Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Nat Commun ; 15(1): 7520, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214958

RESUMEN

After an RNA polymerase reaches a terminator, instead of dissociating from the template, it may diffuse along the DNA and recommence RNA synthesis from the previous or a different promoter. Magnetic tweezers were used to monitor such secondary transcription and determine the effects of low forces assisting or opposing translocation, protein roadblocks, and transcription factors. Remarkably, up to 50% of Escherichia coli (E. coli) RNA polymerases diffused along the DNA after termination. Force biased the direction of diffusion (sliding) and the velocity increased rapidly with force up to 0.7 pN and much more slowly thereafter. Sigma factor 70 (σ70) likely remained associated with the DNA promoting sliding and enabling re-initiation from promoters in either orientation. However, deletions of the α-C-terminal domains severely limited the ability of RNAP to turn around between successive rounds of transcription. The addition of elongation factor NusG, which competes with σ70 for binding to RNAP, limited additional rounds of transcription. Surprisingly, sliding RNA polymerases blocked by a DNA-bound lac repressor could slowly re-initiate transcription and were not affected by NusG, suggesting a σ-independent pathway. Low forces effectively biased promoter selection suggesting a prominent role for topological entanglements that affect RNA polymerase translocation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , Regiones Promotoras Genéticas , Factor sigma , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Factor sigma/metabolismo , Factor sigma/genética , Factor sigma/química , Transcripción Genética , Factores de Transcripción/metabolismo , Dominios Proteicos , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/química , Represoras Lac/metabolismo , Represoras Lac/genética
2.
Nucleic Acids Res ; 52(16): 9996-10004, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39077947

RESUMEN

Natural prokaryotic gene repression systems often exploit DNA looping to increase the local concentration of gene repressor proteins at a regulated promoter via contributions from repressor proteins bound at distant sites. Using principles from the Escherichia coli lac operon we design analogous repression systems based on target sequence-programmable Transcription Activator-Like Effector dimer (TALED) proteins. Such engineered switches may be valuable for synthetic biology and therapeutic applications. Previous TALEDs with inducible non-covalent dimerization showed detectable, but limited, DNA loop-based repression due to the repressor protein dimerization equilibrium. Here, we show robust DNA loop-dependent bacterial promoter repression by covalent TALEDs and verify that DNA looping dramatically enhances promoter repression in E. coli. We characterize repression using a thermodynamic model that quantitates this favorable contribution of DNA looping. This analysis unequivocally and quantitatively demonstrates that optimized TALED proteins can drive loop-dependent promoter repression in E. coli comparable to the natural LacI repressor system. This work elucidates key design principles that set the stage for wide application of TALED-dependent DNA loop-based repression of target genes.


Asunto(s)
Escherichia coli , Regulación Bacteriana de la Expresión Génica , Represoras Lac , Regiones Promotoras Genéticas , Represoras Lac/metabolismo , Represoras Lac/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Operón Lac , Efectores Tipo Activadores de la Transcripción/metabolismo , Efectores Tipo Activadores de la Transcripción/genética , Ingeniería de Proteínas/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Multimerización de Proteína , Conformación de Ácido Nucleico , ADN/metabolismo , ADN/genética , ADN/química , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/química , Termodinámica
3.
Nucleic Acids Res ; 52(13): 8003-8016, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38860425

RESUMEN

Optogenetics' advancement has made light induction attractive for controlling biological processes due to its advantages of fine-tunability, reversibility, and low toxicity. The lactose operon induction system, commonly used in Escherichia coli, relies on the binding of lactose or isopropyl ß-d-1-thiogalactopyranoside (IPTG) to the lactose repressor protein LacI, playing a pivotal role in controlling the lactose operon. Here, we harnessed the light-responsive light-oxygen-voltage 2 (LOV2) domain from Avena sativa phototropin 1 as a tool for light control and engineered LacI into two light-responsive variants, OptoLacIL and OptoLacID. These variants exhibit direct responsiveness to light and darkness, respectively, eliminating the need for IPTG. Building upon OptoLacI, we constructed two light-controlled E. coli gene expression systems, OptoE.coliLight system and OptoE.coliDark system. These systems enable bifunctional gene expression regulation in E. coli through light manipulation and show superior controllability compared to IPTG-induced systems. We applied the OptoE.coliDark system to protein production and metabolic flux control. Protein production levels are comparable to those induced by IPTG. Notably, the titers of dark-induced production of 1,3-propanediol (1,3-PDO) and ergothioneine exceeded 110% and 60% of those induced by IPTG, respectively. The development of OptoLacI will contribute to the advancement of the field of optogenetic protein engineering, holding substantial potential applications across various fields.


