Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Exp Cell Res ; 422(1): 113413, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400182

RESUMEN

BACKGROUND: Protein arginine methyltransferase 6 (PRMT6) is a type I arginine methyltransferase that asymmetrically dimethylates histone H3 arginine 2 (H3R2me2a). However, the biological roles and underlying molecular mechanisms of PRMT6 in colorectal cancer (CRC) remain unclear. METHODS: PRMT6 expression in CRC tissue was examined using immunohistochemistry. The effect of PRMT6 on CRC cells was investigated in vitro and in vivo. Mass spectrometry, co-immunoprecipitation and GST pulldown assays were performed to identify interaction partners of PRMT6. RNA-seq, chromatin immunoprecipitation, Western blot and qRT-PCR assays were used to investigate the mechanism of PRMT6 in gene regulation. RESULTS: PRMT6 is significantly upregulated in CRC tissues and facilitates cell proliferation of CRC cells in vitro and in vivo. Through RNA-seq analysis, CDKN2B (p15INK4b) and CCNG1 were identified as new transcriptional targets of PRMT6. PRMT6-dependent H3R2me2a mark was predominantly deposited at the promoters of CDKN2B and CCNG1 in CRC cells. Furthermore, PRMT5 was firstly characterized as an interaction partner of PRMT6. Notably, H3R2me2a coincides with PRMT5-mediated H4R3me2s and H3R8me2s marks at the promoters of CDKN2B and CCNG1 genes, thus leading to transcriptional repression of these genes. CONCLUSIONS: PRMT6 functionally associates with PRMT5 to promote CRC progression through epigenetically repressing the expression of CDKN2B and CCNG1. These insights raise the possibility that combinational intervention of PRMT6 and PRMT5 may be a promising strategy for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Represión Epigenética , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas , Humanos , Arginina/química , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ciclina G1/genética , Ciclina G1/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Represión Epigenética/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo
2.
Epigenetics Chromatin ; 15(1): 39, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463299

RESUMEN

Intellectual disability is a well-known hallmark of Down Syndrome (DS) that results from the triplication of the critical region of human chromosome 21 (HSA21). Major studies were conducted in recent years to gain an understanding about the contribution of individual triplicated genes to DS-related brain pathology. Global transcriptomic alterations and widespread changes in the establishment of neural lineages, as well as their differentiation and functional maturity, suggest genome-wide chromatin organization alterations in trisomy. High Mobility Group Nucleosome Binding Domain 1 (HMGN1), expressed from HSA21, is a chromatin remodeling protein that facilitates chromatin decompaction and is associated with acetylated lysine 27 on histone H3 (H3K27ac), a mark correlated with active transcription. Recent studies causatively linked overexpression of HMGN1 in trisomy and the development of DS-associated B cell acute lymphoblastic leukemia (B-ALL). HMGN1 has been shown to antagonize the activity of the Polycomb Repressive Complex 2 (PRC2) and prevent the deposition of histone H3 lysine 27 trimethylation mark (H3K27me3), which is associated with transcriptional repression and gene silencing. However, the possible ramifications of the increased levels of HMGN1 through the derepression of PRC2 target genes on brain cell pathology have not gained attention. In this review, we discuss the functional significance of HMGN1 in brain development and summarize accumulating reports about the essential role of PRC2 in the development of the neural system. Mechanistic understanding of how overexpression of HMGN1 may contribute to aberrant brain cell phenotypes in DS, such as altered proliferation of neural progenitors, abnormal cortical architecture, diminished myelination, neurodegeneration, and Alzheimer's disease-related pathology in trisomy 21, will facilitate the development of DS therapeutic approaches targeting chromatin.


Asunto(s)
Encéfalo , Síndrome de Down , Proteína HMGN1 , Complejo Represivo Polycomb 2 , Humanos , Encéfalo/metabolismo , Cromatina/genética , Síndrome de Down/genética , Histonas , Proteína HMGN1/genética , Lisina , Complejo Represivo Polycomb 2/genética , Trisomía , Represión Epigenética/genética
3.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245348

RESUMEN

The hypothalamus displays staggering cellular diversity, chiefly established during embryogenesis by the interplay of several signalling pathways and a battery of transcription factors. However, the contribution of epigenetic cues to hypothalamus development remains unclear. We mutated the polycomb repressor complex 2 gene Eed in the developing mouse hypothalamus, which resulted in the loss of H3K27me3, a fundamental epigenetic repressor mark. This triggered ectopic expression of posteriorly expressed regulators (e.g. Hox homeotic genes), upregulation of cell cycle inhibitors and reduced proliferation. Surprisingly, despite these effects, single cell transcriptomic analysis revealed that most neuronal subtypes were still generated in Eed mutants. However, we observed an increase in glutamatergic/GABAergic double-positive cells, as well as loss/reduction of dopamine, hypocretin and Tac2-Pax6 neurons. These findings indicate that many aspects of the hypothalamic gene regulatory flow can proceed without the key H3K27me3 epigenetic repressor mark, but points to a unique sensitivity of particular neuronal subtypes to a disrupted epigenomic landscape.


Asunto(s)
Desarrollo Embrionario/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Animales , Proliferación Celular/genética , Represión Epigenética/genética , Femenino , Masculino , Ratones , Mutación/genética , Transcriptoma/genética
4.
Nat Commun ; 12(1): 5541, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545097

RESUMEN

Human Immunodeficiency Virus (HIV-1) produces a persistent latent infection. Control of HIV-1 using combination antiretroviral therapy (cART) comes at the cost of life-shortening side effects and development of drug-resistant HIV-1. An ideal and safer therapy should be deliverable in vivo and target the stable epigenetic repression of the virus, inducing a stable "block and lock" of virus expression. Towards this goal, we developed an HIV-1 promoter-targeting Zinc Finger Protein (ZFP-362) fused to active domains of DNA methyltransferase 3 A to induce long-term stable epigenetic repression of HIV-1. Cells were engineered to produce exosomes packaged with RNAs encoding this HIV-1 repressor protein. We find here that the repressor loaded anti-HIV-1 exosomes suppress virus expression and that this suppression is mechanistically driven by DNA methylation of HIV-1 in humanized NSG mouse models. The observations presented here pave the way for an exosome-mediated systemic delivery platform of therapeutic cargo to epigenetically repress HIV-1 infection.


Asunto(s)
Represión Epigenética/genética , Exosomas/metabolismo , VIH-1/genética , Animales , Encéfalo/patología , Encéfalo/virología , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , ADN Metiltransferasa 3A , Exosomas/ultraestructura , Regulación Viral de la Expresión Génica , Vectores Genéticos/metabolismo , Células HEK293 , Infecciones por VIH/virología , Humanos , Lentivirus/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetidas Terminales/genética , Carga Viral , Dedos de Zinc
5.
Nat Struct Mol Biol ; 28(6): 501-511, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34117481

RESUMEN

The mammalian SWI/SNF complex, or BAF complex, has a conserved and direct role in antagonizing Polycomb-mediated repression. Yet, BAF also promotes repression by Polycomb in stem cells and cancer. How BAF both antagonizes and promotes Polycomb-mediated repression remains unknown. Here, we utilize targeted protein degradation to dissect the BAF-Polycomb axis in mouse embryonic stem cells on short timescales. We report that rapid BAF depletion redistributes Polycomb repressive complexes PRC1 and PRC2 from highly occupied domains, like Hox clusters, to weakly occupied sites normally opposed by BAF. Polycomb redistribution from highly repressed domains results in their decompaction, gain of active epigenomic features and transcriptional derepression. Surprisingly, through dose-dependent degradation of PRC1 and PRC2, we identify a conventional role for BAF in Polycomb-mediated repression, in addition to global Polycomb redistribution. These findings provide new mechanistic insight into the highly dynamic state of the Polycomb-Trithorax axis.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Represión Epigenética/fisiología , Regulación de la Expresión Génica/fisiología , Complejos Multiproteicos/fisiología , Proteínas del Grupo Polycomb/fisiología , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Represión Epigenética/genética , Edición Génica , Regulación de la Expresión Génica/genética , Genes Homeobox , Genoma , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Mutación con Pérdida de Función , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteolisis , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
6.
Clin Transl Sci ; 14(1): 137-142, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32905646

RESUMEN

Reduced expression of the uptake transporter, OCTN1 (SLC22A4), has been reported as a strong predictor of poor event-free and overall survival in multiple cohorts of patients with acute myeloid leukemia (AML) receiving the cytidine nucleoside analog, cytarabine (Ara-C). To further understand the mechanistic basis of interindividual variability in the functional expression of OCTN1 in AML, we hypothesized a mechanistic connection to DNA methylation-based epigenetic repression of SLC22A4. We found increased basal SLC22A4 methylation was associated with decreased Ara-C uptake in AML cell lines. Pre-treatment with hypomethylating agents, 5-azacytidine, or decitabine, restored SLC22A4 mRNA expression, increased cellular uptake of Ara-C, and was associated with increased cellular sensitivity to Ara-C compared with vehicle-treated cells. Additionally, lower SLC22A4 methylation status was associated with distinct clinical advantages in both adult and pediatric patients with AML. These findings suggest a regulatory mechanism is involved in the interindividual variability in response to Ara-C, and provides a basis for the integration of hypomethylating agents into Ara-C-based treatment regimens.


Asunto(s)
Citarabina/farmacología , Resistencia a Antineoplásicos/genética , Represión Epigenética/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas de Transporte de Catión Orgánico/genética , Simportadores/genética , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Azacitidina/farmacología , Azacitidina/uso terapéutico , Línea Celular Tumoral , Niño , Ensayos Clínicos Fase III como Asunto , Citarabina/uso terapéutico , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Conjuntos de Datos como Asunto , Decitabina/farmacología , Decitabina/uso terapéutico , Represión Epigenética/efectos de los fármacos , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Proteínas de Transporte de Catión Orgánico/metabolismo , Supervivencia sin Progresión , Ensayos Clínicos Controlados Aleatorios como Asunto , Simportadores/metabolismo , Adulto Joven
7.
Theranostics ; 10(20): 9230-9248, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802189

RESUMEN

Rationale: Skeletal muscle insulin resistance is detectable before type 2 diabetes is diagnosed. Exposure to di(2-ethylhexyl) phthalate (DEHP), a typical environmental endocrine-disrupting chemical, is a novel risk factor for insulin resistance and type 2 diabetes. This study aimed to explore insulin signaling regulatory pathway in skeletal muscle of the DEHP-induced insulin-resistant mice and to investigate potential therapeutic strategies for treating insulin resistance. Methods: C57BL/6J male mice were exposed to 2 mg/kg/day DEHP for 15 weeks. Whole-body glucose homeostasis, oxidative stress and deregulated miRNA-mediated molecular transduction in skeletal muscle were examined. microRNA (miRNA) interventions based on lentiviruses and adeno-associated viruses 9 (AAV9) were performed. Results: Dnmt3a-dependent promoter methylation and lncRNA Malat1-related sponge functions cooperatively downregulated miR-17 in DEHP-exposed skeletal muscle cells. DEHP suppressed miR-17 to disrupt the Keap1-Nrf2 redox system and to activate oxidative stress-responsive Txnip in skeletal muscle. Oxidative stress upregulated miR-200a, which directly targets the 3'UTR of Insr and Irs1, leading to hindered insulin signaling and impaired insulin-dependent glucose uptake in skeletal muscle, ultimately promoting the development of insulin resistance. AAV9-induced overexpression of miR-17 and lentivirus-mediated silencing of miR-200a in skeletal muscle ameliorated whole-body insulin resistance in DEHP-exposed mice. Conclusions: The miR-17/Keap1-Nrf2/miR-200a axis contributed to DEHP-induced insulin resistance. miR-17 is a positive regulator, whereas miR-200a is a negative regulator of insulin signaling in skeletal muscle, and both miRNAs have the potential to become therapeutic targets for preventing and treating insulin resistance or type 2 diabetes.


Asunto(s)
Represión Epigenética/genética , Resistencia a la Insulina/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , MicroARNs/genética , Músculo Esquelético/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo/genética , Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/genética , Ácidos Ftálicos/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
Curr Osteoporos Rep ; 18(5): 597-605, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32794139

RESUMEN

PURPOSE OF REVIEW: Although many signalling pathways have been discovered to be essential in mesenchymal stem/stromal (MSC) differentiation, it has become increasingly clear in recent years that epigenetic regulation of gene transcription is a vital component of lineage determination, encompassing diet, lifestyle and parental influences on bone, fat and cartilage development. RECENT FINDINGS: This review discusses how specific enzymes that modify histone methylation and acetylation or DNA methylation orchestrate the differentiation programs in lineage determination of MSC and the epigenetic changes that facilitate development of bone related diseases such as osteoporosis. The review also describes how environmental factors such as mechanical loading influence the epigenetic signatures of MSC, and how the use of chemical agents or small peptides can regulate epigenetic drift in MSC populations during ageing and disease. Epigenetic regulation of MSC lineage commitment is controlled through changes in enzyme activity, which modifies DNA and histone residues leading to alterations in chromatin structure. The co-ordinated epigenetic regulation of transcriptional activation and repression act to mediate skeletal tissue homeostasis, where deregulation of this process can lead to bone loss during ageing or osteoporosis.


Asunto(s)
Envejecimiento/genética , Diferenciación Celular/genética , Epigénesis Genética/genética , Células Madre Mesenquimatosas/citología , Osteoporosis/genética , Acetilación , Linaje de la Célula , Metilación de ADN , Represión Epigenética/genética , Regulación de la Expresión Génica/genética , Código de Histonas , Humanos , Metilación , Activación Transcripcional/genética , Soporte de Peso
9.
PLoS Genet ; 16(7): e1008872, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32673310

RESUMEN

Transposable elements (TEs) are genomic parasites that selfishly replicate at the expense of host fitness. Fifty years of evolutionary studies of TEs have concentrated on the deleterious genetic effects of TEs, such as their effects on disrupting genes and regulatory sequences. However, a flurry of recent work suggests that there is another important source of TEs' harmful effects-epigenetic silencing. Host genomes typically silence TEs by the deposition of repressive epigenetic marks. While this silencing reduces the selfish replication of TEs and should benefit hosts, a picture is emerging that the epigenetic silencing of TEs triggers inadvertent spreading of repressive marks to otherwise expressed neighboring genes, ultimately jeopardizing host fitness. In this Review, we provide a long-overdue overview of the recent genome-wide evidence for the presence and prevalence of TEs' epigenetic effects, highlighting both the similarities and differences across mammals, insects, and plants. We lay out the current understanding of the functional and fitness consequences of TEs' epigenetic effects, and propose possible influences of such effects on the evolution of both hosts and TEs themselves. These unique evolutionary consequences indicate that TEs' epigenetic effect is not only a crucial component of TE biology but could also be a significant contributor to genome function and evolution.


Asunto(s)
Elementos Transponibles de ADN/genética , Epigénesis Genética , Evolución Molecular , Silenciador del Gen , Animales , Represión Epigenética/genética , Regulación de la Expresión Génica/genética , Insectos/genética , Mamíferos/genética , Plantas/genética
10.
Nat Commun ; 11(1): 3199, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581223

RESUMEN

De novo establishment of DNA methylation is accomplished by DNMT3A and DNMT3B. Here, we analyze de novo DNA methylation in mouse embryonic fibroblasts (2i-MEFs) derived from DNA-hypomethylated 2i/L ES cells with genetic ablation of Dnmt3a or Dnmt3b. We identify 355 and 333 uniquely unmethylated genes in Dnmt3a and Dnmt3b knockout (KO) 2i-MEFs, respectively. We find that Dnmt3a is exclusively required for de novo methylation at both TSS regions and gene bodies of Polycomb group (PcG) target developmental genes, while Dnmt3b has a dominant role on the X chromosome. Consistent with this, tissue-specific DNA methylation at PcG target genes is substantially reduced in Dnmt3a KO embryos. Finally, we find that human patients with DNMT3 mutations exhibit reduced DNA methylation at regions that are hypomethylated in Dnmt3 KO 2i-MEFs. In conclusion, here we report a set of unique de novo DNA methylation target sites for both DNMT3 enzymes during mammalian development that overlap with hypomethylated sites in human patients.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Animales , Diferenciación Celular/genética , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Represión Epigenética/genética , Femenino , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Mutación , Especificidad de Órganos , Proteínas del Grupo Polycomb , Sitio de Iniciación de la Transcripción , ADN Metiltransferasa 3B
11.
Cell ; 180(1): 150-164.e15, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31883795

RESUMEN

In eukaryotes, heterochromatin is generally located at the nuclear periphery. This study investigates the biological significance of perinuclear positioning for heterochromatin maintenance and gene silencing. We identify the nuclear rim protein Amo1NUPL2 as a factor required for the propagation of heterochromatin at endogenous and ectopic sites in the fission yeast genome. Amo1 associates with the Rix1PELP1-containing RNA processing complex RIXC and with the histone chaperone complex FACT. RIXC, which binds to heterochromatin protein Swi6HP1 across silenced chromosomal domains and to surrounding boundary elements, connects heterochromatin with Amo1 at the nuclear periphery. In turn, the Amo1-enriched subdomain is critical for Swi6 association with FACT that precludes histone turnover to promote gene silencing and preserve epigenetic stability of heterochromatin. In addition to uncovering conserved factors required for perinuclear positioning of heterochromatin, these analyses elucidate a mechanism by which a peripheral subdomain enforces stable gene repression and maintains heterochromatin in a heritable manner.


Asunto(s)
Epigénesis Genética/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Represión Epigenética/genética , Silenciador del Gen , Herencia , Histonas/genética , Histonas/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
Nat Commun ; 10(1): 5324, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757943

RESUMEN

Most cancers are resistant to anti-PD-1/PD-L1 and chemotherapy. Herein we identify PDLIM2 as a tumor suppressor particularly important for lung cancer therapeutic responses. While PDLIM2 is epigenetically repressed in human lung cancer, associating with therapeutic resistance and poor prognosis, its global or lung epithelial-specific deletion in mice causes increased lung cancer development, chemoresistance, and complete resistance to anti-PD-1 and epigenetic drugs. PDLIM2 epigenetic restoration or ectopic expression shows antitumor activity, and synergizes with anti-PD-1, notably, with chemotherapy for complete remission of most lung cancers. Mechanistically, through repressing NF-κB/RelA and STAT3, PDLIM2 increases expression of genes involved in antigen presentation and T-cell activation while repressing multidrug resistance genes and cancer-related genes, thereby rendering cancer cells vulnerable to immune attacks and therapies. We identify PDLIM2-independent PD-L1 induction by chemotherapeutic and epigenetic drugs as another mechanism for their synergy with anti-PD-1. These findings establish a rationale to use combination therapies for cancer treatment.


Asunto(s)
Represión Epigenética/genética , Regulación Neoplásica de la Expresión Génica , Proteínas con Dominio LIM/genética , Neoplasias Pulmonares/genética , Proteínas de Microfilamentos/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Línea Celular Tumoral , Metilación de ADN , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Técnicas de Silenciamiento del Gen , Genes Supresores de Tumor , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Ratones Noqueados , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción ReIA/genética
13.
Nat Commun ; 10(1): 4964, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673027

RESUMEN

Plasmodium sporozoites are transmitted from infected mosquitoes to mammals, and must navigate the host skin and vasculature to infect the liver. This journey requires distinct proteomes. Here, we report the dynamic transcriptomes and proteomes of both oocyst sporozoites and salivary gland sporozoites in both rodent-infectious Plasmodium yoelii parasites and human-infectious Plasmodium falciparum parasites. The data robustly define mRNAs and proteins that are upregulated in oocyst sporozoites (UOS) or upregulated in infectious sporozoites (UIS) within the salivary glands, including many that are essential for sporozoite functions in the vector and host. Moreover, we find that malaria parasites use two overlapping, extensive, and independent programs of translational repression across sporozoite maturation to temporally regulate protein expression. Together with gene-specific validation experiments, these data indicate that two waves of translational repression are implemented and relieved at different times during sporozoite maturation, migration and infection, thus promoting their successful development and vector-to-host transition.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Oocistos/genética , Plasmodium falciparum/genética , Plasmodium yoelii/genética , Proteoma/metabolismo , ARN Mensajero/metabolismo , Esporozoítos/genética , Transcriptoma/genética , Animales , Anopheles/parasitología , Cromatografía Liquida , Represión Epigenética/genética , Perfilación de la Expresión Génica , Humanos , Malaria , Malaria Falciparum , Mosquitos Vectores/parasitología , Oocistos/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium yoelii/metabolismo , Proteómica , Roedores , Glándulas Salivales/parasitología , Esporozoítos/metabolismo , Espectrometría de Masas en Tándem , Regulación hacia Arriba
14.
Neuron ; 103(6): 1096-1108.e4, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31353074

RESUMEN

During neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here, we combine whole-genome transcriptional and epigenetic analyses with in vivo functional studies to demonstrate that Bcl6, a transcriptional repressor previously reported to promote cortical neurogenesis, acts as a driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 represses its targets through Sirt1 recruitment followed by histone deacetylation. Our data identify a molecular logic by which a single cell-intrinsic factor represses multiple extrinsic pathways that favor self-renewal, thereby ensuring robustness of neuronal fate transition.


Asunto(s)
Autorrenovación de las Células/genética , Represión Epigenética/genética , Histonas/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Sirtuina 1/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Código de Histonas , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , RNA-Seq , Receptores Notch/metabolismo , Transducción de Señal/genética , Vía de Señalización Wnt/genética
15.
Mol Cell ; 75(3): 590-604.e12, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31230816

RESUMEN

Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.


Asunto(s)
Represión Epigenética/genética , Elementos de Nucleótido Esparcido Largo/genética , Retroelementos/genética , Factor de Transcripción YY1/genética , Sitios de Unión/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Genoma Humano/genética , Hipocampo/metabolismo , Humanos , Hígado/metabolismo , Neuronas/metabolismo , Análisis de la Célula Individual
16.
Philos Trans R Soc Lond B Biol Sci ; 374(1767): 20180309, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30967013

RESUMEN

MiRNAs in animals and plants play crucial roles in diverse developmental processes under both normal and stress conditions. miRNA-like small RNAs (milRNAs) identified in some fungi remain functionally uncharacterized. Here, we identified a number of milRNAs in Verticillium dahliae, a soil-borne fungal pathogen responsible for devastating wilt diseases in many crops. Accumulation of a V. dahliae milRNA1, named VdmilR1, was detected by RNA gel blotting. We show that the precursor gene VdMILR1 is transcribed by RNA polymerase II and is able to produce the mature VdmilR1, in a process independent of V. dahliae DCL (Dicer-like) and AGO (Argonaute) proteins. We found that an RNaseIII domain-containing protein, VdR3, is essential for V. dahliae and participates in VdmilR1 biogenesis. VdmilR1 targets a hypothetical protein-coding gene, VdHy1, at the 3'UTR for transcriptional repression through increased histone H3K9 methylation of VdHy1. Pathogenicity analysis reveals that VdHy1 is essential for fungal virulence. Together with the time difference in the expression patterns of VdmilR1 and VdHy1 during fungal infection in cotton plants, our findings identify a novel milRNA, VdmilR1, in V. dahliae synthesized by a noncanonical pathway that plays a regulatory role in pathogenicity and uncover an epigenetic mechanism for VdmilR1 in regulating a virulence target gene. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.


Asunto(s)
Represión Epigenética/genética , Proteínas Fúngicas/genética , MicroARNs/genética , ARN de Hongos/genética , Verticillium/genética , Verticillium/patogenicidad , Secuencia de Bases , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/genética , MicroARNs/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN de Hongos/metabolismo , Virulencia/genética
17.
Proc Natl Acad Sci U S A ; 116(9): 3695-3702, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30755532

RESUMEN

Scleroderma (SSc) is a complex disease that involves activation of the immune system, vascular complications, and tissue fibrosis. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) mediates trimethylation of lysine 27 of histone 3 (H3K27me3), which acts as a repressive epigenetic mark. Both EZH2 and H3K27me3 were elevated in SSc dermal fibroblasts and endothelial cells compared with healthy controls. EZH2 inhibitor DZNep halted fibrosis both in vitro and in vivo. In SSc fibroblasts, DZNep dose-dependently reduced the expression of profibrotic genes and inhibited migratory activity of SSc fibroblasts. We show that epigenetic dysregulation and overexpression of LRRC16A explains EZH2-mediated fibroblast migration in SSc. In endothelial cells, inhibition of EZH2 restored normal angiogenesis in SSc via activating the Notch pathway, specifically by up-regulating the Notch ligand DLL4. Our results demonstrate that overexpression of EZH2 in SSc fibroblasts and endothelial cells is profibrotic and antiangiogenic. Targeting EZH2 or EZH2-regulated genes might be of therapeutic potential in SSc.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Fibrosis/genética , Proteínas de Microfilamentos/genética , Esclerodermia Difusa/genética , Animales , Bleomicina/toxicidad , Movimiento Celular/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Represión Epigenética/genética , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/inducido químicamente , Fibrosis/patología , Regulación de la Expresión Génica/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Metilación , Ratones , Neovascularización Fisiológica , Receptores Notch/genética , Transducción de Señal
18.
Dev Biol ; 444 Suppl 1: S193-S201, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30098999

RESUMEN

Folate deficiency has been known to contribute to neural tube and neural crest defects, but why these tissues are particularly affected, and which are the molecular mechanisms involved in those abnormalities are important human health questions that remain unanswered. Here we study the function of two of the main folate transporters, FolR1 and Rfc1, which are robustly expressed in these tissues. Folate is the precursor of S-adenosylmethionine, which is the main donor for DNA, protein and RNA methylation. Our results show that knockdown of FolR1 and/or Rfc1 reduced the abundance of histone H3 lysine and DNA methylation, two epigenetic modifications that play an important role during neural and neural crest development. Additionally, by knocking down folate transporter or pharmacologically inhibiting folate transport and metabolism, we observed ectopic Sox2 expression at the expense of neural crest markers in the dorsal neural tube. This is correlated with neural crest associated defects, with particular impact on orofacial formation. By using bisulfite sequencing, we show that this phenotype is consequence of reduced DNA methylation on the Sox2 locus at the dorsal neural tube, which can be rescued by the addition of folinic acid. Taken together, our in vivo results reveal the importance of folate as a source of the methyl groups necessary for the establishment of the correct epigenetic marks during neural and neural crest fate-restriction.


Asunto(s)
Deficiencia de Ácido Fólico/fisiopatología , Cresta Neural/metabolismo , Factores de Transcripción SOXB1/fisiología , Animales , Embrión de Pollo , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/genética , Represión Epigenética/genética , Represión Epigenética/fisiología , Epigenómica , Receptor 1 de Folato , Ácido Fólico/metabolismo , Deficiencia de Ácido Fólico/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/fisiopatología
19.
Nucleic Acids Res ; 46(17): 8848-8864, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29992232

RESUMEN

Polycomb group (PcG) and Trithorax group (TrxG) proteins are essential for maintaining epigenetic memory in both embryonic stem cells and differentiated cells. To date, how they are localized to hundreds of specific target genes within a vertebrate genome had remained elusive. Here, by focusing on short cis-acting DNA elements of single functions, we discovered three classes of response elements in human genome: Polycomb response elements (PREs), Trithorax response elements (TREs) and Polycomb/Trithorax response elements (P/TREs). In particular, the four PREs (PRE14, 29, 39 and 48) are the first set of, to our knowledge, bona fide vertebrate PREs ever discovered, while many previously reported Drosophila or vertebrate PREs are likely P/TREs. We further demonstrated that YY1 and CpG islands are specifically enriched in the four TREs (PRE30, 41, 44 and 55), but not in the PREs. The three classes of response elements as unraveled in this study should guide further global investigation and open new doors for a deeper understanding of PcG and TrxG mechanisms in vertebrates.


Asunto(s)
Proteínas de Unión al ADN/genética , Represión Epigenética/genética , N-Metiltransferasa de Histona-Lisina/genética , Complejos Multiproteicos/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Neoplasias/genética , Complejo Represivo Polycomb 2/genética , Elementos de Respuesta/genética , Sistemas CRISPR-Cas , Inmunoprecipitación de Cromatina , Islas de CpG , Técnicas de Inactivación de Genes , Genes Reporteros , Células HEK293 , Células HeLa , Código de Histonas/genética , Humanos , Células K562 , Mutagénesis Insercional , Reacción en Cadena de la Polimerasa , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Transcripción YY1/genética
20.
Rev. Soc. Esp. Dolor ; 25(3): 166-169, mayo-jun. 2018. tab
Artículo en Español | IBECS | ID: ibc-176470

RESUMEN

Introducción: La epigenética se refiere a los cambios en el ADN e histonas que no implican alteraciones en la secuencia de nucleótidos y modifican la estructura y condensación de la cromatina, afectando de esta manera la expresión génica y el fenotipo. Las modificaciones epigenéticas son metilación del ADN y modificaciones de histonas. Objetivo: Realizar una revisión de la literatura sobre la importancia de la epigenética en la fisiopatología y el tratamiento del dolor. Materiales y métodos: se hizo una revisión de la bibliografía sobre el concepto de epigenética, sus bases biológicas, impacto sobre el dolor y su relación con posibles tratamientos. Resultados: Los mecanismos epigenéticos han cobrado cada vez más importancia debido a la creciente asociación con enfermedades complejas y comunes, así como por su influencia en el dolor y sus posibles tratamientos. Conclusiones: La epigenética tiene una clara relación en el dolor, en sus bases fisiopatológicas y posibles tratamientos


Introduction: Epigenetics refers to changes in DNA and histones that do not involve alterations in the nucleotide sequence and modify the structure and condensation of the chromatin, thus affecting gene expression and phenotype. Epigenetic modifications are DNA methylation and histone modifications. Objective: To carry out a review of the literature on the importance of Epigenetics in the pathophysiology and treatment of pain. Materials and methods: A review of the literature on the concept of epigenetics, its biological bases, the impact on pain and its relation to possible treatments. Results: Epigenetic mechanisms have become increasingly important due to the growing association with complex and common diseases, as well as their influence on pain and its possible treatments. Conclusions: Epigenetics has a clear relationship in pain, its pathophysiological bases and possible treatments


Asunto(s)
Humanos , Represión Epigenética/genética , Dolor Crónico/terapia , Manejo del Dolor/métodos , Metilación de ADN/genética , Histonas/genética , Dolor/genética , Cromatina/ultraestructura , Analgesia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA