Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.624
Filtrar
1.
Reprod Fertil Dev ; 362024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38744493

RESUMEN

Poly- and perfluoroalkyl substances (PFAS) are a prominent class of persistent synthetic compound. The widespread use of these substances in various industrial applications has resulted in their pervasive contamination on a global scale. It is therefore concerning that PFAS have a propensity to accumulate in bodily tissues whereupon they have been linked with a range of adverse health outcomes. Despite this, the true extent of the risk posed by PFAS to humans, domestic animals, and wildlife remains unclear. Addressing these questions requires a multidisciplinary approach, combining the fields of chemistry, biology, and policy to enable meaningful investigation and develop innovative remediation strategies. This article combines the perspectives of chemists, soil scientists, reproductive biologists, and health policy researchers, to contextualise the issue of PFAS contamination and its specific impact on reproductive health. The purpose of this article is to describe the challenges associated with remediating PFAS-contaminated soils and waters and explore the consequences of PFAS contamination on health and reproduction. Furthermore, current actions to promote planetary health and protect ecosystems are presented to instigate positive social change among the scientific community.


Asunto(s)
Animales Salvajes , Contaminantes Ambientales , Fluorocarburos , Salud Reproductiva , Animales , Humanos , Fluorocarburos/toxicidad , Fluorocarburos/efectos adversos , Fluorocarburos/análisis , Ganado , Reproducción/efectos de los fármacos , Contaminación Ambiental/efectos adversos , Contaminación Ambiental/análisis , Exposición a Riesgos Ambientales/efectos adversos
2.
Environ Sci Technol ; 58(19): 8251-8263, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695612

RESUMEN

The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 µg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.


Asunto(s)
Reproducción , Pez Cebra , Animales , Masculino , Reproducción/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Retardadores de Llama/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Femenino
3.
Environ Sci Technol ; 58(19): 8278-8288, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697947

RESUMEN

Chemicals assessment and management frameworks rely on regulatory toxicity values, which are based on points of departure (POD) identified following rigorous dose-response assessments. Yet, regulatory PODs and toxicity values for inhalation exposure (i.e., reference concentrations [RfCs]) are available for only ∼200 chemicals. To address this gap, we applied a workflow to determine surrogate inhalation route PODs and corresponding toxicity values, where regulatory assessments are lacking. We curated and selected inhalation in vivo data from the U.S. EPA's ToxValDB and adjusted reported effect values to chronic human equivalent benchmark concentrations (BMCh) following the WHO/IPCS framework. Using ToxValDB chemicals with existing PODs associated with regulatory toxicity values, we found that the 25th %-ile of a chemical's BMCh distribution (PODp25BMCh) could serve as a suitable surrogate for regulatory PODs (Q2 ≥ 0.76, RSE ≤ 0.82 log10 units). We applied this approach to derive PODp25BMCh for 2,095 substances with general non-cancer toxicity effects and 638 substances with reproductive/developmental toxicity effects, yielding a total coverage of 2,160 substances. From these PODp25BMCh, we derived probabilistic RfCs and human population effect concentrations. With this work, we have expanded the number of chemicals with toxicity values available, thereby enabling a much broader coverage for inhalation risk and impact assessment.


Asunto(s)
Exposición por Inhalación , Reproducción , Humanos , Reproducción/efectos de los fármacos , Medición de Riesgo
4.
J Hazard Mater ; 471: 134356, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643579

RESUMEN

Exposure to N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) caused toxicity on Caenorhabditis elegans, including reproductive toxicity. However, the underlying mechanisms for this induced reproductive toxicity by 6-PPDQ remain largely unclear. We examined possible association of ferroptosis activation with reproductive toxicity of 6-PPDQ. In 1-100 µg/L 6-PPDQ exposed nematodes, Fe2+ content was increased, which was accompanied with enhanced lipid peroxidation, increased malonydialdehyde (MDA) content, and decreased L-glutathione (GSH) content. Exposure to 1-100 µg/L 6-PPDQ decreased expressions of ftn-1 encoding ferritin, ads-1 encoding AGPS, and gpx-6 encoding GPX4 and increased expression of bli-3 encoding dual oxidase. After 6-PPDQ exposure, RNAi of ftn-1 decreased ads-1 and gpx-6 expressions and increased bli-3 expression. RNAi of ftn-1, ads-1, and gpx-6 strengthened alterations in ferroptosis related indicators, and RNAi of bli-3 suppressed changes of ferroptosis related indicators in 6-PPDQ exposed nematodes. Meanwhile, RNAi of ftn-1, ads-1, and gpx-6 induced susceptibility, and RNAi of bli-3 caused resistance to 6-PPDQ reproductive toxicity. Moreover, expressions of DNA damage checkpoint genes (clk-2, mrt-2, and hus-1) could be increased by RNAi of ftn-1, ads-1, and gpx-6 in 6-PPDQ exposed nematodes. Therefore, our results demonstrated activation of ferroptosis in nematodes exposed to 6-PPDQ at environmentally relevant concentrations, and this ferroptosis activation was related to reproductive toxicity of 6-PPDQ.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ferroptosis , Reproducción , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Ferroptosis/efectos de los fármacos , Reproducción/efectos de los fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fenilendiaminas/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Glutatión/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38583695

RESUMEN

Human activities have directly impacted the environment, causing significant ecological imbalances. From the different contaminants resulting from human activities, plastics are of major environmental concern. Due to their high use and consequent discharge, plastics tend to accumulate in aquatic environments. There, plastics can form smaller particles (microplastics, MPs), due to fragmentation and weathering, which are more prone to interact with aquatic organisms and cause deleterious effects, including at the basis of different food webs. This study assessed the effects of two microplastics (polyethylene terephthalate, PET; and polypropylene, PP; both of common domestic use) in the freshwater cladoceran species Daphnia magna. Toxic effects were assessed by measuring reproductive traits (first brood and total number of offspring), and activities of biomarkers involved in xenobiotic metabolism (phase I: cytochrome P-450 isoenzymes CYP1A1, 1A2 and 3A4; phase II/conjugation: glutathione S-transferases; and antioxidant defense (catalase)). Both MPs showed a potential to significantly reduce reproductive parameters in D. magna. Furthermore, PET caused a significant increase in some isoenzymes of CYP450 in acutely exposed organisms, but this effect was not observed in chronically exposed animals. Similarly, the activity of the antioxidant defense (CAT) was significantly increased in acutely exposed animals, but not in chronically exposed organisms. This pattern of effects suggests a possible mechanism of long-term adaptation to the presence of the tested MPs. In conclusion, the herein tested MPs have shown the potential to induce deleterious effects on D. magna mainly observed in terms of the reproductive outcomes. Changes at the biochemical level seems transient and are not likely to occur in long term, environmentally exposed crustaceans.


Asunto(s)
Daphnia , Microplásticos , Reproducción , Contaminantes Químicos del Agua , Animales , Daphnia/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Microplásticos/toxicidad , Agua Dulce , Biomarcadores/metabolismo , Glutatión Transferasa/metabolismo , Polipropilenos/toxicidad , Sistema Enzimático del Citocromo P-450/metabolismo , Daphnia magna
6.
Chemosphere ; 357: 141984, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614392

RESUMEN

Benzisothiazolinone (BIT) and propyl paraben (PP) are preservatives in cleaning products; however, their toxicities are not well understood. In this study, zebrafish embryos were exposed to BIT, PP, and mixtures of both for 96 h to investigate the effects on growth hormone (GH), insulin-like growth factor-1 (IGF-1), and the transcription of 19 genes related to the GH/IGFs axis. Concentrations of BIT and PP were measured in the whole body of larvae. Zebrafish pairs were also exposed to BIT, PP, and mixtures for 21 d to evaluate the effects on sex hormones, histology in gonad, and transcription of 22 genes related to the hypothalamus-pituitary-gonad axis and vitellogenin. The mixtures had potentiation effects on development, reproduction, hormones, and gene transcripts than individual exposure. Larvae exposed to 229 µg L-1 BIT, 64.5 µg L-1 PP, and mixtures showed reduced growth. Decreased GH and IGF-1 levels were supported by gene regulation associated with the GH/IGFs axis. In larvae, reactive oxygen species, superoxide dismutase, catalase, and glutathione peroxidase levels were increased under all exposures. The gonadosomatic index in males and number of eggs decreased after mixture exposure. In females exposed to mixtures, the percentage of atretic follicle in ovary was significantly increased. The significant decrease in testosterone in males and significant decrease in 17ß-estradiol in females exposed to mixtures suggest anti-estrogenic and anti-androgenic potential. Thus, preservative mixtures in consumer products may be more toxic than the individual substances, which is important for managing the risks of mixing preservatives.


Asunto(s)
Parabenos , Conservadores Farmacéuticos , Pez Cebra , Animales , Femenino , Parabenos/toxicidad , Conservadores Farmacéuticos/toxicidad , Masculino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Larva/efectos de los fármacos , Hormona del Crecimiento , Reproducción/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38615808

RESUMEN

Biomphalaria straminea is a freshwater gastropod native to South America and used in toxicological assessments. Our aim was to estimate 48 h-LC50 and sub-chronic effects after the exposure to low concentrations of chlorpyrifos as commercial formulation (CF) and active ingredient (AI) on B. straminea adult, embryos and juveniles. Concentrations between 1 and 5000 µg L-1 were chosen for acute exposures and 0.1 and 1 µg L-1 for the sub-chronic one. After 14 days biochemical parameters, viability and sub-populations of hemocytes, reproductive parameters, embryotoxicity and offspring' survival were studied. Egg masses laid between day 12 and 14 were separated to continue the exposure and the embryos were examined daily. Offspring' survival and morphological changes were registered for 14 days after hatching. 48 h-LC50, NOEC and LOEC were similar between CF and AI, however the CF caused more sub-lethal effects. CF but not the AI decreased carboxylesterases, catalase and the proportion of hyalinocytes with respect to the total hemocytes, and increased superoxide dismutase and the % of granulocytes with pseudopods. Also CF caused embryotoxicity probably due to the increase of embryos' membrane permeability. Acetylcholinesterase, superoxide dismutase, hemocytes sub-populations, the time and rate of hatching and juveniles' survival were the most sensitive biomarkers. We emphasize the importance of the assessment of a battery of biomarkers as a useful tool for toxicity studies including reproduction parameters and immunological responses. Also, we highlight the relevance of incorporating the evaluation of formulations in order to not underestimate the effects of pesticides on the environment.


Asunto(s)
Biomarcadores , Biomphalaria , Cloropirifos , Embrión no Mamífero , Insecticidas , Contaminantes Químicos del Agua , Cloropirifos/toxicidad , Animales , Biomphalaria/efectos de los fármacos , Insecticidas/toxicidad , Biomarcadores/metabolismo , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Hemocitos/efectos de los fármacos , Dosificación Letal Mediana , Reproducción/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo
8.
Chemosphere ; 357: 141967, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615950

RESUMEN

The organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) is an endocrine-disrupting compound (EDC) that has been banned by most countries for decades. However, it continues to be detected in nearly all humans and wildlife due to its biological and environmental persistence. The ovarian dysgenesis syndrome hypothesis speculates that exposure to EDCs during sensitive developmental windows such as early gonadal differentiation lead to reproductive disorders later in life. Yet, mechanisms by which DDT affects developing gonads remain unclear due to the inherent challenge of getting developmental exposure data from adults presenting with reproductive disease. The Japanese medaka (Oryzias latipes) is a valuable fish model for sex-specific toxicological studies due to its chromosomal sex determination, external embryonic development, short generation time, and extensively mapped genome. It is well documented that medaka exposed to DDT and its metabolites and byproducts (herein referred to as DDT+) at different developmental time points experience permanent alterations in gonadal morphology, reproductive success, and molecular and hormonal signaling. However, the overwhelming majority of studies focus primarily on functional and morphological outcomes in males and females and have rarely investigated long-term transcriptional or molecular effects. This review summarizes previous experimental findings and the state of our knowledge concerning toxic effects DDT + on reproductive development, fertility, and health in the valuable medaka model. It also identifies gaps in knowledge, emphasizing a need for more focus on molecular mechanisms of ovarian endocrine disruption using enhanced molecular tools that have become increasingly available over the past few decades. Furthermore, DDT forms a myriad of over 45 metabolites and transformation products in biota and the environment, very few of which have been evaluated for environmental abundance or health effects. This reinforces the demand for high throughput and economical in vivo models for predictive toxicology screening, and the Japanese medaka is uniquely positioned to meet this need.


Asunto(s)
DDT , Disruptores Endocrinos , Oryzias , Reproducción , Contaminantes Químicos del Agua , Animales , Oryzias/fisiología , DDT/toxicidad , Femenino , Reproducción/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Salud Reproductiva , Masculino
9.
Sci Total Environ ; 929: 172537, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636855

RESUMEN

The joint toxicity effects of mixtures, particularly reproductive toxicity, one of the main causes of aquatic ecosystem degradation, are often overlooked as it is impractical to test all mixtures. This study developed and evaluated the following models to predict the concentration response curve concerning the joint reproductive toxicity of mixtures of three bisphenol analogues (BPA, BPF, BPAF) on the rotifer Brachionus calyciflorus: concentration addition (CA), independent action (IA), and two deep neural network (DNN) models. One applied mixture molecular descriptors as input variables (DNN-QSAR), while the other applied the ratios of chemicals in the mixtures (DNN-Ratio). Descriptors related to molecular mass were found to be of greater importance and exhibited a proportional relationship with toxic effects. The results indicate that the range of correlation coefficients (R2) between predicted and measured values for various mixture rays by CA and IA models is 0.372 to 0.974 and - 0.970 to 0.586, respectively. The R2 values for DNN-Ratio and DNN-QSAR were 0.841 to 0.984 and 0.834 to 0.991, respectively, demonstrating that models developed by DNN significantly outperform traditional models in predicting the joint toxicity of mixtures. Furthermore, DNN-QSAR not only predicts mixture toxicity but also provides accurate toxicity predictions for BPA, BPF, and BPAF, with R2 values of 0.990, 0.616, and 0.887, respectively, while DNN-Ratio yields values of 0.920, 0.355, and - 0.495. The study also found that the joint effects of mixtures are primarily influenced by the total concentration of the mixtures, and an increase in total concentration shifts the joint effects towards addition. This study introduces a novel approach to predict joint toxicity and analyze the influencing factors of joint effects, providing a more comprehensive assessment of the ecological risk posed by mixtures.


Asunto(s)
Inteligencia Artificial , Compuestos de Bencidrilo , Fenoles , Reproducción , Rotíferos , Contaminantes Químicos del Agua , Animales , Rotíferos/efectos de los fármacos , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Relación Estructura-Actividad Cuantitativa
10.
Chemosphere ; 357: 142030, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626814

RESUMEN

Male fertility has been declining in recent decades, and a growing body of research points to environmental and lifestyle factors as the cause. The widespread use of radiation technology may result in more people affected by male infertility, as it is well established that radiation can cause reproductive impairment in men. This article provides a review of radiation-induced damage to male reproduction, and the effects of damage mechanisms and pharmacotherapy. It is hoped that this review will contribute to the understanding of the effects of radiation on male reproduction, and provide information for research into drugs that can protect the reproductive health of males.


Asunto(s)
Reproducción , Masculino , Humanos , Reproducción/efectos de la radiación , Reproducción/efectos de los fármacos , Infertilidad Masculina/prevención & control , Infertilidad Masculina/etiología , Genitales Masculinos/efectos de la radiación , Animales
11.
Sci Total Environ ; 930: 172814, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38679096

RESUMEN

Ocean contamination, particularly from persistent organic pollutants (POPs), remains a significant threat to marine predators that occupy high trophic positions. Long-lived procellariform seabirds are apex predators in marine ecosystems and tend to accumulate contaminants. Prolonged exposure to pollutants negatively affects their fitness including reproductive success. Low breeding success may represent a hurdle for the restoration of small and endangered seabird populations, including several highly threatened gadfly petrels. Here we investigated the annual variation (2019 and 2022) in organochlorine pesticide (OCP), polychlorinated biphenyl ether (PCB), polybrominated diphenyl ether (PBDE), and polycyclic aromatic hydrocarbon (PAH) exposure in the endangered Bermuda petrel (Pterodroma cahow), and the relationship between female contaminant burden and breeding parameters. We found that petrels were exposed to a wide range of pollutants (33 out of 55 showed measurable levels) with PCBs dominating the blood contaminant profiles in both years. Only 9 compounds were detected in >50 % of the birds. Specifically, among OCPs, p, p'-DDE and hexaclorobenzene were the most frequently detected while fluorene and acenaphthene were the most common PAH. The concentrations of ∑5PCBs and ∑7POPs were higher in older birds. Furthermore, females with greater contaminant burdens laid eggs with a lower probability of hatching. However, female investment in egg production (size and volume) was unrelated to their blood contaminant load. Overall, this study highlights the presence of a wide range of contaminants in the petrel's food web, and it sheds light on the potential impact of chronic exposure to sub-lethal levels of PCBs on the breeding success of seabirds. We claim that toxicological testing should be a practice integrated in the management of seabirds, particularly of endangered species to monitor how past and present anthropogenic activities impact their conservation status.


Asunto(s)
Aves , Especies en Peligro de Extinción , Monitoreo del Ambiente , Éteres Difenilos Halogenados , Contaminantes Orgánicos Persistentes , Reproducción , Animales , Reproducción/efectos de los fármacos , Aves/fisiología , Éteres Difenilos Halogenados/sangre , Femenino , Bifenilos Policlorados/sangre , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Clorados/sangre , Contaminantes Químicos del Agua , Plaguicidas/sangre
12.
Eur J Oral Sci ; 132(3): e12988, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38664917

RESUMEN

Our study investigated the impact on male mouse fertility and reproduction of long-term (14 weeks) exposure to triethylene glycol dimethacrylate (TEGDMA), a co-monomer of resin-based compounds, at doses of 0.01, 0.1, 1, and 10 ppm. Test and control mice were then paired with sexually mature untreated female mice and their fertility evaluated. Females paired with males exposed to all TEGDMA doses exhibited a significant decline in pregnancy rates, and significant increases in the total embryonic resorption-to-implantation ratio, except for males exposed to 0.01 ppm TEGDMA. Males in the highest dose group (10 ppm) showed significant increases in seminal vesicle and preputial gland weights. They also had significantly higher serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) than the controls, and the 0.01 ppm dosage group for FSH levels. TEGDMA exposure resulted in notable histopathological alterations in the testis, with detachment of germ cells and shedding of germinal epithelium into the tubule lumen. These results strongly indicate that TEGDMA exposure has detrimental consequences on the reproductive abilities and functions in male mice through disruption of the standard hormonal regulation of the reproductive system, leading to changes in spermatogenesis and ultimately leading to decreased fertility.


Asunto(s)
Hormona Folículo Estimulante , Hormona Luteinizante , Polietilenglicoles , Ácidos Polimetacrílicos , Testículo , Animales , Masculino , Ratones , Femenino , Ácidos Polimetacrílicos/toxicidad , Hormona Folículo Estimulante/sangre , Hormona Luteinizante/sangre , Testículo/efectos de los fármacos , Testículo/patología , Embarazo , Fertilidad/efectos de los fármacos , Reproducción/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Vesículas Seminales/efectos de los fármacos , Índice de Embarazo , Implantación del Embrión/efectos de los fármacos , Relación Dosis-Respuesta a Droga
13.
Sci Total Environ ; 927: 172379, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614345

RESUMEN

Bisphenol S (BPS) is an alternative chemical to bisphenol A commonly used in food packaging materials. It raises concerns due to potential adverse effects on human health. However, limited evidence exists regarding reproductive toxicity from BPS exposure, and the mechanism of associated transgenerational toxicity remains unclear. In this study, pregnant SD rats were exposed to two different doses of BPS (0.05 or 20 mg/kg) from GD6 to PND21. The objective was to investigate reproductive and transmissible toxicity induced by BPS, explore endocrine effects, and uncover potential underlying mechanisms in rats. Perinatal exposure to BPS in the F0 generation significantly decreased the rate of body weight, ovarian organ coefficient, and growth and development of the F1 generation. Notably, these changes included abnormal increases in body weight and length, estrous cycle disruption, and embryonic dysplasia in F1. 4D-DIA proteomic and PRM analyses revealed that exposure to 20 mg/kg group significantly altered the expression of proteins, such as Lhcgr and Akr1c3, within the steroid biosynthetic pathway. This led to elevated levels of FSH and LH in the blood. The hypothalamic-pituitary-ovarian (HPO) axis, responsible for promoting fertility through the cyclic secretion of gonadotropins and steroid hormones, was affected. RT-qPCR and Western blot results demonstrated that the expression of GnRH in the hypothalamus was decreased, the GnRHR in the pituitary gland was decreased, and the expression of FSHß and LHß in the pituitary gland was increased. Overall, BPS exposure disrupts the HPO axis, hormone levels, and steroid biosynthesis in the ovaries, affecting offspring development and fertility. This study provides new insights into the potential effects of BPS exposure on the reproductive function of the body and its relevant mechanisms of action.


Asunto(s)
Disruptores Endocrinos , Fenoles , Ratas Sprague-Dawley , Reproducción , Sulfonas , Animales , Femenino , Fenoles/toxicidad , Ratas , Embarazo , Sulfonas/toxicidad , Reproducción/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Ovario/efectos de los fármacos
14.
J Hazard Mater ; 470: 134298, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626679

RESUMEN

4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 µg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.


Asunto(s)
Alcanfor , Alcanfor/análogos & derivados , Pez Cebra , Animales , Masculino , Femenino , Alcanfor/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Poliestirenos/toxicidad , Nanopartículas/toxicidad , Reproducción/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Compuestos de Bencidrilo/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo
15.
J Hazard Mater ; 470: 134165, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574660

RESUMEN

It has been reported that N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), a derivative of the tire antioxidant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), exhibits acute toxicity towards organisms. However, the possible reproductive toxicity of 6PPD-Q in mammals has rarely been reported. In this study, the effects of 6PPD-Q on the reproductive toxicity of C57Bl/6 male mice were assessed after exposure to 6PPD-Q for 40 days at 4 mg/kg body weight (bw). Exposure to 6PPD-Q not only led to a decrease in testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) outcomes, thereby indicating impaired male fertility resulting from 6PPD-Q exposure. Additionally, transcriptomic and metabolomic analyses revealed that 6PPD-Q elicited differential expression of genes and metabolites primarily enriched in spermatogenesis, apoptosis, arginine biosynthesis, and sphingolipid metabolism in the testes of mice. In conclusion, our study reveals the toxicity of 6PPD-Q on the reproductive capacity concerning baseline endocrine disorders, sperm quality, germ cell apoptosis, and the sphingolipid signaling pathway in mice. These findings contribute to an enhanced understanding of the health hazards posed by 6PPD-Q to mammals, thereby facilitating the development of more robust safety regulations governing the utilization and disposal of rubber products.


Asunto(s)
Ratones Endogámicos C57BL , Espermatozoides , Testosterona , Animales , Masculino , Espermatozoides/efectos de los fármacos , Testosterona/sangre , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Fenilendiaminas/toxicidad , Goma/toxicidad , Apoptosis/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Ratones , Reproducción/efectos de los fármacos , Análisis de Semen
16.
Sci Rep ; 14(1): 8294, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670985

RESUMEN

Rats are multiparous rodents that have been used extensively in research; however, the low reproductive performance of some rat strains hampers the broader use of rats as a biomedical model. In this study, the possibility of increasing the litter size after natural mating in rats through superovulation using an anti-inhibin monoclonal antibody (AIMA) was examined. In outbred Wistar rats, AIMA increased the number of ovulated oocytes by 1.3-fold. AIMA did not affect fertilization and subsequent embryonic development, resulting in a 1.4-fold increase in litter size and a high pregnancy rate (86%). In contrast, conventional superovulation by eCG/hCG administration decreased the pregnancy rate to 6-40% and did not increase the litter size. In inbred Brown Norway rats, AIMA increased the litter size by 1.2-fold, and the pregnancy rate increased more than twice (86% versus 38% in controls). AIMA also increased the litter size by 1.5-fold in inbred Tokai High Avoiders and Fischer 344 rats. AIMA increased the efficiency of offspring production by 1.5-, 2.7-, 1.4-, and 1.4-fold, respectively, in the four rat strains. Thus, AIMA may consistently improve the reproductive performance through natural mating in rats, which could promote the use of AIMA in biomedical research.


Asunto(s)
Anticuerpos Monoclonales , Inhibinas , Tamaño de la Camada , Superovulación , Animales , Femenino , Tamaño de la Camada/efectos de los fármacos , Embarazo , Ratas , Superovulación/efectos de los fármacos , Anticuerpos Monoclonales/farmacología , Índice de Embarazo , Ratas Wistar , Reproducción/efectos de los fármacos , Masculino , Ratas Endogámicas F344
17.
J Evid Based Integr Med ; 29: 2515690X241249534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38679583

RESUMEN

OBJECTIVE: Aqueous extract of unripe Musa paradisiaca fruit is commonly used for the treatment of ulcers in eastern Nigeria. This study aimed to assess the acute and subacute effects of an aqueous extract of unripe fruit on male and female fertility in rats. METHODS: Aqueous extracts obtained by maceration were analyzed for acute and subacute toxicity and for the presence of phytochemical constituents using standard procedures. The extract (100, 500, and 1000 mg/kg) was administered daily to rats of both sexes for 28 d. Blood samples collected on days 0 and 28 were assessed for follicle-stimulating hormone (FSH), luteinizing hormone (LH), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Testes and ovaries were harvested for histopathological analysis. Sperm were also collected to determine the sperm count and motility. RESULTS: Phytochemical screening revealed the presence of saponins, tannins, alkaloids, and resins. After an oral dose of up to 5000 mg/kg, there were no deaths in the acute toxicity test. The extract (500 mg/kg) significantly (P < .05) enhanced sperm count and motility relative to the untreated control; significantly (P < .05) reduced SOD, CAT, and glutathione levels, while significantly (P < .05) elevated LH, FSH, and MDA levels in male and female rats. Histological examination revealed significant structural damage to the ovaries. CONCLUSION: Unripe Musa paradisiaca fruit exhibited an adverse toxicological profile following prolonged administration and caused oxidative stress in rodents.


Asunto(s)
Hormona Folículo Estimulante , Hormona Luteinizante , Musa , Extractos Vegetales , Animales , Masculino , Femenino , Extractos Vegetales/farmacología , Ratas , Musa/química , Hormona Luteinizante/sangre , Hormona Folículo Estimulante/sangre , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Reproducción/efectos de los fármacos , Ovario/efectos de los fármacos , Nigeria , Catalasa/metabolismo , Testículo/efectos de los fármacos , Recuento de Espermatozoides , Frutas , Motilidad Espermática/efectos de los fármacos , Ratas Wistar
18.
Sci Total Environ ; 928: 172525, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631635

RESUMEN

Bumblebees play a vital role in both natural and agricultural environments, but there has been a noticeable decline in their populations. Pesticides, particularly neonicotinoids, are widely regarded as a substantial contributing factor to the decline in bumblebee populations, as evidenced by the detrimental impacts documented across many stages of their life cycle. Mating is vital for the population maintenance of bumblebees. Nevertheless, there is a scarcity of research conducted on the effects of pesticides on the mating process. In this study, we individually examined the impact of imidacloprid on the mating behavior of bumblebee males and queens. A competitive mating experiment was conducted to evaluate the effect on the competitive prowess of male individuals and the mate selection behavior of female individuals. The study revealed that the mating rate of bumblebees exposed to a concentration of 10 ppb of imidacloprid was 3 %. This finding demonstrated a statistically significant impact when compared to the control group, which exhibited a mating rate of 58 % in the normal mating experiment. Furthermore, in the competitive mating experiment, we found that the competitive mating success rate of treated males (1 %) was significantly lower than that of untreated males (35 %). Hence, it provides evidence that neonicotinoid imidacloprid negatively affects bumblebee mating success and cautions us to protect bumblebees from pesticide exposure to prevent a severe impact on their populations.


Asunto(s)
Insecticidas , Neonicotinoides , Nitrocompuestos , Conducta Sexual Animal , Animales , Neonicotinoides/toxicidad , Abejas/efectos de los fármacos , Abejas/fisiología , Nitrocompuestos/toxicidad , Masculino , Conducta Sexual Animal/efectos de los fármacos , Insecticidas/toxicidad , Femenino , Imidazoles/toxicidad , Reproducción/efectos de los fármacos
19.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38632976

RESUMEN

This experiment aimed to investigate the effects of dietary iron supplementation from different sources on the reproductive performance of sows and the growth performance of piglets. A total of 87 sows with similar farrowing time were blocked by body weight at day 85 of gestation, and assigned to one of three dietary treatments (n = 29 per treatment): basal diet, basal diet supplemented with 0.2% ferrous sulfate (FeSO4), and basal diet supplemented with 0.2% iron sucrose, respectively, with 30% iron in both FeSO4 and iron sucrose. Compared with the control (CON) group, iron sucrose supplementation reduced the rate of stillbirth and invalid of neonatal piglets (P < 0.05), and the number of mummified fetuses was 0. Moreover, it also improved the coat color of newborn piglets (P < 0.05). At the same time, the iron sucrose could also achieve 100% estrus rate of sows. Compared with the CON group, FeSO4 and iron sucrose supplementation increased the serum iron content of weaned piglets (P < 0.05). In addition, iron sucrose increased serum transferrin level of weaned piglets (P < 0.05) and the survival rate of piglets (P < 0.05). In general, both iron sucrose and FeSO4 could affect the blood iron status of weaned piglets, while iron sucrose also had a positive effect on the healthy development of newborn and weaned piglets, and was more effective than FeSO4 in improving the performance of sows and piglets.


Sows need more iron to meet the requirements for their and offspring's growth during pregnancy and lactation. Exogenous iron supplementation may improve the reproductive performance of sows and the growth performance of piglets, but different sources of iron have different effects. This study facilitates the understanding of the effects of iron sucrose and ferrous sulfate on the reproductive performance of sows and the growth performance of piglets.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Suplementos Dietéticos , Reproducción , Animales , Femenino , Alimentación Animal/análisis , Dieta/veterinaria , Porcinos/crecimiento & desarrollo , Porcinos/fisiología , Reproducción/efectos de los fármacos , Embarazo , Animales Recién Nacidos , Hierro/administración & dosificación , Hierro/farmacología , Compuestos Ferrosos/farmacología , Compuestos Ferrosos/administración & dosificación , Sacarato de Óxido Férrico/farmacología , Sacarato de Óxido Férrico/administración & dosificación , Hierro de la Dieta/administración & dosificación , Hierro de la Dieta/farmacología
20.
Ecotoxicol Environ Saf ; 276: 116300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583312

RESUMEN

Bisphenol AF (BPAF), an analogue of bisphenol A (BPA), is commonly found in manufacturing industries and known for its endocrine-disrupting properties. Despite potential similarities in adverse effects with BPA, limited toxicological data exist specifically for BPAF and its impact on male reproductive physiology. This mini-review aims to elucidate the influence of BPAF on the male reproductive system, focusing on estrogenic effects, effects on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, spermatogenesis, and transgenerational reproductive toxicity. Additionally, we outline the current insights into the potential mechanisms underlying BPAF-induced male reproductive disorders. BPAF exposure, either directly or maternally, has been associated with detrimental effects on male reproductive functions, including damage to the blood-testis barrier (BTB) structure, disruptions in steroidogenesis, testis dysfunction, decreased anogenital distance (AGD), and defects in sperm and semen quality. Mechanistically, altered gene expression in the HPG axis, deficits in the steroidogenesis pathway, activation of the aromatase pathway, cascade effects induced by reactive oxygen species (ROS), activation of ERK signaling, and immunological responses collectively contribute to the adverse effects of BPAF on the male reproductive system. Given the high prevalence of male reproductive issues and infertility, along with the widespread environmental distribution of bisphenols, this study provides valuable insights into the negative effects of BPAF. The findings underscore the importance of considering the safe use of this compound, urging further exploration and regulatory attention to decrease potential risks associated with BPAF exposure.


Asunto(s)
Compuestos de Bencidrilo , Disruptores Endocrinos , Fluorocarburos , Fenoles , Masculino , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Humanos , Animales , Salud Reproductiva , Reproducción/efectos de los fármacos , Genitales Masculinos/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Testículo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...