Asunto(s)
Escherichia coli , Isopropil Tiogalactósido , Operón Lac , Represoras Lac , Luz , Optogenética , Isopropil Tiogalactósido/farmacología , Represoras Lac/metabolismo , Represoras Lac/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Optogenética/métodos , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ingeniería de Proteínas/métodos , Avena/genética , Avena/metabolismo , Avena/efectos de la radiación
4.
Nat Protoc ; 19(7): 1940-1983, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594502

RESUMEN

A major obstacle to studying DNA replication is that it involves asynchronous and highly delocalized events. A reversible replication barrier overcomes this limitation and allows replication fork movement to be synchronized and localized, facilitating the study of replication fork function and replication coupled repair. Here we provide details on establishing a reversible replication barrier in vitro and using it to monitor different aspects of DNA replication. DNA template containing an array of lac operator (lacO) sequences is first bound to purified lac repressor (LacR). This substrate is then replicated in vitro using a biochemical replication system, which results in replication forks stalled on either side of the LacR array regardless of when or where they arise. Once replication forks are synchronized at the barrier, isopropyl-ß-D-thiogalactopyranoside can be added to disrupt LacR binding so that replication forks synchronously resume synthesis. We describe how this approach can be employed to control replication fork elongation, termination, stalling and uncoupling, as well as assays that can be used to monitor these processes. We also explain how this approach can be adapted to control whether replication forks encounter a DNA lesion on the leading or lagging strand template and whether a converging fork is present. The required reagents can be prepared in 1-2 weeks and experiments using this approach are typically performed over 1-3 d. The main requirements for utilizing the LacR replication barrier are basic biochemical expertise and access to an in vitro system to study DNA replication. Investigators should also be trained in working with radioactive materials.


Asunto(s)
Replicación del ADN , Represoras Lac/metabolismo , Represoras Lac/genética , ADN/metabolismo , ADN/genética
5.
Microb Biotechnol ; 17(3): e14427, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465475

RESUMEN

Optimal transcriptional regulatory circuits are expected to exhibit stringent control, maintaining silence in the absence of inducers while exhibiting a broad induction dynamic range upon the addition of effectors. In the Plac /LacI pair, the promoter of the lac operon in Escherichia coli is characterized by its leakiness, attributed to the moderate affinity of LacI for its operator target. In response to this limitation, the LacI regulatory protein underwent engineering to enhance its regulatory properties. The M7 mutant, carrying I79T and N246S mutations, resulted in the lac promoter displaying approximately 95% less leaky expression and a broader induction dynamic range compared to the wild-type LacI. An in-depth analysis of each mutation revealed distinct regulatory profiles. In contrast to the wild-type LacI, the M7 mutant exhibited a tighter binding to the operator sequence, as evidenced by surface plasmon resonance studies. Leveraging the capabilities of the M7 mutant, a high-value sugar biosensor was constructed. This biosensor facilitated the selection of mutant galactosidases with approximately a seven-fold improvement in specific activity for transgalactosylation. Consequently, this advancement enabled enhanced biosynthesis of galacto-oligosaccharides (GOS).


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Represoras Lac/genética , Represoras Lac/química , Represoras Lac/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación , Regiones Promotoras Genéticas , Proteínas Bacterianas/genética
6.
Microb Biotechnol ; 17(1): e14328, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37608576

RESUMEN

Biosafety of engineered bacteria as living therapeutics requires a tight regulation to control the specific delivery of protein effectors, maintaining minimum leakiness in the uninduced (OFF) state and efficient expression in the induced (ON) state. Here, we report a three repressors (3R) genetic circuit that tightly regulates the expression of multiple tac promoters (Ptac) integrated in the chromosome of E. coli and drives the expression of a complex type III secretion system injectisome for therapeutic protein delivery. The 3R genetic switch is based on the tetracycline repressor (TetR), the non-inducible lambda repressor cI (ind-) and a mutant lac repressor (LacIW220F ) with higher activity. The 3R switch was optimized with different protein translation and degradation signals that control the levels of LacIW220F . We demonstrate the ability of an optimized switch to fully repress the strong leakiness of the Ptac promoters in the OFF state while triggering their efficient activation in the ON state with anhydrotetracycline (aTc), an inducer suitable for in vivo use. The implementation of the optimized 3R switch in the engineered synthetic injector E. coli (SIEC) strain boosts expression of injectisomes upon aTc induction, while maintaining a silent OFF state that preserves normal growth in the absence of the inducer. Since Ptac is a commonly used promoter, the 3R switch may have multiple applications for tight control of protein expression in E. coli. In addition, the modularity of the 3R switch may enable its tuning for the control of Ptac promoters with different inducers.


Asunto(s)
Compuestos Bicíclicos con Puentes , Escherichia coli , Tiadiazoles , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas , Compuestos Bicíclicos con Puentes/metabolismo , Represoras Lac/genética , Represoras Lac/metabolismo
7.
Mol Biochem Parasitol ; 256: 111598, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37923299

RESUMEN

Visualisation of genomic loci by microscopy is essential for understanding nuclear organisation, particularly at the single cell level. One powerful technique for studying the positioning of genomic loci is through the Lac Operator-Lac Repressor (LacO-LacI) system, in which LacO repeats introduced into a specific genomic locus can be visualised through expression of a LacI-protein fused to a fluorescent tag. First utilised in Trypanosoma brucei over 20 years ago, we have now optimised this system with short, stabilised LacO repeats of less than 2 kb paired with a constitutively expressed mNeongreen::LacI fusion protein to facilitate visualisation of genomic loci. We demonstrate the compatibility of this system with super-resolution microscopy and propose its suitability for multiplexing with inducible RNAi or protein over expression which will allow analysis of nuclear organisation after perturbation of gene expression.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Represoras Lac/genética , Regiones Promotoras Genéticas , Genómica
8.
Proc Natl Acad Sci U S A ; 120(49): e2311240120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38019859

RESUMEN

High-resolution NMR spectroscopy enabled us to characterize allosteric transitions between various functional states of the dimeric Escherichia coli Lac repressor. In the absence of ligands, the dimer exists in a dynamic equilibrium between DNA-bound and inducer-bound conformations. Binding of either effector shifts this equilibrium toward either bound state. Analysis of the ternary complex between repressor, operator DNA, and inducer shows how adding the inducer results in allosteric changes that disrupt the interdomain contacts between the inducer binding and DNA binding domains and how this in turn leads to destabilization of the hinge helices and release of the Lac repressor from the operator. Based on our data, the allosteric mechanism of the induction process is in full agreement with the well-known Monod-Wyman-Changeux model.


Asunto(s)
Proteínas de Escherichia coli , Represoras Lac/genética , Represoras Lac/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Alostérica/genética , Escherichia coli/metabolismo , ADN/metabolismo , Estructura Secundaria de Proteína , Operón Lac/genética
9.
ACS Synth Biol ; 12(2): 432-445, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36716395

RESUMEN

Reverse genetics (RG) systems have been instrumental for determining the molecular aspects of viral replication, pathogenesis, and for the development of therapeutics. Here, we demonstrate that genes encoding the influenza surface antigens hemagglutinin and neuraminidase have varying stability when cloned into a common RG plasmid and transformed into Escherichia coli. Using GFP as a reporter, we demonstrate that E. coli expresses the target genes in the RG plasmid at low levels. Incorporating lac operators or a transcriptional terminator into the plasmid reduced expression and stabilized the viral genes to varying degrees. Sandwiching the viral gene between two lac operators provided the largest contribution to stability and we confirmed the stabilization is Lac repressor-dependent and crucial for subsequent plasmid propagations in E. coli. Viruses rescued from the lac operator-stabilized plasmid displayed similar kinetics and titers to the original plasmid in two different viral backbones. Together, these results indicate that silencing transcription from the plasmid in E. coli helps to maintain the correct influenza gene sequence and that the lac operator addition does not impair virus production. It is envisaged that sandwiching DNA segments between lac operators can be used for reducing DNA segment instability in any plasmid that is propagated in E. coli which express the Lac repressor.


Asunto(s)
Escherichia coli , Gripe Humana , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Represoras Lac/genética , Genética Inversa , Plásmidos/genética , Operón Lac
10.
Methods Mol Biol ; 2589: 361-376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36255637

RESUMEN

Experiments determining the chromatin association of histone acetylases (HATs) and deacetylases (HDACs) at the genome-wide level provide precise maps of locus occupancy, but do not allow conclusions on the functional consequences of this locus-specific enrichment. Here we describe a protocol that allows tethering of HATs or HDACs to specific genomic loci upon fusion with a fluorescent protein and a DNA-binding protein such as the E. coli Lac repressor (LacI), which binds to genomically inserted lac operon sequences (lacO) via DNA/protein interactions. Integration of these lacO sequences into a genomic region of interest allows to monitor the functional consequences of HAT/HDAC targeting on chromatin (de)compaction, histone modification, and interaction with other proteins by quantitative light microscopy, as described here. As DNA-binding of LacI can be tightly controlled by the addition of galactose-derivatives, this method also allows to monitor the effects of locus-specific recruitment in a time-resolved manner.


Asunto(s)
Cromatina , Histona Acetiltransferasas , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Cromatina/genética , Represoras Lac/genética , Histonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosa , Histona Desacetilasas/metabolismo , ADN/genética , ADN/metabolismo , Acetilación , Acetiltransferasas/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(33): e2200061119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35960846

RESUMEN

DNA looping has emerged as a central paradigm of transcriptional regulation, as it is shared across many living systems. One core property of DNA looping-based regulation is its ability to greatly enhance repression or activation of genes with only a few copies of transcriptional regulators. However, this property based on a small number of proteins raises the question of the robustness of such a mechanism with respect to the large intracellular perturbations taking place during growth and division of the cell. Here we address the issue of sensitivity to variations of intracellular parameters of gene regulation by DNA looping. We use the lac system as a prototype to experimentally identify the key features of the robustness of DNA looping in growing Escherichia coli cells. Surprisingly, we observe time intervals of tight repression spanning across division events, which can sometimes exceed 10 generations. Remarkably, the distribution of such long time intervals exhibits memoryless statistics that is mostly insensitive to repressor concentration, cell division events, and the number of distinct loops accessible to the system. By contrast, gene regulation becomes highly sensitive to these perturbations when DNA looping is absent. Using stochastic simulations, we propose that the observed robustness to division emerges from the competition between fast, multiple rebinding events of repressors and slow initiation rate of the RNA polymerase. We argue that fast rebinding events are a direct consequence of DNA looping that ensures robust gene repression across a range of intracellular perturbations.


Asunto(s)
División Celular , ADN Bacteriano , Operón Lac , División Celular/genética , ADN Bacteriano/química , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Represoras Lac/genética , Represoras Lac/metabolismo , Conformación de Ácido Nucleico , Análisis de la Célula Individual
12.
Nucleic Acids Res ; 50(5): 2826-2835, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188572

RESUMEN

Some proteins, like the lac repressor (LacI), mediate long-range loops that alter DNA topology and create torsional barriers. During transcription, RNA polymerase generates supercoiling that may facilitate passage through such barriers. We monitored E. coli RNA polymerase progress along templates in conditions that prevented, or favored, 400 bp LacI-mediated DNA looping. Tethered particle motion measurements revealed that RNA polymerase paused longer at unlooped LacI obstacles or those barring entry to a loop than those barring exit from the loop. Enhanced dissociation of a LacI roadblock by the positive supercoiling generated ahead of a transcribing RNA polymerase within a torsion-constrained DNA loop may be responsible for this reduction in pause time. In support of this idea, RNA polymerase transcribed 6-fold more slowly through looped DNA and paused at LacI obstacles for 66% less time on positively supercoiled compared to relaxed templates, especially under increased tension (torque). Positive supercoiling propagating ahead of polymerase facilitated elongation along topologically complex, protein-coated templates.


Asunto(s)
ADN , Escherichia coli , ADN/genética , ADN/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Operón Lac , Represoras Lac/genética , Represoras Lac/metabolismo , Conformación de Ácido Nucleico
13.
Biophys J ; 121(2): 183-192, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34953812

RESUMEN

The lactose uptake pathway of E. coli is a paradigmatic example of multistability in gene regulatory circuits. In the induced state of the lac pathway, the genes comprising the lac operon are transcribed, leading to the production of proteins that import and metabolize lactose. In the uninduced state, a stable repressor-DNA loop frequently blocks the transcription of the lac genes. Transitions from one phenotypic state to the other are driven by fluctuations, which arise from the random timing of the binding of ligands and proteins. This stochasticity affects transcription and translation, and ultimately molecular copy numbers. Our aim is to understand the transition from the induced to the uninduced state of the lac operon. We use a detailed computational model to show that repressor-operator binding and unbinding, fluctuations in the total number of repressors, and inducer-repressor binding and unbinding all play a role in this transition. Based on the timescales on which these processes operate, we construct a minimal model of the transition to the uninduced state and compare the results with simulations and experimental observations. The induced state turns out to be very stable, with a transition rate to the uninduced state lower than 2×10-9 per minute. In contrast to the transition to the induced state, the transition to the uninduced state is well described in terms of a 2D diffusive system crossing a barrier, with the diffusion rates emerging from a model of repressor unbinding.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Operón Lac , Represoras Lac/genética , Represoras Lac/metabolismo , Lactosa/metabolismo
14.
ACS Synth Biol ; 10(9): 2340-2350, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34463482

RESUMEN

At the single-cell level, protein kinase activity is typically inferred from downstream transcriptional reporters. However, promoters are often coregulated by several pathways, making the activity of a specific kinase difficult to deconvolve. Here, we present modular, direct, and specific sensors of bacterial kinase activity, including FRET-based sensors, as well as a synthetic transcription factor based on the lactose repressor (LacI) that has been engineered to respond to phosphorylation. We demonstrate the utility of these sensors in measuring the activity of PrkC, a conserved bacterial Ser/Thr kinase, in different growth conditions from single cells to colonies. We also show that PrkC activity increases in response to a cell-wall active antibiotic that blocks the late steps in peptidoglycan synthesis (cefotaxime), but not the early steps (fosfomycin). These sensors have a modular design that should generalize to other bacterial signaling systems in the future.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Serina-Treonina Quinasas/metabolismo , Cefotaxima/química , Cefotaxima/metabolismo , Bacterias Grampositivas/enzimología , Represoras Lac/genética , Fosforilación , Análisis de la Célula Individual
15.
C R Biol ; 344(2): 111-126, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34213850

RESUMEN

The operon model was proposed six decades ago. And yet, despite all this time, the lactose operon repressor, LacI, remains a subject of major interest. While it is well established that LacI can exist in two functional forms, one that renders the operon inactive via binding of LacI to DNA and another, bound to an inducer that does not allow repression, how it switches from one to the other is still not well understood. The construction of a library of several tens of thousands of LacI mutants has revealed some unexpected features. In particular, the transition implemented in some of them reveals a new type of transcription regulation: band-pass (OFF/ON/OFF) and band-stop (ON/OFF/ON) filters. This makes it natural to think that it is the network of hydrogen bonds associated with the water bound to the molecule that allows the remote interconnection between the binding site to an inducer molecule and the one that binds it to the DNA.


Le modèle de l'opéron a été proposé il y a six décennies. Et pourtant, malgré tout ce temps passé, le répresseur de l'opéron lactose, LacI, reste un sujet d'intérêt majeur. S'il est bien établi que LacI peut exister sous deux formes fonctionnelles, l'une qui rend inactif l'opéron via la liaison de LacI à l'ADN et l'autre, liée à un inducteur qui ne permet pas cette répression, la façon dont il passe de l'une à l'autre n'est toujours pas bien comprise. La construction d'une bibliothèque de plusieurs dizaines de milliers de mutants de LacI a mis au jour des caractéristiques inattendues. En particulier la transition mise en œuvre dans certains d'entre eux fait émerger un nouveau type de régulation de la transcription : filtre à bande passante (INACTIF/ACTIF/INACTIF) et filtre à bande d'arrêt (ACTIF/INACTIF/ACTIF). Il est naturel de penser que c'est le réseau des liaisons hydrogène associées à l'eau liée à la molécule qui permet l'interconnexion à distance entre le site de liaison à une molécule inductrice et celui qui le lie à l'ADN.


Asunto(s)
Proteínas de Escherichia coli , Sitios de Unión , ADN , Proteínas de Escherichia coli/genética , Operón Lac , Represoras Lac/genética , Represoras Lac/metabolismo
16.
Protein Sci ; 30(9): 1833-1853, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34076313

RESUMEN

When amino acids vary during evolution, the outcome can be functionally neutral or biologically-important. We previously found that substituting a subset of nonconserved positions, "rheostat" positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether "phylogenetic" patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10-15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non-neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously-identified hLPYK rheostat, "toggle" (most substitution abolished function), and "neutral" (all substitutions were like wild-type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12-13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co-evolutionary or eigenvector centrality measures of evolutionary change.


Asunto(s)
Sustitución de Aminoácidos , ADN/química , Proteínas de Escherichia coli/química , Evolución Molecular , Represoras Lac/química , Piruvato Quinasa/química , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Sitios de Unión , Clonación Molecular , Biología Computacional/métodos , ADN/genética , ADN/metabolismo , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Represoras Lac/genética , Represoras Lac/metabolismo , Modelos Moleculares , Mutación , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Termodinámica
17.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34187888

RESUMEN

Recent progress in DNA synthesis and sequencing technology has enabled systematic studies of protein function at a massive scale. We explore a deep mutational scanning study that measured the transcriptional repression function of 43,669 variants of the Escherichia coli LacI protein. We analyze structural and evolutionary aspects that relate to how the function of this protein is maintained, including an in-depth look at the C-terminal domain. We develop a deep neural network to predict transcriptional repression mediated by the lac repressor of Escherichia coli using experimental measurements of variant function. When measured across 10 separate training and validation splits using 5,009 single mutations of the lac repressor, our best-performing model achieved a median Pearson correlation of 0.79, exceeding any previous model. We demonstrate that deep representation learning approaches, first trained in an unsupervised manner across millions of diverse proteins, can be fine-tuned in a supervised fashion using lac repressor experimental datasets to more effectively predict a variant's effect on repression. These findings suggest a deep representation learning model may improve the prediction of other important properties of proteins.


Asunto(s)
Aprendizaje Profundo , Proteínas de Escherichia coli/metabolismo , Represoras Lac/metabolismo , Transcripción Genética , Epistasis Genética , Proteínas de Escherichia coli/genética , Represoras Lac/genética , Mutación/genética , Dominios Proteicos , Reproducibilidad de los Resultados
18.
Nucleic Acids Res ; 49(15): e85, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34086942

RESUMEN

CRISPR-Cas9 is a powerful tool for genome engineering, but its efficiency largely depends on guide RNA (gRNA). There are multiple methods available to evaluate the efficiency of gRNAs, including the T7E1 assay, surveyor nuclease assay, deep sequencing, and surrogate reporter systems. In the present study, we developed a cleavage-based surrogate that we have named the LacI-reporter to evaluate gRNA cleavage efficiency. The LacI repressor, under the control of the EF-1α promoter, represses luciferase or EGFP reporter expression by binding to the lac operator. Upon CRISPR-Cas9 cleavage at a target site located between the EF-1α promoter and the lacI gene, repressor expression is disrupted, thereby triggering luciferase or EGFP expression. Using this system, we can quantitate gRNA cleavage efficiency by assessing luciferase activity or EGFP expression. We found a strong positive correlation between the cleavage efficiency of gRNAs measured using this reporter and mutation frequency, measured using surveyor and deep sequencing. The genome-editing efficiency of gRNAs was validated in human liver organoids. Our LacI-reporter system provides a useful tool to select efficient gRNAs for genome editing.


Asunto(s)
Sistemas CRISPR-Cas/genética , Endonucleasas/genética , Edición Génica , Represoras Lac/genética , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Factor 1 de Elongación Peptídica/genética , ARN Guía de Kinetoplastida/genética
19.
Mol Biol Evol ; 38(7): 2869-2879, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33744956

RESUMEN

Populations of Escherichia coli selected in constant and fluctuating environments containing lactose often adapt by substituting mutations in the lacI repressor that cause constitutive expression of the lac operon. These mutations occur at a high rate and provide a significant benefit. Despite this, eight of 24 populations evolved for 8,000 generations in environments containing lactose contained no detectable repressor mutations. We report here on the basis of this observation. We find that, given relevant mutation rates, repressor mutations are expected to have fixed in all evolved populations if they had maintained the same fitness effect they confer when introduced to the ancestor. In fact, reconstruction experiments demonstrate that repressor mutations have become neutral or deleterious in those populations in which they were not detectable. Populations not fixing repressor mutations nevertheless reached the same fitness as those that did fix them, indicating that they followed an alternative evolutionary path that made redundant the potential benefit of the repressor mutation, but involved unique mutations of equivalent benefit. We identify a mutation occurring in the promoter region of the uspB gene as a candidate for influencing the selective choice between these paths. Our results detail an example of historical contingency leading to divergent evolutionary outcomes.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Regulación Bacteriana de la Expresión Génica , Operón Lac , Escherichia coli , Proteínas de Escherichia coli/genética , Expresión Génica , Aptitud Genética , Represoras Lac/genética , Proteínas de la Membrana/genética , Mutación
20.
Nucleic Acids Res ; 49(7): e39, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33511418

RESUMEN

Proteins that can bring together separate DNA sites, either on the same or on different DNA molecules, are critical for a variety of DNA-based processes. However, there are no general and technically simple assays to detect proteins capable of DNA looping in vivo nor to quantitate their in vivo looping efficiency. Here, we develop a quantitative in vivo assay for DNA-looping proteins in Escherichia coli that requires only basic DNA cloning techniques and a LacZ assay. The assay is based on loop assistance, where two binding sites for the candidate looping protein are inserted internally to a pair of operators for the E. coli LacI repressor. DNA looping between the sites shortens the effective distance between the lac operators, increasing LacI looping and strengthening its repression of a lacZ reporter gene. Analysis based on a general model for loop assistance enables quantitation of the strength of looping conferred by the protein and its binding sites. We use this 'loopometer' assay to measure DNA looping for a variety of bacterial and phage proteins.


Asunto(s)
Técnicas de Química Analítica , ADN Bacteriano/genética , Proteínas de Escherichia coli/química , Escherichia coli/genética , Operón Lac , Represoras Lac/química , Bacteriófago lambda/genética , Sitios de Unión , Proteínas de Escherichia coli/genética , Represoras Lac/genética , Conformación de Ácido Nucleico , Regiones Operadoras Genéticas , Unión Proteica , Proteínas Represoras/genética , Proteínas Reguladoras y Accesorias Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA