group consisting of 500 patients based on demographic characteristics relevant to the diagnosis of osteoporosis. This meticulous selection process resulted in a comprehensive cohort comprising 1,020 patients. Throughout the study, patients were closely monitored for a duration of one year to track the occurrence of pathological fractures and assess their overall prognosis. RESULTS: As a result of our rigorous investigation, we identified CTX, NTX, DPD, and TRAP as pivotal biomarkers that play a crucial role in evaluating bone health, monitoring treatment effectiveness, and detecting pathological fractures in the context of osteoporosis. CONCLUSION: Our study underscores the significance of these biomarkers in advancing the diagnosis and management of osteo-porosis, offering valuable insights into the disease's progression and treatment outcomes.


Asunto(s)
Biomarcadores , Remodelación Ósea , Colágeno Tipo I , Osteoporosis , Humanos , Biomarcadores/sangre , Femenino , Osteoporosis/diagnóstico , Masculino , Persona de Mediana Edad , Anciano , Colágeno Tipo I/sangre , Péptidos/sangre , Péptidos/orina , Fosfatasa Ácida Tartratorresistente/sangre , Aminoácidos/sangre , Fracturas Osteoporóticas/diagnóstico , Fracturas Espontáneas/diagnóstico , Fracturas Espontáneas/etiología
8.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673844

RESUMEN

This study aimed to examine minimodeling-based bone formation between the epiphyses and metaphyses of the long bones of eldecalcitol (ELD)-administered ovariectomized rats. Sixteen-week-old female rats were divided into four groups: sham-operated rats receiving vehicle (Sham group), ovariectomized (OVX) rats receiving vehicle (Vehicle group), or ELDs (30 or 90 ng/kg BW, respectively; ELD30 and ELD90 groups). ELD administration increased bone volume and trabecular thickness, reducing the number of osteoclasts in both the epiphyses and metaphyses of OVX rats. The Sham and Vehicle groups exhibited mainly remodeling-based bone formation in both regions. The epiphyses of the ELD groups showed a significantly higher frequency of minimodeling-based bone formation than remodeling-based bone formation. In contrast, the metaphyses exhibited significantly more minimodeling-based bone formation in the ELD90 group compared with the ELD30 group. However, there was no significant difference between minimodeling-based bone formation and remodeling-based bone formation in the ELD90 group. While the minimodeling-induced new bone contained few sclerostin-immunoreactive osteocytes, the underlying pre-existing bone harbored many. The percentage of sclerostin-positive osteocytes was significantly reduced in the minimodeling-induced bone in the epiphyses but not in the metaphyses of the ELD groups. Thus, it seems likely that ELD could induce minimodeling-based bone formation in the epiphyses rather than in the metaphyses, and that ELD-driven minimodeling may be associated with the inhibition of sclerostin synthesis.


Asunto(s)
Marcadores Genéticos , Osteogénesis , Vitamina D , Vitamina D/análogos & derivados , Animales , Femenino , Ratas , Osteogénesis/efectos de los fármacos , Vitamina D/farmacología , Ovariectomía , Epífisis/efectos de los fármacos , Epífisis/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Remodelación Ósea/efectos de los fármacos , Ratas Sprague-Dawley , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos/metabolismo , Huesos/efectos de los fármacos
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 263-272, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645873

RESUMEN

The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.


Asunto(s)
Remodelación Ósea , MicroARNs , Osteoblastos , Osteogénesis , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/fisiología , Remodelación Ósea/genética , Remodelación Ósea/fisiología , Humanos , Osteogénesis/genética , Osteogénesis/fisiología , Osteoblastos/metabolismo , Osteoblastos/citología , Osteoclastos/metabolismo , Osteoclastos/citología , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , ARN/genética
10.
Elife ; 132024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591777

RESUMEN

Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.


Asunto(s)
Resorción Ósea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Resorción Ósea/metabolismo , Remodelación Ósea , Osteogénesis/fisiología , Diferenciación Celular/fisiología
11.
J Mother Child ; 28(1): 14-22, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639100

RESUMEN

BACKGROUND: Assessing bone turnover in paediatric populations is crucial for understanding the physiological changes occurring during skeletal development and identifying potential abnormalities. The objective of this study was to assess osteocalcin (OC), bone alkaline phosphatase (BALP), and C-terminal telopeptide of type I collagen (CTX-I) levels reflecting bone formation and resorption for age and sex in Polish healthy children and adolescents. MATERIALS AND METHODS: A total of 355 healthy normal-weight children and adolescents (46.5% girls) aged 1-18 years old were recruited. Total body less head (TBLH) and spine L1-L4 were used in children to assess bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA). Bone marker concentrations were determined by immunoenzymatic methods. RESULTS: Bone marker levels in girls and boys started with higher values in the first year of life and subsequently decreased until reaching a nadir during the prepubertal period. The pubertal peak values of bone markers were reached at 11-13 years old in boys and at 9-11 years old in girls. After puberty, the adolescents showed a gradual decline in bone marker concentrations to the values observed in adults. We found positive correlations between OC level and TBLH-BMD (r = 0.329, p = 0.002), TBLH-BMD Z-score (r = 0.245, p = 0.023), and L1-L4 BMD (r = 0.280, p = 0.009) in the prepubertal group. CONCLUSIONS: We showed serum levels of bone turnover markers-BALP, OC, and CTX-I-in relation to age and sex in healthy Polish children and adolescents. The age intervals of these markers for girls and boys aged 1-18 years old may be clinically useful in the assessment of bone metabolism in individuals with skeletal disorders.


Asunto(s)
Densidad Ósea , Huesos , Masculino , Niño , Femenino , Humanos , Adolescente , Lactante , Preescolar , Polonia , Densidad Ósea/fisiología , Remodelación Ósea/fisiología , Biomarcadores , Fosfatasa Alcalina
12.
J Bone Miner Res ; 39(1): 8-16, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38630878

RESUMEN

Adjuvant bisphosphonates are often recommended in postmenopausal women with early breast cancer at intermediate-to-high risk of disease recurrence, but the magnitude and duration of their effects on bone mineral density (BMD) and bone turnover markers (BTMs) are not well described. We evaluated the impact of adjuvant zoledronate on areal BMD and BTMs in a sub-group of patients who had completed the large 5-yr randomized Adjuvant Zoledronic Acid to Reduce Recurrence (AZURE) trial. About 224 women (recurrence free) who had completed the AZURE trial within the previous 3 mo were recruited from 20 UK AZURE trial sites. One hundred twenty had previously been randomized to zoledronate (19 doses of 4 mg over 5 yr) and 104 to the control arm. BMD and BTMs were assessed at sub-study entry, 6 (BTMs only), 12, 24, and 60 mo following the completion of AZURE. As expected, mean BMD, T-scores, and Z-scores at sub-study entry were higher in the zoledronate vs the control arm. At the lumbar spine, the mean (SD) standardized BMD (sBMD) was 1123 (201) and 985 (182) mg/cm2 in the zoledronate and control arms, respectively (P < .0001). The baseline differences in sBMD persisted at all assessed skeletal sites and throughout the 5-yr follow-up period. In patients completing zoledronate treatment, BTMs were significantly lower than those in the control arm (α- and ß-urinary C-telopeptide of type-I collagen, both P < .00001; serum intact pro-collagen I N-propeptide, P < .00001 and serum tartrate-resistant acid phosphatase 5b, P = .0001). Some offset of bone turnover inhibition occurred in the 12 mo following the completion of zoledronate treatment. Thereafter, during the 60 mo of follow-up, all BTMs remained suppressed in the zoledronate arm relative to the control arm. In conclusion, in addition to the known anti-cancer benefits of adjuvant zoledronate, there are likely to be positive, lasting benefits in BMD and bone turnover.


Asunto(s)
Conservadores de la Densidad Ósea , Neoplasias de la Mama , Humanos , Femenino , Difosfonatos/uso terapéutico , Ácido Zoledrónico/farmacología , Densidad Ósea , Conservadores de la Densidad Ósea/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Imidazoles/farmacología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Vértebras Lumbares , Remodelación Ósea , Colágeno
13.
J Bone Miner Res ; 39(1): 17-29, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38630881

RESUMEN

Older men with high bone turnover have faster bone loss. We assessed the link between the baseline levels of bone turnover markers (BTMs) and the prospectively assessed bone microarchitecture decline in men. In 825 men aged 60-87 yr, we measured the serum osteocalcin (OC), bone alkaline phosphatase (BAP), N-terminal propeptide of type I procollagen (PINP), and C-terminal telopeptide of type I collagen (CTX-I), and urinary total deoxypyridinoline (tDPD). Bone microarchitecture and strength (distal radius and distal tibia) were estimated by high-resolution pQCT (XtremeCT, Scanco Medical) at baseline and then after 4 and 8 yr. Thirty-seven men took medications affecting bone metabolism. Statistical models were adjusted for age and BMI. At the distal radius, the decrease in the total bone mineral density (Tt.BMD), cortical BMD (Ct.BMD), cortical thickness (Ct.Thd), and cortical area (Ct.Ar) and failure load was faster in the highest vs the lowest CTX-I quartile (failure load: -0.94 vs -0.31% yr-1, P < .001). Patterns were similar for distal tibia. At the distal tibia, bone decline (Tt.BMD, Ct.Thd, Ct.Ar, Ct.BMD, and failure load) was faster in the highest vs the lowest tDPD quartile. At each skeletal site, the rate of decrease in Tb.BMD differed between the extreme OC quartiles (P < .001). Men in the highest BAP quartile had a faster loss of Tt.BMD, Tb.BMD, reaction force, and failure load vs the lowest quartile. The link between PINP and bone decline was poor. The BTM score is the sum of the nos. of the quartiles for each BTM. Men in the highest quartile of the score had a faster loss of cortical bone and bone strength vs the lowest quartile. Thus, in the older men followed prospectively for 8 yr, the rate of decline in bone microarchitecture and estimated bone strength was 50%-215% greater in men with high bone turnover (highest quartile, CTX-I above the median) compared to the men with low bone turnover (lowest quartile, CTX-I below the median).


Asunto(s)
Densidad Ósea , Huesos , Masculino , Humanos , Anciano , Femenino , Estudios Prospectivos , Remodelación Ósea , Radio (Anatomía)
14.
J Orthop Surg (Hong Kong) ; 32(1): 10225536231187181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38613416

RESUMEN

BACKGROUND: Serotonin (5-HT) precursors regulate bone remodeling. This study aims to investigate the correlation of plasma 5-HT precursors and metabolite with bone mineral density (BMD) and bone turnover markers in postmenopausal osteoporosis (PMOP) patients. METHODS: The age, body mass index (BMI), and years since menopause (YSM) were documented for 348 postmenopausal women in normal/osteopenia/osteoporosis (OP) groups, with lumbar spine and femoral neck BMD measured. Serum bone turnover markers (PINP/ß-CTX) and plasma 5-HT, 5-HT precursors (Trp/5-HTP) and metabolite (5-HIAA) were measured by ELISA. OP patients were allocated to high/low expression groups following ROC analysis of 5-HT/Trp/5-HTP/5-HIAA. The relationship of plasma 5-HT/Trp/5-HTP/5-HIAA, BMD, and bone turnover markers with PMOP was analyzed using logistic regression analysis. The correlation of plasma 5-HT/Trp/5-HTP/5-HIAA with BMD and bone turnover markers was analyzed using Pearson's correlation analysis, followed by logistic regression analysis of the relationship between plasma 5-HT/Trp/5-HTP/5-HIAA and BMD, bone turnover markers and PMOP. RESULTS: BMI, YSM, BMD and PINP, and ß-CTX levels differed among groups. Levels of plasma 5-HT precursors/metabolite were increased in OP patients. Individuals with high 5-HT precursors/metabolite levels had low BMD and high PINP/ß-CTX levels. The 5-HT precursors/metabolite negatively-correlated with BMD and positively-correlated with PINP/ß-CTX. BMI, YSM, BMD, and PINP/ß-CTX/Trp/5-HTP/5-HT related to PMOP and were independent risk factors for OP. CONCLUSION: Plasma 5-HT precursors and metabolite negatively-correlate with BMD and positively-correlate with PINP/ß-CTX in PMOP patients. Peripheral 5-HT precursors and metabolite level may be a new direction of treatment of PMOP and bone metabolism-related disorders.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis Posmenopáusica , Humanos , Femenino , Densidad Ósea , Serotonina , 5-Hidroxitriptófano , Ácido Hidroxiindolacético , Remodelación Ósea
15.
FASEB J ; 38(7): e23594, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38573451

RESUMEN

A high prevalence of osteoarthritis (OA) has been observed among individuals living at high altitudes, and hypobaric hypoxia (HH) can cause bone mass and strength deterioration. However, the effect of HH on OA remains unclear. In this study, we aimed to explore the impact of HH on OA and its potential mechanisms. A rat knee OA model was established by surgery, and the rats were bred in an HH chamber simulating a high-altitude environment. Micro-computed tomography (Micro-CT), histological analysis, and RNA sequencing were performed to evaluate the effects of HH on OA in vivo. A hypoxic co-culture model of osteoclasts and osteoblasts was also established to determine their effects on chondrogenesis in vitro. Cartilage degeneration significantly worsened in the HH-OA group compared to that in the normoxia-OA (N-OA) group, 4 weeks after surgery. Micro-CT analysis revealed more deteriorated bone mass in the HH-OA group than in the N-OA group. Decreased hypoxia levels in the cartilage and enhanced hypoxia levels in the subchondral bone were observed in the HH-OA group. Furthermore, chondrocytes cultured in a conditioned medium from the hypoxic co-culture model showed decreased anabolism and extracellular matrix compared to those in the normoxic model. RNA sequencing analysis of the subchondral bone indicated that the glycolytic signaling pathway was highly activated in the HH-OA group. HH-related OA progression was associated with alterations in the oxygen environment and bone remodeling in the subchondral zone, which provided new insights into the pathogenesis of OA.


Asunto(s)
Osteoartritis , Oxígeno , Animales , Ratas , Microtomografía por Rayos X , Hipoxia , Osteoartritis/etiología , Remodelación Ósea
16.
Nutrients ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674910

RESUMEN

Type 2 diabetes mellitus (T2DM) presents a challenge for individuals today, affecting their health and life quality. Besides its known complications, T2DM has been found to contribute to bone/mineral abnormalities, thereby increasing the vulnerability to bone fragility/fractures. However, there is still a need for appropriate diagnostic approaches and targeted medications to address T2DM-associated bone diseases. This study aims to investigate the relationship between changes in gut microbiota, T2DM, and osteoporosis. To explore this, a T2DM rat model was induced by combining a high-fat diet and low-dose streptozotocin treatment. Our findings reveal that T2DM rats have lower bone mass and reduced levels of bone turnover markers compared to control rats. We also observe significant alterations in gut microbiota in T2DM rats, characterized by a higher relative abundance of Firmicutes (F) and Proteobacteria (P), but a lower relative abundance of Bacteroidetes (B) at the phylum level. Further analysis indicates a correlation between the F/B ratio and bone turnover levels, as well as between the B/P ratio and HbA1c levels. Additionally, at the genus level, we observe an inverse correlation in the relative abundance of Lachnospiraceae. These findings show promise for the development of new strategies to diagnose and treat T2DM-associated bone diseases.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Disbiosis , Microbioma Gastrointestinal , Osteoporosis , Estreptozocina , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Osteoporosis/etiología , Diabetes Mellitus Experimental/microbiología , Ratas , Masculino , Diabetes Mellitus Tipo 2/microbiología , Ratas Sprague-Dawley , Densidad Ósea/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo
17.
J Physiol Pharmacol ; 75(1)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38583439

RESUMEN

Osteoprotegerin (OPG) is a trap receptor for the receptor activator of the nuclear factor kappa B ligand (RANKL). We aimed to determine the OPG and free soluble RANKL (sRANKL) concentrations in girls during puberty and their relationships with pubertal stage, growth rate and serum concentrations of estradiol, as well as classical bone formation (N-terminal propeptide of type I collagen (PINP), bone-specific alkaline phosphatase (BALP), osteocalcin (OC)) and bone resorption (C-terminal telopeptide of type I collagen (CTX)) markers. The semi-longitudinal study involved 88 healthy girls, aged 11.8-13.2 years. Their weight and height were measured twice at one-year intervals. Pubertal stages were assessed using the Tanner (T) scale. Blood samples were taken at the first examination. Serum concentrations of OPG, sRANKL, CTX and BALP were determined by enzyme-linked immunosorbent assay, estradiol and PINP by radioimmunoassay and osteocalcin by immunoradiometric assay. The one-year increase in height and weight of girls in the T2 and T3 pubertal stages was greater than that of girls in the T4 stage (p=0.000, p<0.03). OPG concentrations (T2: 4.04±0.62; T3: 4.31±0.79; T4: 4.46±0.84 pmol/L) sRANKL concentrations (T2: 0.22 (IQR 0.09-0.54); T3: 0.42 (IQR 0.22-0.79); T4: 0.35 (IQR 0.16-1.04) pmol/L) and sRANKL/OPG ratios (T2: 0.05 (IQR 0.03-0.13); T3: 0.11 (IQR 0.05-0.19); T4: 0.09 (IQR 0.05-0.19) did not differ significantly between pubertal stages. Concentrations of PINP, CTX, BALP and OC were higher in girls at T3 stage than at the T4 stage (p=0.000, p=0.001, p=0.046, p=0.038; respectively). Concentrations of sRANKL and OPG did not correlate with body weight, height, growth rate, or concentrations of estradiol, PINP, CTX, BALP and OC. There were correlations between the increase in height over one year and the concentrations of PINP (r=0.499, p=0.000), CTX (r=0.311, p=0.003) and BALP (r=0.224, p=0.036), as well as of estradiol (r=-0.473, p=0.000). Unlike PINP, OC, BALP, CTX or estradiol concentrations, sRANKL and OPG concentrations do not change in girls during puberty. Neither OPG nor sRANKL concentrations correlate with somatic characteristics and classical bone turnover markers concentrations.


Asunto(s)
Huesos , Osteoprotegerina , Adolescente , Niño , Femenino , Humanos , Biomarcadores , Huesos/metabolismo , Remodelación Ósea , Estradiol , Ligandos , Estudios Longitudinales , FN-kappa B/metabolismo , Osteocalcina , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo
18.
Drug Des Devel Ther ; 18: 979-989, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562519

RESUMEN

As a continuous process comprising bone resorption and formation, bone remodeling, plays an essential role in maintaining the balance of bone metabolism. One type of metabolic osteopathy is osteoporosis, which is defined by low bone mass and deteriorating bone microstructure. Osteoporosis patients are more likely to experience frequent osteoporotic fractures, which makes osteoporosis prevention and treatment crucial. A growing body of research has revealed that exosomes, which are homogenous vesicles released by most cell types, play a major role in mediating a number of pathophysiological processes, including osteoporosis. Exosomes may act as a mediator in cell-to-cell communication and offer a fresh perspective on information sharing. This review discusses the characteristics of exosomes and outlines the exosomes' underlying mechanism that contributes to the onset of osteoporosis. Recent years have seen a rise in interest in the role of exosomes in osteoporosis, which has given rise to innovative therapeutic approaches for the disease prevention and management.


Asunto(s)
Exosomas , Osteoporosis , Humanos , Exosomas/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Huesos/metabolismo , Remodelación Ósea
19.
FASEB J ; 38(7): e23554, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588175

RESUMEN

Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-ß, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.


Asunto(s)
Huesos , Osteoclastos , Osteoclastos/metabolismo , Huesos/metabolismo , Remodelación Ósea , Transducción de Señal , Sistema Inmunológico , Ligando RANK/metabolismo
20.
Arch Oral Biol ; 163: 105963, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38608563

RESUMEN

OBJECTIVES: Orthodontic tooth movement is a mechanobiological reaction induced by appropriate forces, including bone remodeling. The mechanosensitive Piezo channels have been shown to contribute to bone remodeling. However, information about the pathways through which Piezo channels affects osteoblasts remains limited. Thus, we aimed to investigate the influence of Piezo1 on the osteogenic and osteoclast factors in osteoblasts under mechanical load. MATERIALS AND METHODS: Cyclic stretch (CS) experiments on MC3T3-E1 were conducted using a BioDynamic mechanical stretching device. The Piezo1 channel blocker GsMTx4 and the Piezo1 channel agonist Yoda1 were used 12 h before the application of CS. MC3T3-E1 cells were then subjected to 15% CS, and the expression of Piezo1, Piezo2, BMP-2, OCN, Runx2, RANKL, p-p65/p65, and ALP was measured using quantitative real-time polymerase chain reaction, western blot, alkaline phosphatase staining, and immunofluorescence staining. RESULTS: CS of 15% induced the highest expression of Piezo channel and osteoblast factors. Yoda1 significantly increased the CS-upregulated expression of Piezo1 and ALP activity but not Piezo2 and RANKL. GsMTx4 downregulated the CS-upregulated expression of Piezo1, Piezo2, Runx2, OCN, p-65/65, and ALP activity but could not completely reduce CS-upregulated BMP-2. CONCLUSIONS: The appropriate force is more suitable for promoting osteogenic differentiation in MC3T3-E1. The Piezo1 channel participates in osteogenic differentiation of osteoblasts through its influence on the expression of osteogenic factors like BMP-2, Runx2, and OCN and is involved in regulating osteoclasts by influencing phosphorylated p65. These results provide a foundation for further exploration of osteoblast function in orthodontic tooth movement.


Asunto(s)
Proteína Morfogenética Ósea 2 , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Canales Iónicos , Osteoblastos , Osteogénesis , Osteoblastos/metabolismo , Canales Iónicos/metabolismo , Animales , Ratones , Proteína Morfogenética Ósea 2/metabolismo , Osteogénesis/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoclastos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Ligando RANK/metabolismo , Western Blotting , Estrés Mecánico , Diferenciación Celular , Osteocalcina/metabolismo , Fosfatasa Alcalina/metabolismo , Oligopéptidos/farmacología , Técnicas de Movimiento Dental , Mecanotransducción Celular/fisiología , Línea Celular , Remodelación Ósea/fisiología , Pirazinas , Venenos de Araña , Tiadiazoles , Péptidos y Proteínas de Señalización Intercelular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...