Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nat Neurosci ; 27(7): 1260-1273, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956165

RESUMEN

Direct neuronal reprogramming is a promising approach to regenerate neurons from local glial cells. However, mechanisms of epigenome remodeling and co-factors facilitating this process are unclear. In this study, we combined single-cell multiomics with genome-wide profiling of three-dimensional nuclear architecture and DNA methylation in mouse astrocyte-to-neuron reprogramming mediated by Neurogenin2 (Ngn2) and its phosphorylation-resistant form (PmutNgn2), respectively. We show that Ngn2 drives multilayered chromatin remodeling at dynamic enhancer-gene interaction sites. PmutNgn2 leads to higher reprogramming efficiency and enhances epigenetic remodeling associated with neuronal maturation. However, the differences in binding sites or downstream gene activation cannot fully explain this effect. Instead, we identified Yy1, a transcriptional co-factor recruited by direct interaction with Ngn2 to its target sites. Upon deletion of Yy1, activation of neuronal enhancers, genes and ultimately reprogramming are impaired without affecting Ngn2 binding. Thus, our work highlights the key role of interactors of proneural factors in direct neuronal reprogramming.


Asunto(s)
Astrocitos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Reprogramación Celular , Proteínas del Tejido Nervioso , Neuronas , Factor de Transcripción YY1 , Animales , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Astrocitos/metabolismo , Ratones , Reprogramación Celular/fisiología , Neuronas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Epigenoma , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Células Cultivadas
2.
Glia ; 72(10): 1840-1861, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38961612

RESUMEN

The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.


Asunto(s)
Ratones Transgénicos , Neoplasias Pancreáticas , Células de Schwann , Animales , Células de Schwann/metabolismo , Células de Schwann/patología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Ratones , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Reprogramación Celular/fisiología , Páncreas/patología , Páncreas/inervación , Páncreas/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/patología , Ratones Endogámicos C57BL
3.
J Physiol ; 602(16): 3871-3892, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032073

RESUMEN

A transformation is underway in precision and patient-specific medicine. Rapid progress has been enabled by multiple new technologies including induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Here, we delve into these advancements and their future promise, focusing on the efficiency of reprogramming techniques, the fidelity of differentiation into the cardiac lineage, the functional characterization of the resulting cardiac myocytes, and the many applications of in silico models to understand general and patient-specific mechanisms controlling excitation-contraction coupling in health and disease. Furthermore, we explore the current and potential applications of iPSC-CMs in both research and clinical settings, underscoring the far-reaching implications of this rapidly evolving field.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/citología , Humanos , Animales , Diferenciación Celular/fisiología , Reprogramación Celular/fisiología
4.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G284-G294, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953837

RESUMEN

Metabolic reprogramming is recognized as a hallmark of cancer, enabling cancer cells to acquire essential biomolecules for cell growth, often characterized by upregulated glycolysis and/or fatty acid synthesis-related genes. The transcription factor forkhead box M1 (FOXM1) has been implicated in various cancers, contributing significantly to their development, including colorectal cancer (CRC), a major global health concern. Despite FOXM1's established role in cancer, its specific involvement in the Warburg effect and fatty acid biosynthesis in CRC remains unclear. We analyzed The Cancer Genome Atlas (TCGA) Colonic Adenocarcinoma and Rectal Adenocarcinoma (COADREAD) datasets to derive the correlation of the expression levels between FOXM1 and multiple genes and the survival prognosis based on FOXM1 expression. Using two human CRC cell lines, HT29 and HCT116, we conducted RNAi or plasmid transfection procedures, followed by a series of assays, including RNA extraction, quantitative real-time polymerase chain reaction, Western blot analysis, cell metabolic assay, glucose uptake assay, Oil Red O staining, cell viability assay, and immunofluorescence analysis. Higher expression levels of FOXM1 correlated with a poorer survival prognosis, and the expression of FOXM1 was positively correlated with glycolysis-related genes SLC2A1 and LDHA, de novo lipogenesis-related genes ACACA and FASN, and MYC. FOXM1 appeared to modulate AKT/mammalian target of rapamycin (mTOR) signaling, the expression of c-Myc, proteins related to glycolysis and fatty acid biosynthesis, and glucose uptake, as well as extracellular acidification rate in HT29 and HCT116 cells. In summary, FOXM1 plays a regulatory role in glycolysis, fatty acid biosynthesis, and cellular energy consumption, thereby influencing CRC cell growth and patient prognosis.NEW & NOTEWORTHY Transcription factor forkhead box M1 (FOXM1) regulates glycolysis, fatty acid biosynthesis, and cellular energy consumption, which, together, controls cell growth and patient prognosis in colorectal cancer (CRC).


Asunto(s)
Neoplasias Colorrectales , Proteína Forkhead Box M1 , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células HT29 , Células HCT116 , Glucólisis , Regulación Neoplásica de la Expresión Génica , Efecto Warburg en Oncología , Transducción de Señal , Proliferación Celular , Reprogramación Celular/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reprogramación Metabólica
5.
Invest Ophthalmol Vis Sci ; 65(6): 41, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38935030

RESUMEN

Purpose: Retinal ganglion cells (RGCs) connect the retina to the brain. Proper development of the axons and dendrites of RGCs is the basis for these cells to function as projection neurons to deliver visual information to the brain. The purpose of this study was to investigate the function of Shtn1 (which encodes shootin1) in RGC neurite development. Methods: Immunofluorescence (IF) was used to characterize the expression pattern of marker genes. An in vitro direct somatic cell reprogramming system was used to generate RGC-like neurons (iRGCs), which was subsequently used to study the function of Shtn1. Short-hairpin RNAs (shRNAs) were used to knock down Shtn1, and the coding sequence (CDS) of Shtn1 was used to overexpress the gene. Lentiviruses were used to deliver shRNAs or CDSs into iRGCs. The patch clamp technique was used to measure the electrophysiological properties of the iRGCs. RNA sequencing (RNA-seq) was used to examine transcriptome expression. Results: Using IF, we demonstrated that shootin1 is distinctively expressed in RGCs during the period in which RGCs actively develop and adjust the connections of their neurites with upstream and downstream neurons. Using the iRGC system, we demonstrated that Shtn1 promotes the growth and complexity of neurites and thus the electrophysiological maturation, of iRGCs. RNA-seq analyses showed that Shtn1 may also regulate gene expression and neurogenesis in iRGCs. Conclusions: Shtn1 promotes RGC neurite development. These findings improve our understanding of the molecular machinery governing RGC neurite development and may help to optimize future RGC regeneration methods.


Asunto(s)
Proteínas del Tejido Nervioso , Neuritas , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/citología , Animales , Neuritas/fisiología , Neuritas/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Reprogramación Celular/fisiología , Células Cultivadas , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Neurogénesis/fisiología , Neurogénesis/genética
7.
Theriogenology ; 226: 120-129, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878464

RESUMEN

Since the first mouse induced pluripotent stem cells (iPSCs) was derived, the in vitro culture of domestic iPSCs functionally and molecularly comparable with mouse iPSCs has been a challenge. Here, we established dairy goat iPSCs (giPSCs) from goat ear fibroblast cells with mouse iPSCs morphology, the expression of pluripotent markers and differentiation ability in vitro delivered by piggyBac transposon with nine Dox-inducible exogenous reprogramming factors. These reprogramming factors were bOMSK (bovine OCT4, CMYC, SOX2, and KLF4), pNhL (porcine NANOG and human LIN28), hRL (human RARG and LRH1), and SV40 Large T. Notably, AF-giPSCs (induced in activin A and bFGF condition) were capable of differentiation in embryoid bodies in vitro and could contribute to interspecies chimerism in mouse E6.5 embryos in vitro, demonstrating that AF-giPSCs have the developmental capability to generate some embryonic cell lineages. Moreover, Wnt/ß-catenin signaling has an important role in driving goat induced trophoblast-like stem cells (giTLSCs) from Dox-independent giPSCs. This study will support further establishment of the stable giPSC lines without any integration of exogenous genes.


Asunto(s)
Diferenciación Celular , Cabras , Células Madre Pluripotentes Inducidas , Factor 4 Similar a Kruppel , Animales , Células Madre Pluripotentes Inducidas/citología , Trofoblastos/citología , Trofoblastos/fisiología , Ratones , Técnicas de Cultivo de Célula/veterinaria , Reprogramación Celular/fisiología
8.
Nat Neurosci ; 27(8): 1505-1521, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38907165

RESUMEN

Central nervous system (CNS) lesions become surrounded by neuroprotective borders of newly proliferated reactive astrocytes; however, fundamental features of these cells are poorly understood. Here we show that following spinal cord injury or stroke, 90% and 10% of border-forming astrocytes derive, respectively, from proliferating local astrocytes and oligodendrocyte progenitor cells in adult mice of both sexes. Temporal transcriptome analysis, single-nucleus RNA sequencing and immunohistochemistry show that after focal CNS injury, local mature astrocytes dedifferentiate, proliferate and become transcriptionally reprogrammed to permanently altered new states, with persisting downregulation of molecules associated with astrocyte-neuron interactions and upregulation of molecules associated with wound healing, microbial defense and interactions with stromal and immune cells. These wound repair astrocytes share morphologic and transcriptional features with perimeningeal limitans astrocytes and are the predominant source of neuroprotective borders that re-establish CNS integrity around lesions by separating neural parenchyma from stromal and immune cells as occurs throughout the healthy CNS.


Asunto(s)
Astrocitos , Traumatismos de la Médula Espinal , Accidente Cerebrovascular , Cicatrización de Heridas , Animales , Astrocitos/metabolismo , Astrocitos/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Ratones , Masculino , Cicatrización de Heridas/fisiología , Cicatrización de Heridas/genética , Femenino , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/genética , Ratones Endogámicos C57BL , Reprogramación Celular/fisiología , Células Precursoras de Oligodendrocitos/metabolismo , Proliferación Celular/fisiología
9.
J Neuroinflammation ; 21(1): 137, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802820

RESUMEN

Hyperglycemia has been shown to modulate the immune response of peripheral immune cells and organs, but the impact of hyperglycemia on neuroinflammation within the brain remains elusive. In the present study, we provide evidences that streptozotocin (STZ)-induced hyperglycemic condition in mice drives a phenotypic switch of brain astrocytes to a proinflammatory state, and increases brain vulnerability to mild peripheral inflammation. In particular, we found that hyperglycemia led to a significant increase in the astrocyte proliferation as determined by flow cytometric and immunohistochemical analyses of mouse brain. The increased astrocyte proliferation by hyperglycemia was reduced by Glut1 inhibitor BAY-876. Transcriptomic analysis of isolated astrocytes from Aldh1l1CreERT2;tdTomato mice revealed that peripheral STZ injection induced astrocyte reprogramming into proliferative, and proinflammatory phenotype. Additionally, STZ-induced hyperglycemic condition significantly enhanced the infiltration of circulating myeloid cells into the brain and the disruption of blood-brain barrier in response to mild lipopolysaccharide (LPS) administration. Systemic hyperglycemia did not alter the intensity and sensitivity of peripheral inflammation in mice to LPS challenge, but increased the inflammatory potential of brain microglia. In line with findings from mouse experiments, a high-glucose environment intensified the LPS-triggered production of proinflammatory molecules in primary astrocyte cultures. Furthermore, hyperglycemic mice exhibited a significant impairment in cognitive function after mild LPS administration compared to normoglycemic mice as determined by novel object recognition and Y-maze tasks. Taken together, these results demonstrate that hyperglycemia directly induces astrocyte reprogramming towards a proliferative and proinflammatory phenotype, which potentiates mild LPS-triggered inflammation within brain parenchymal regions.


Asunto(s)
Astrocitos , Encéfalo , Hiperglucemia , Lipopolisacáridos , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Animales , Hiperglucemia/inducido químicamente , Hiperglucemia/patología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Ratones , Lipopolisacáridos/toxicidad , Lipopolisacáridos/farmacología , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/inducido químicamente , Masculino , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/fisiología , Ratones Transgénicos , Células Cultivadas
10.
Exp Neurol ; 378: 114817, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763354

RESUMEN

Neuronal death is often observed in central nervous system injuries and neurodegenerative diseases. The mammalian central nervous system manifests limited neuronal regeneration capabilities, and traditional cell therapies are limited in their potential applications due to finite cell sources and immune rejection. Neuronal reprogramming has emerged as a novel technology, in which non-neuronal cells (e.g. glial cells) are transdifferentiated into mature neurons. This process results in relatively minimal immune rejection. The present review discuss the latest progress in this cutting-edge field, including starter cell selection, innovative technical strategies and methods of neuronal reprogramming for neurodegenerative diseases, as well as the potential problems and controversies. The further development of neuronal reprogramming technology may pave the way for novel therapeutic strategies in the treatment of neurodegenerative diseases.


Asunto(s)
Reprogramación Celular , Enfermedades Neurodegenerativas , Neuronas , Humanos , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/patología , Animales , Reprogramación Celular/fisiología
11.
Chin Med J (Engl) ; 137(11): 1351-1359, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38721807

RESUMEN

BACKGROUND: The ability to generate functional hepatocytes without relying on donor liver organs holds significant therapeutic promise in the fields of regenerative medicine and potential liver disease treatments. Clustered regularly interspaced short palindromic repeats (CRISPR) activator (CRISPRa) is a powerful tool that can conveniently and efficiently activate the expression of multiple endogenous genes simultaneously, providing a new strategy for cell fate determination. The main purpose of this study is to explore the feasibility of applying CRISPRa for hepatocyte reprogramming and its application in the treatment of mouse liver fibrosis. METHOD: The differentiation of mouse embryonic fibroblasts (MEFs) into functional induced hepatocyte-like cells (iHeps) was achieved by utilizing the CRISPRa synergistic activation mediator (SAM) system, which drove the combined expression of three endogenous transcription factors- Gata4, Foxa3 , and Hnf1a -or alternatively, the expression of two transcription factors, Gata4 and Foxa3 . In vivo , we injected adeno-associated virus serotype 6 (AAV6) carrying the CRISPRa SAM system into liver fibrotic Col1a1-CreER ; Cas9fl/fl mice, effectively activating the expression of endogenous Gata4 and Foxa3 in fibroblasts. The endogenous transcriptional activation of genes was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and RNA-seq, and the morphology and characteristics of the induced hepatocytes were observed through microscopy. The level of hepatocyte reprogramming in vivo is detected by immunofluorescence staining, while the improvement of liver fibrosis is evaluated through Sirius red staining, alpha-smooth muscle actin (α-SMA) immunofluorescence staining, and blood alanine aminotransferase (ALT) examination. RESULTS: Activation of only two factors, Gata4 and Foxa3 , via CRISPRa was sufficient to successfully induce the transformation of MEFs into iHeps. These iHeps could be expanded in vitro and displayed functional characteristics similar to those of mature hepatocytes, such as drug metabolism and glycogen storage. Additionally, AAV6-based delivery of the CRISPRa SAM system effectively induced the hepatic reprogramming from fibroblasts in mice with live fibrosis. After 8 weeks of induction, the reprogrammed hepatocytes comprised 0.87% of the total hepatocyte population in the mice, significantly reducing liver fibrosis. CONCLUSION: CRISPRa-induced hepatocyte reprogramming may be a promising strategy for generating functional hepatocytes and treating liver fibrosis caused by hepatic diseases.


Asunto(s)
Fibroblastos , Factor de Transcripción GATA4 , Factor Nuclear 3-gamma del Hepatocito , Hepatocitos , Animales , Ratones , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Factor Nuclear 3-gamma del Hepatocito/genética , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA4/genética , Fibroblastos/metabolismo , Hepatocitos/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Reprogramación Celular/fisiología , Reprogramación Celular/genética , Diferenciación Celular/fisiología , Diferenciación Celular/genética , Células Cultivadas
12.
Am J Physiol Endocrinol Metab ; 327(1): E13-E26, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717362

RESUMEN

Adipose tissue metabolism is actively involved in the regulation of energy balance. Adipose-derived stem cells (ASCs) play a critical role in maintaining adipose tissue function through their differentiation into mature adipocytes (Ad). This study aimed to investigate the impact of an obesogenic environment on the epigenetic landscape of ASCs and its impact on adipocyte differentiation and its metabolic consequences. Our results showed that ASCs from rats on a high-fat sucrose (HFS) diet displayed reduced adipogenic capacity, increased fat accumulation, and formed larger adipocytes than the control (C) group. Mitochondrial analysis revealed heightened activity in undifferentiated ASC-HFS but decreased respiratory and glycolytic capacity in mature adipocytes. The HFS diet significantly altered the H3K4me3 profile in ASCs on genes related to adipogenesis, mitochondrial function, inflammation, and immunomodulation. After differentiation, adipocytes retained H3K4me3 alterations, confirming the upregulation of genes associated with inflammatory and immunomodulatory pathways. RNA-seq confirmed the upregulation of genes associated with inflammatory and immunomodulatory pathways in adipocytes. Overall, the HFS diet induced significant epigenetic and transcriptomic changes in ASCs, impairing differentiation and causing dysfunctional adipocyte formation.NEW & NOTEWORTHY Obesity is associated with the development of chronic diseases like metabolic syndrome and type 2 diabetes, and adipose tissue plays a crucial role. In a rat model, our study reveals how an obesogenic environment primes adipocyte precursor cells, leading to epigenetic changes that affect inflammation, adipogenesis, and mitochondrial activity after differentiation. We highlight the importance of histone modifications, especially the trimethylation of histone H3 to lysine 4 (H3K4me3), showing its influence on adipocyte expression profiles.


Asunto(s)
Adipocitos , Adipogénesis , Tejido Adiposo , Dieta Alta en Grasa , Epigénesis Genética , Histonas , Transcriptoma , Animales , Ratas , Adipocitos/metabolismo , Dieta Alta en Grasa/efectos adversos , Histonas/metabolismo , Masculino , Adipogénesis/genética , Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Diferenciación Celular/genética , Células Madre/metabolismo , Obesidad/metabolismo , Obesidad/genética , Reprogramación Celular/fisiología , Células Cultivadas , Ratas Wistar , Ratas Sprague-Dawley
13.
Adv Sci (Weinh) ; 11(25): e2401859, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655836

RESUMEN

The clinical translation of induced pluripotent stem cells (iPSCs) holds great potential for personalized therapeutics. However, one of the main obstacles is that the current workflow to generate iPSCs is expensive, time-consuming, and requires standardization. A simplified and cost-effective microfluidic approach is presented for reprogramming fibroblasts into iPSCs and their subsequent differentiation into neural stem cells (NSCs). This method exploits microphysiological technology, providing a 100-fold reduction in reagents for reprogramming and a ninefold reduction in number of input cells. The iPSCs generated from microfluidic reprogramming of fibroblasts show upregulation of pluripotency markers and downregulation of fibroblast markers, on par with those reprogrammed in standard well-conditions. The NSCs differentiated in microfluidic chips show upregulation of neuroectodermal markers (ZIC1, PAX6, SOX1), highlighting their propensity for nervous system development. Cells obtained on conventional well plates and microfluidic chips are compared for reprogramming and neural induction by bulk RNA sequencing. Pathway enrichment analysis of NSCs from chip showed neural stem cell development enrichment and boosted commitment to neural stem cell lineage in initial phases of neural induction, attributed to a confined environment in a microfluidic chip. This method provides a cost-effective pipeline to reprogram and differentiate iPSCs for therapeutics compliant with current good manufacturing practices.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular/fisiología , Animales , Ratones , Reprogramación Celular/fisiología , Humanos , Células Cultivadas , Fibroblastos/citología
14.
Arq. bras. oftalmol ; 81(5): 376-383, Sept.-Oct. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-950491

RESUMEN

ABSTRACT Purposes: To develop an efficient and xeno-free standard eye-derived induced pluripotent stem cell reprogramming protocol for use during induced pluripotent stem cell-based cell therapies in treating retinal degenerative diseases and to compare the relative effectiveness of both animal- and non-animal-derived culture systems in the generation of induced pluripotent stem cells. Methods: Primary cultured human pterygium fibroblasts and human Tenon's capsule fibroblasts were induced to induced pluripotent stem cells using a non-in­tegrated virus under two xeno-free systems; as part of this study, a traditional non-xeno-free reprogramming system was also assessed. Induced pluripotent stem cell clones were selected and counted by live staining. Reprogramming efficiencies were evaluated between the fibroblasts and among different culture systems. In a series of experiments, such as PCR and immunofluorescence staining, the induced pluripotent stem cells were characterized. Results: Human pterygium fibroblast- and human Tenon's capsule fibroblast-derived induced pluripotent stem cells were successfully established using different reprogramming systems, under which they exhibited properties of induced pluripotent stem cells. Reprogramming efficiencies of induced pluripotent stem cells using the cell therapy system, the traditional system, and the E6/E8 system were 0.014%, 0.028%, and 0.001%, respectively, and those of human pterygium fibroblast- and human Tenon's capsule fibroblast-derived induced pluripotent stem cells-using the aforementioned systems-were 0.018% and 0.017%, respectively. Conclusions: Sendai virus facilitates induced pluripotent stem cell reprogramming of ocular fibroblasts-both human pterygium and human Tenon's capsule fibroblasts being safe and efficient for induced pluripotent stem cell reprogramming. Although the reprogramming efficiencies of ocular-derived induced pluripotent stem cells under xeno-free conditions were not superior to those observed using the traditional reprogramming system, the cell therapy system reprogramming system is a good option when induced pluripotent stem cells are to be induced under xeno-free conditions.


RESUMO Objetivos: Desenvolver um protocolo padrão, eficiente e xeno-livre, para a reprogramação de células-tronco pluripotentes induzidas, que possa ser usado durante as terapias de células-tronco pluripotentes induzidas para o tratamento de doenças degenerativas da retina, e comparar a eficácia relativa de sistemas de cultivo de origem animal e de origem não animal na geração de células-tronco pluripotentes induzidas. Métodos: Cultivos primários de fibroblastos de pterígio humano e de fibroblastos da cápsula de Tenon humanos foram induzidos a células-tronco pluripotentes induzidas usando um vírus não integrado sob dois sistemas xeno-livres; um sistema tradicional de reprogramação não xeno-livre também foi avaliado como parte deste estudo. Os clones de células-tronco pluripotentes induzidas foram selecionados e contados por coloração de células vivas. As eficiências de reprogramação foram avaliadas entre os diferentes fibroblastos e entre os diferentes sistemas de cultivo. Uma série de experimentos, como o PCR e a coloração por imunofluorescência, foram conduzidos para caracterizar as células-tronco pluripotentes induzidas. Resultados: Célu­las-tronco pluripotentes induzidas derivadas de fibroblastos de pterígio humano e fibroblastos da cápsula de Tenon humanos foram estabelecidas com sucesso sob diferentes sistemas de reprogramação e exibiram propriedades de células-tronco pluripotentes induzidas. As eficiências de reprogramação das células-tronco pluripotentes induzidas usando o sistema de terapia celular, o sistema tradicional e o sistema E6/E8 foram 0,014, 0,028% e 0,001%, respectivamente. Além disso, as efi­ciências de reprogramação de células-tronco pluripotentes induzidas derivadas de fibroblastos de pterígio humano e de fibroblastos da cápsula de Tenon humanos usando todos os sistemas acima foram de 0,018% e 0,017%, respectivamente. Conclusões: O vírus Sendai pode ser usado para facilitar a reprogramação de fibroblastos oculares pelas células-tronco pluripotentes induzidas. Tanto os fibroblastos de pterígio humano quanto os fibroblastos da cápsula de Tenon humanos são seguros e eficientes para a reprogramação de células-tronco pluripotentes induzidas. Embora as eficiências de reprogramação das células-tronco pluripotentes induzidas de origem ocular sob condições xeno-livres não tenham sido superiores às eficiências observadas para o sistema tradicional de reprogramação, o sistema de reprogramação sistema de terapia celular é uma boa opção para a indução de células-tronco pluripotentes induzidas sob condições xeno-livres.


Asunto(s)
Humanos , Pterigion/patología , Técnicas de Cultivo de Célula/métodos , Ojo/citología , Reprogramación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Fibroblastos/citología , Diferenciación Celular/fisiología , Transdiferenciación Celular
15.
Rev. clín. esp. (Ed. impr.) ; 217(1): 30-34, ene.-feb. 2017. ilus
Artículo en Español | IBECS | ID: ibc-159530

RESUMEN

Al cumplirse 10 años del descubrimiento de las células pluripotenciales inducidas se revisan los principales resultados en sus distintos campos de aplicación, los obstáculos con los que se ha encontrado su experimentación, así como las posibles aplicaciones en la práctica clínica. La eficacia de las células pluripotenciales inducidas en la experimentación clínica puede equipararse a la de las células troncales embrionarias humanas, pero, a diferencia de estas, no presentan la grave dificultad ética que conlleva la necesidad de destruir embriones humanos para su obtención. El hallazgo de estas células, que constituyó en su día un verdadero hito científico merecedor de un Premio Nobel de Medicina, está hoy rodeado de luces y sombras: grandes esperanzas en la medicina regenerativa frente a riesgos aún no bien controlados de reacciones imprevisibles, tanto en los procesos de desdiferenciación como en la posterior diferenciación hacia las estirpes celulares empleadas con fines terapéuticos o de experimentación (AU)


On the 10-year anniversary of the discovery of induced pluripotent stem cells, we review the main results from their various fields of application, the obstacles encountered during experimentation and the potential applications in clinical practice. The efficacy of induced pluripotent cells in clinical experimentation can be equated to that of human embryonic stem cells; however, unlike stem cells, induced pluripotent cells do not involve the severe ethical difficulties entailed by the need to destroy human embryos to obtain them. The finding of these cells, which was in its day a true scientific milestone worthy of a Nobel Prize in Medicine, is currently enveloped by light and shadow: high hopes for regenerative medicine versus the, as of yet, poorly controlled risks of unpredictable reactions, both in the processes of dedifferentiation and subsequent differentiation to the cell strains employed for therapeutic or experimentation goals (AU)


Asunto(s)
Humanos , Masculino , Femenino , Células Madre Pluripotentes Inducidas/fisiología , Células Madre/patología , Células Madre/fisiología , Medicina Regenerativa/historia , Medicina Regenerativa/métodos , Reprogramación Celular/fisiología , Medicina Regenerativa/organización & administración , Medicina Regenerativa/normas , Medicina Regenerativa/tendencias , Reprogramación Celular/genética , Técnicas de Reprogramación Celular/instrumentación , Técnicas de Reprogramación Celular/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA