Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.667
Filtrar
1.
Malar J ; 23(1): 138, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720269

RESUMEN

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS: Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT: The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION: The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Artemisininas/farmacología , Artemisininas/uso terapéutico , Mianmar , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Humanos , Estudios Transversales , Femenino , Masculino , Adolescente , Adulto , Administración Masiva de Medicamentos , Adulto Joven , Mutación , Niño , Preescolar , Persona de Mediana Edad , Quinolinas/farmacología , Quinolinas/uso terapéutico , Erradicación de la Enfermedad/estadística & datos numéricos , Piperazinas
2.
PLoS Med ; 21(5): e1004376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723040

RESUMEN

BACKGROUND: Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings. METHODS AND FINDINGS: We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common. CONCLUSIONS: These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.


Asunto(s)
Antimaláricos , Quimioprevención , Resistencia a Medicamentos , Malaria , Humanos , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Malaria/prevención & control , Malaria/transmisión , Malaria/epidemiología , Quimioprevención/métodos , Teorema de Bayes , Genotipo , Proyectos de Investigación
3.
Malar J ; 23(1): 144, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741101

RESUMEN

BACKGROUND: Monitoring therapeutic efficacy is important to ensure the efficacy of artemisinin-based combination therapy (ACT) for malaria. The current first-line treatment for uncomplicated malaria recommended by the National Malaria Control Program in Niger is artemether-lumefantrine (AL). In 2020, an in vivo study was carried out to evaluate clinical and parasitological responses to AL as well as the molecular resistance to the drug in three sentinel sites: Agadez, Tessaoua and Gaya, in Niger. METHODS: A multi-center, single-arm trial was conducted according to the 28-day World Health Organization (WHO) 2009 therapeutic efficacy study protocol. Children between 6 months and 15 years with confirmed uncomplicated Plasmodium falciparum infection and 1000-200,000 asexual parasites/µL of blood were enrolled and followed up for 28 days. Uncorrected and PCR-corrected efficacy results at day 28 were calculated, and molecular correction was performed by genotyping the msp1, msp2, and glurp genes. The pfk13, pfdhfr, pfdhps, pfcrt and pfmdr genes were analyzed by PCR and Sanger sequencing. The Kaplan-Meier curve assessed parasite clearance. RESULTS: A total of 255 patients were enrolled in the study. The adequate clinical and parasitological response after PCR correction was 98.9% (95% CI 96.4-101.0%), 92.2% (85.0-98.5%) and 97.1% (93.1-101.0%) in Gaya, Tessaoua and Agadez, respectively. No adverse events were observed. Ten mutations (SNP) were found, including 7 synonyms (K248K, G690G, E691E, E612E, C469C, G496G, P718P) and 3 non-synonyms (N594K, R255K, V714S). Two mutations emerged: N594K and V714S. The R255K mutation detected in Southeast Asia was also detected. The pfdhpsK540E and pfdhfrI164L mutations associated with high levels of resistance are absent. There is a reversal of chloroquine resistance. CONCLUSION: The study findings indicate that AL is effective and well tolerated for the treatment of uncomplicated malaria in three sites in Niger. The emergence of a pfk13 mutation requires additional testing such as the Ring Stage Assay and CRISPR/Cas9 to confirm the role of these emerging mutations. Trial registration NCT05070520, October 7, 2021.


Asunto(s)
Antimaláricos , Combinación Arteméter y Lumefantrina , Malaria Falciparum , Plasmodium falciparum , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Antimaláricos/uso terapéutico , Antimaláricos/efectos adversos , Preescolar , Humanos , Niger , Niño , Lactante , Adolescente , Masculino , Femenino , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Resistencia a Medicamentos/genética
4.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716192

RESUMEN

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Nigeria , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Resistencia a Medicamentos/genética , Artemisininas/farmacología , Artemisininas/uso terapéutico , Mutación , Proteínas Protozoarias/genética , Combinación Arteméter y Lumefantrina/uso terapéutico , Masculino , Proteínas de Microfilamentos/genética , Femenino , Combinación de Medicamentos , Repeticiones de Microsatélite/genética , Genotipo , Análisis de Secuencia de ADN , Recurrencia , Polimorfismo Genético , Adulto
5.
Parasitol Res ; 123(5): 209, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38740597

RESUMEN

Artemisinin (ART) combination therapy is the main treatment for malaria. Pfk13 mutations (or K13 mutations, Kelch 13) are associated with ART resistance. This study aims to conduct a systematic review and meta-analysis of the prevalence of K13 mutations with ART resistance in malaria-endemic countries. An electronic search of studies in 2018 and a manual search in 2020 were performed to identify relevant studies. The risk of bias was assessed using the National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies. Data analysis was performed using R 4.1.0. Heterogeneity was estimated using the statistic I2 and Cochran Q test. A total of 170 studies were included in our review. Of these, 55 studies investigated the prevalence of K13 mutations in Southeast Asia. The meta-analysis showed that Southeast Asia had the highest prevalence of K13 mutations, whereas Africa, South America, Oceania, and other Asian countries outside Southeast Asia had a low prevalence of K13 mutations. The C580Y mutation was the most common in Southeast Asia with 35.5% (95%CI: 25.4-46.4%), whereas the dominant mutation in Africa was K189T (22.8%, 95%CI: 7.6-43.2%). This study revealed the emergence of ART resistance associated with K13 mutations in Southeast Asia. The diversity of each type of K13 mutation in other regions was also reported.


Asunto(s)
Antimaláricos , Artemisininas , Polimorfismo Genético , Artemisininas/uso terapéutico , Humanos , Antimaláricos/uso terapéutico , Prevalencia , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Mutación , Proteínas Protozoarias/genética , Asia Sudoriental/epidemiología
6.
Ital J Pediatr ; 50(1): 85, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654395

RESUMEN

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) are monogenic in some cases, however, there are still no clear guidelines on genetic testing in the clinical practice of SRNS in children. METHODS: Three hundred thirty-two children were diagnosed with SRNS, and all children underwent genetic testing, including gene panels and/or whole-exome/genome sequencing (WES/WGS), during treatment. We analysed the relationship between clinical manifestation and genotype, and compared different genetic testing methods' detection rates and prices. RESULTS: In this study, 30.12% (100/332) of children diagnosed with SRNS had monogenic causes of the disease. With 33.7% (122/332) of children achieving complete remission, 88.5% (108/122) received steroids combined with tacrolimus (TAC). In detectability, WES increased by 8.69% (4/46) on gene panel testing, while WGS increased by 4.27% (5/117) on WES, and WES was approximately 1/7 of the price of WGS for every further 1% increase in pathogenicity. CONCLUSIONS: We verified that steroids combined with TAC were the most effective option in paediatric SRNS. In detection efficiency, we found that WGS was the highest, followed by WES. The panel was the lowest, but the most cost-effective method when considering the economic-benefit ratio, and thus it should be recommended first in SRNS.


Asunto(s)
Pruebas Genéticas , Síndrome Nefrótico , Humanos , Síndrome Nefrótico/genética , Síndrome Nefrótico/tratamiento farmacológico , Niño , Pruebas Genéticas/métodos , Masculino , Femenino , Preescolar , Lactante , Resistencia a Medicamentos/genética , Adolescente , Tacrolimus/uso terapéutico , Estudios Retrospectivos , Secuenciación del Exoma
7.
PLoS Comput Biol ; 20(4): e1012017, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626207

RESUMEN

Current malaria elimination targets must withstand a colossal challenge-resistance to the current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resistance significantly expands to Africa or India, cases and malaria-related deaths are set to increase substantially. Spatial information on the changing levels of artemisinin resistance in Southeast Asia is therefore critical for health organisations to prioritise malaria control measures, but available data on artemisinin resistance are sparse. We use a comprehensive database from the WorldWide Antimalarial Resistance Network on the prevalence of non-synonymous mutations in the Kelch 13 (K13) gene, which are known to be associated with artemisinin resistance, and a Bayesian geostatistical model to produce spatio-temporal predictions of artemisinin resistance. Our maps of estimated prevalence show an expansion of the K13 mutation across the Greater Mekong Subregion from 2000 to 2022. Moreover, the period between 2010 and 2015 demonstrated the most spatial change across the region. Our model and maps provide important insights into the spatial and temporal trends of artemisinin resistance in a way that is not possible using data alone, thereby enabling improved spatial decision support systems on an unprecedented fine-scale spatial resolution. By predicting for the first time spatio-temporal patterns and extents of artemisinin resistance at the subcontinent level, this study provides critical information for supporting malaria elimination goals in Southeast Asia.


Asunto(s)
Antimaláricos , Artemisininas , Teorema de Bayes , Resistencia a Medicamentos , Artemisininas/farmacología , Asia Sudoriental/epidemiología , Resistencia a Medicamentos/genética , Antimaláricos/farmacología , Humanos , Análisis Espacio-Temporal , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Mutación , Malaria/tratamiento farmacológico , Malaria/epidemiología , Biología Computacional , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología
8.
BMC Med Genomics ; 17(1): 109, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671468

RESUMEN

OBJECTIVE: To study the distribution characteristics of CYP2C19 polymorphisms in patients suffering from stroke in Han Chinese patients. METHOD: PCR and DNA microarray chip technology were used to detect the CYP2C19 genotype of 549 patients with stroke, and the genotype, allele frequency and metabolic type of patients with different sexes, ages and types of infarctions and the independent risk factors for clopidogrel resistance were analyzed. RESULTS: Six genotypes were detected in these 549 patients. A total of 233 (42.44%) patients had the heterozygous allele *1/*2, which was the most prevalent, followed by the homozygous wild-type allele *1/*1 (191, 34.79%). A total of 30 (5.46%) patients possessed the heterozygous allele *1/*3, and 65 (11.84%) patients had the homozygous mutant allele *2/*2. Twenty-nine (5.28%) patients had the compound heterozygous mutant allele *2/*3, and only 1 patient had the homozygous mutant allele *3/*3. The distribution of genotypes, alleles, and metabolic types did not change significantly (P > 0.05) by sex, age, or type of stroke. In addition, no independent risk factors for clopidogrel resistance were found in this analysis. CONCLUSION: The distribution of CYP2C19 genotypes, allele frequencies, and metabolic types in patients with stroke in Han Chinese patients were not correlated with sex, age, or infarction type. The possibilities of hyperglycemia, hypercholesterolemia, hypertriglyceridemia, hypo-HDL-cholesterolemia, hyper-LDL-cholesterolemia and high blood pressure were not statistically associated with CYP2C19 genotypes. CYP2C19 gene polymorphism detection is recommended for patients who are available, and during treatment, the CYP2C19 genotype can be used to guide personalized precise medication use in patients with stroke.


Asunto(s)
Citocromo P-450 CYP2C19 , Frecuencia de los Genes , Accidente Cerebrovascular , Humanos , Citocromo P-450 CYP2C19/genética , Masculino , Femenino , Accidente Cerebrovascular/genética , Persona de Mediana Edad , Anciano , Clopidogrel/uso terapéutico , Genotipo , Adulto , Alelos , Resistencia a Medicamentos/genética , Factores de Riesgo , Polimorfismo Genético
9.
Am J Trop Med Hyg ; 110(5): 910-920, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574550

RESUMEN

Surveillance for genetic markers of resistance can provide valuable information on the likely efficacy of antimalarials but needs to be targeted to ensure optimal use of resources. We conducted a systematic search and review of publications in seven databases to compile resistance marker data from studies in India. The sample collection from the studies identified from this search was conducted between 1994 and 2020, and these studies were published between 1994 and 2022. In all, Plasmodium falciparum Kelch13 (PfK13), P. falciparum dihydropteroate synthase, and P. falciparum dihydrofolate reductase (PfDHPS) genotype data from 2,953, 4,148, and 4,222 blood samples from patients with laboratory-confirmed malaria, respectively, were extracted from these publications and uploaded onto the WorldWide Antimalarial Resistance Network molecular surveyors. These data were fed into hierarchical geostatistical models to produce maps with a predicted prevalence of the PfK13 and PfDHPS markers, and of the associated uncertainty. Zones with a predicted PfDHPS 540E prevalence of >15% were identified in central, eastern, and northeastern India. The predicted prevalence of PfK13 mutants was nonzero at only a few locations, but were within or adjacent to the zones with >15% prevalence of PfDHPS 540E. There may be a greater probability of artesunate-sulfadoxine-pyrimethamine failures in these regions, but these predictions need confirmation. This work can be applied in India and elsewhere to help identify the treatments most likely to be effective for malaria elimination.


Asunto(s)
Antimaláricos , Artemisininas , Combinación de Medicamentos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Pirimetamina , Sulfadoxina , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Pirimetamina/uso terapéutico , Pirimetamina/farmacología , Sulfadoxina/uso terapéutico , Sulfadoxina/farmacología , India/epidemiología , Resistencia a Medicamentos/genética , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Artemisininas/uso terapéutico , Artemisininas/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Marcadores Genéticos , Dihidropteroato Sintasa/genética , Proteínas Protozoarias/genética
10.
J Antimicrob Chemother ; 79(5): 987-996, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38502783

RESUMEN

BACKGROUND: The emergence of drug-resistant clones of Plasmodium falciparum is a major public health concern, and the ability to detect and track the spread of these clones is crucial for effective malaria control and treatment. However, in endemic settings, malaria infected people often carry multiple P. falciparum clones simultaneously making it likely to miss drug-resistant clones using traditional molecular typing methods. OBJECTIVES: Our goal was to develop a bioinformatics pipeline for compositional profiling in multiclonal P. falciparum samples, sequenced using the Oxford Nanopore Technologies MinION platform. METHODS: We developed the 'Finding P. falciparum haplotypes with resistance mutations in polyclonal infections' (PHARE) pipeline using existing bioinformatics tools and custom scripts written in python. PHARE was validated on three control datasets containing P. falciparum DNA of four laboratory strains at varying mixing ratios. Additionally, the pipeline was tested on clinical samples from children admitted to a paediatric hospital in the Central African Republic. RESULTS: The PHARE pipeline achieved high recall and accuracy rates in all control datasets. The pipeline can be used on any gene and was tested with amplicons of the P. falciparum drug resistance marker genes pfdhps, pfdhfr and pfK13. CONCLUSIONS: The PHARE pipeline helps to provide a more complete picture of drug resistance in the circulating P. falciparum population and can help to guide treatment recommendations. PHARE is freely available under the GNU Lesser General Public License v.3.0 on GitHub: https://github.com/Fippu/PHARE.


Asunto(s)
Biología Computacional , Resistencia a Medicamentos , Malaria Falciparum , Secuenciación de Nanoporos , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Humanos , Biología Computacional/métodos , Secuenciación de Nanoporos/métodos , Malaria Falciparum/parasitología , Resistencia a Medicamentos/genética , Antimaláricos/farmacología , Mutación
11.
ACS Sens ; 9(3): 1458-1464, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38446423

RESUMEN

The evolution of drug resistance to many antimalarial drugs in the lethal strain of malaria (Plasmodium falciparum) has been a great concern over the past 50 years. Among these drugs, artemisinin has become less effective for treating malaria. Indeed, several P. falciparum variants have become resistant to this drug, as elucidated by specific mutations in the pfK13 gene. This study presents the development of a diagnostic kit for the detection of a common point mutation in the pfK13 gene of P. falciparum, namely, the C580Y point mutation. FIT-PNAs (forced-intercalation peptide nucleic acid) are DNA mimics that serve as RNA sensors that fluoresce upon hybridization to their complementary RNA. Herein, FIT-PNAs were designed to sense the C580Y single nucleotide polymorphism (SNP) and were conjugated to biotin in order to bind these molecules to streptavidin-coated plates. Initial studies with synthetic RNA were conducted to optimize the sensing system. In addition, cyclopentane-modified PNA monomers (cpPNAs) were introduced to improve FIT-PNA sensing. Lastly, total RNA was isolated from red blood cells infected with P. falciparum (WT strain - NF54-WT or mutant strain - NF54-C580Y). Streptavidin plates loaded with either FIT-PNA or cpFIT-PNA were incubated with the total RNA. A significant difference in fluorescence for mutant vs WT total RNA was found only for the cpFIT-PNA probe. In summary, this study paves the way for a simple diagnostic kit for monitoring artemisinin drug resistance that may be easily adapted to malaria endemic regions.


Asunto(s)
Artemisininas , Malaria Falciparum , Ácidos Nucleicos de Péptidos , Humanos , Plasmodium falciparum/genética , Estreptavidina , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/farmacología , Artemisininas/farmacología , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Resistencia a Medicamentos/genética , ARN
13.
Acta Trop ; 254: 107190, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508372

RESUMEN

Pentavalent antimonials are the mainstay treatment against different clinical forms of leishmaniasis. The emergence of resistant isolates in endemic areas has led to treatment failure. Unraveling the underlying resistance mechanism would assist in improving the treatment strategies against resistant isolates. This study aimed to investigate the RNA expression level of glutathione synthetase (GS), Spermidine synthetase (SpS), trypanothione synthetase (TryS) genes involved in trypanothione synthesis, and thiol-dependent reductase (TDR) implicated in drug reduction, in antimony-sensitive and -resistant Leishmania tropica isolates. We investigated 11 antimony-resistant and 11 antimony-sensitive L. tropica clinical isolates from ACL patients. Drug sensitivity of amastigotes was determined in mouse macrophage cell line J774A.1. The RNA expression level in the promastigote forms was analyzed by quantitative real-time PCR. The results revealed a significant increase in the average expression of GS, SpS, and TrpS genes by 2.19, 1.56, and 2.33-fold in resistant isolates compared to sensitive ones. The average expression of TDR was 1.24-fold higher in resistant isolates, which was insignificant. The highest correlation coefficient between inhibitory concentration (IC50) values and gene expression belonged to the TryS, GS, SpS, and TDR genes. Moreover, the intracellular thiol content was increased 2.17-fold in resistant isolates compared to sensitive ones and positively correlated with IC50 values. Our findings suggest that overexpression of trypanothione biosynthesis genes and increased thiol content might play a key role in the antimony resistance of L. tropica clinical isolates. In addition, the diversity of gene expression in the trypanothione system and thiol content among L. tropica clinical isolates highlighted the phenotypic heterogeneity of antimony resistance among the parasite population.


Asunto(s)
Antimonio , Antiprotozoarios , Resistencia a Medicamentos , Glutatión , Glutatión/análogos & derivados , Leishmania tropica , Espermidina/análogos & derivados , Leishmania tropica/genética , Leishmania tropica/efectos de los fármacos , Resistencia a Medicamentos/genética , Animales , Antimonio/farmacología , Humanos , Antiprotozoarios/farmacología , Ratones , Glutatión/metabolismo , Línea Celular , Macrófagos/parasitología , Concentración 50 Inhibidora , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/tratamiento farmacológico , Femenino , Adulto , Pruebas de Sensibilidad Parasitaria , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Acta Parasitol ; 69(1): 910-921, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478177

RESUMEN

INTRODUCTION: Malaria still remains the most frequent parasitic disease on the world with, in 2022, 249 million cases and 608,000 deaths worldwide. Malaria control is compromised by the spread of the parasite's resistance to available antimalarials. The objective of our study is to characterize the Plasmodium falciparum resistance genes to common antimalarial drugs in semi-urban areas of Burkina Faso. MATERIALS AND METHODS: This is a prospective cross-sectional study whose collection took place from June to October 2021 and from June to October 2022 in five health facilities in Burkina Faso. The molecular analysis based on PCR-RFLP took place from January to June 2023 at Centre National de Recherche et de Formation (CNRFP) to determine resistance genes such as Pfcrt, Pfmdr1, Pfdhps, and Pfdhfr. RESULTS: A total of 150 samples were analyzed giving a prevalence of 46.67, 1.33, 0.67, 20, 82, and 4.67%, for Pfcrt 76 T, Pfmdr1 86Y, Pfdhps 437G, Pfdhfr 51I, Pfdhfr 59R, and Pfdhfr 108N mutations, respectively. There are no mutations observed Pfdhps 540E and Pfdhfr 164L positions. However, mutation on Pfdhfr 59R position was the most common. In addition, triple mutation (Pfdhps 437G + Pfdhfr 59R + Pfdhfr 108N) was found with a low frequency which is 0.67%. CONCLUSION: Surveillance of Plasmodium falciparum resistance markers to antimalarial drugs, remains one of the priorities in the context of the control or malaria elimination.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Burkina Faso/epidemiología , Antimaláricos/farmacología , Estudios Transversales , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Humanos , Proteínas Protozoarias/genética , Estudios Prospectivos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Proteínas de Transporte de Membrana/genética , Prevalencia
15.
Poult Sci ; 103(5): 103612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492248

RESUMEN

Dermanyssus gallinae is a major hematophagous ectoparasite in layer hens. Although the acaricide ß-cypermethrin has been used to control mites worldwide, D. gallinae has developed resistance to this compound. Carboxylesterases (CarEs) are important detoxification enzymes that confer resistance to ß-cypermethrin in arthropods. However, CarEs associated with ß-cypermethrin resistance in D. gallinae have not yet been functionally characterized. Here, we isolated a CarE gene (Deg-CarE) from D. gallinae and assayed its activity. The results revealed significantly higher expression of Deg-CarE in the ß-cypermethrin-resistant strain (RS) than in the susceptible strain (SS) toward α-naphthyl acetate (α-NA) and ß-naphthyl acetate (ß-NA). These findings suggest that enhanced esterase activities might have contributed to ß-cypermethrin resistance in D. gallinae. Quantitative real-time PCR analysis revealed that Deg-CarE expression levels were significantly higher in adults than in other life stages. Although Deg-CarE was upregulated in the RS, significant differences in gene copy numbers were not observed. Additionally, Deg-CarE expression was significantly induced by ß-cypermethrin in both the SS and RS. Moreover, silencing Deg-CarE via RNA interference decreased the enzyme activity and increased the susceptibility of the RS to ß-cypermethrin, confirming that Deg-CarE is crucial for ß-cypermethrin detoxification. Finally, recombinant Deg-CarE (rDeg-CarE) expressed in Escherichia coli displayed high enzymatic activity toward α/ß-NA. However, metabolic analysis indicated that rDeg-CarE did not directly metabolize ß-cypermethrin. The collective findings indicate that D. gallinae resistance to ß-cypermethrin is associated with elevated CarEs protein activity and increased Deg-CarE expression levels. These findings provide insights into the metabolic resistance of D. gallinae and offer scientific guidance for the management and control of D. gallinae.


Asunto(s)
Ácaros , Piretrinas , Animales , Piretrinas/farmacología , Ácaros/efectos de los fármacos , Ácaros/fisiología , Ácaros/genética , Acaricidas/farmacología , Carboxilesterasa/genética , Carboxilesterasa/metabolismo , Resistencia a Medicamentos/genética , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Femenino , Resistencia a los Insecticidas/genética
16.
Acta Parasitol ; 69(1): 1073-1077, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38499920

RESUMEN

PURPOSE: Investigating the genetic variation in thioredoxin reductase (TrxR) and nitroreductase (NR) genes in both treatment-resistant and -sensitive Giardia duodenalis isolates can provide valuable information in identifying potential markers of resistance to metronidazole. The rapid increase in metronidazole treatment failures suggests the presence of genetic resistance mechanisms. By analyzing these genes, researchers can gain insights into the efficacy of metronidazole against G. duodenalis and potentially develop alternative treatment strategies. In this regard, four G. duodenalis isolates (two clinically sensitive and two clinically resistant to metronidazole) were collected from various hospitals of Shiraz, southwestern Iran. METHODS: Parasitological methods including sucrose flotation and microscopy were employed for the primary confirmation of G. duodenalis cysts in stool samples. Microscopy-positive samples were approved by SSU-PCR amplification of the parasite DNA. All four positive G. duodenalis specimens at SSU-PCR were afterward analyzed utilizing designed primers based on important metronidazole metabolism genes including TrxR, NR1, and NR2. RESULTS: Unlike TrxR gene, the results of NR1 and NR2 genes showed that there are non-synonymous variations between sequences of treatment-sensitive and -resistant samples compared to reference sequences. Furthermore, the outcomes of molecular docking revealed that there is an interaction between the protein sequence and spatial shape of treatment-resistant samples and metronidazole in the position of serine amino acid based on the NR1 gene. CONCLUSION: This issue can be one of the possible factors involved in the resistance of Giardia parasites to metronidazole. To reach more accurate results, a large sample size along with simulation and advanced molecular dynamics investigations are needed.


Asunto(s)
Antiprotozoarios , Resistencia a Medicamentos , Variación Genética , Giardia lamblia , Giardiasis , Metronidazol , Nitrorreductasas , Reacción en Cadena de la Polimerasa , Metronidazol/farmacología , Giardia lamblia/genética , Giardia lamblia/efectos de los fármacos , Giardiasis/parasitología , Giardiasis/tratamiento farmacológico , Humanos , Resistencia a Medicamentos/genética , Antiprotozoarios/farmacología , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Irán , Heces/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Simulación del Acoplamiento Molecular , ADN Protozoario/genética
17.
Malar J ; 23(1): 71, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461239

RESUMEN

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Asunto(s)
Antimaláricos , Artemisininas , Carubicina/análogos & derivados , Malaria Falciparum , Humanos , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Tanzanía , Artemisininas/farmacología , Artemisininas/uso terapéutico , Arteméter/uso terapéutico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/epidemiología , Biomarcadores , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
18.
BMC Genomics ; 25(1): 269, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468205

RESUMEN

BACKGROUND: Polymorphisms of Plasmodium falciparum chloroquine resistance transporter (pfcrt), Plasmodium falciparum multi-drug resistance 1 (pfmdr1) and Plasmodium falciparum kelch 13-propeller (pfk13) genes are accepted as valid molecular markers of quinoline antimalarials and artemisinins. This study investigated the distribution patterns of these genes in P. falciparum isolates from the areas along the Thai-Myanmar border during the two different periods of antimalarial usage in Thailand. RESULTS: Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) were used to detect pfcrt mutations at codons 76, 220, 271, 326, 356, and 371 as well as pfmdr1 mutation at codon 86. The prevalence of pfcrt mutations was markedly high (96.4-99.7%) in samples collected during both periods. The proportions of mutant genotypes (number of mutant/total isolate) at codons 76, 220, 271, 326, 356 and 371 in the isolates collected during 1993-1998 (period 1) compared with 2002-2008 (period 2) were 97.9% (137/140) vs. 97.1% (401/413), 97.9% (140/143) vs. 98.8% (171/173), 97.2% (139/143) vs. 97.1% (333/343), 98.6% (140/142) vs. 99.7% (385/386), 96.4% (134/139) vs. 98.2% (378/385) and 97.8% (136/139) vs. 98.9% (375/379), respectively. Most isolates carried pfmdr1 wild-type at codon 86, with a significant difference in proportions genotypes (number of wild type/total sample) in samples collected during period 1 [92.9% (130/140)] compared with period 2 [96.9% (379/391)]. Investigation of pfmdr1 copy number was performed by real-time PCR. The proportions of isolates carried 1, 2, 3 and 4 or more than 4 copies of pfmdr1 (number of isolates carried correspondent copy number/total isolate) were significantly different between the two sample collecting periods (65.7% (90/137) vs. 87.8% (390/444), 18.2% (25/137) vs. 6.3%(28/444), 5.1% (7/137) vs. 1.4% (6/444) and 11.0% (15/137) vs. 4.5% (20/444), for period 1 vs. period 2, respectively). No pfk13 mutation was detected by nested PCR and nucleotide sequencing in all samples with successful analysis (n = 68). CONCLUSIONS: The persistence of pfcrt mutations and pfmdr1 wild-types at codon 86, along with gene amplification in P. falciparum, contributes to the continued resistance of chloroquine and mefloquine in P. falciparum isolates in the study area. Regular surveillance of antimalarial drug resistance in P. falciparum, incorporating relevant molecular markers and treatment efficacy assessments, should be conducted.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Tailandia , Mianmar , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Resistencia a Medicamentos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Biomarcadores , Proteínas Protozoarias/genética , Codón
19.
Int J Parasitol Drugs Drug Resist ; 24: 100532, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520842

RESUMEN

Artemether-lumefantrine (AL) is the most widely used antimalarial drug for treating uncomplicated falciparum malaria. This study evaluated whether the K65Q mutation in the Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) gene was associated with alternated susceptibility to lumefantrine using clinical parasite samples from Ghana and the China-Myanmar border area. Parasite isolates from the China-Myanmar border had significantly higher IC50 values to lumefantrine than parasites from Ghana. In addition, the K65 allele was significantly more prevalent in the Ghanaian parasites (34.5%) than in the China-Myanmar border samples (6.8%). However, no difference was observed in the lumefantrine IC50 value between the Pfnfs1 reference K65 allele and the non reference 65Q allele in parasites from the two regions. These data suggest that the Pfnfs1 K65Q mutation may not be a reliable marker for reduced susceptibility to lumefantrine.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Lumefantrina/farmacología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Combinación Arteméter y Lumefantrina/uso terapéutico , Ghana , Artemisininas/farmacología , Artemisininas/uso terapéutico , Arteméter/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Mutación , Etanolaminas/farmacología , Etanolaminas/uso terapéutico , Resistencia a Medicamentos/genética
20.
Exp Appl Acarol ; 92(4): 809-833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38448756

RESUMEN

To study the acaricide resistance status and possible mechanisms of action in conferring resistance to commonly used acaricides (deltamethrin and coumaphos), Hyalomma anatolicum ticks were collected from 6 dairy farms of Hisar and Charkhi Dadri districts of Haryana. By using standard larval packet test, H. anatolicum tick larvae of Charkhi Dadri isolates were found to be susceptible (100% mortality) to both the acaricides. Level-I resistance against coumaphos was recorded from four isolates, whereas, level-II was observed in only one isolate, collected from Hisar. One isolates (Kaimri) from Hisar also showed level-I resistance against deltamethrin. Biochemically, the ticks having higher values of resistance factor (RF) against coumaphos were found to possess increased enzymatic activity of α-esterase, ß-esterase, glutathione-S-transferase (GST) and mono-oxygenase enzymes, whereas, the monoamine oxidase did not show any constant trend. However, the RF showed a statistical significant correlation with GST only. Native PAGE analysis of H. anatolicum ticks revealed the presence of nine types of esterases (EST-1 h to EST-9 h) by using napthyl acetate as substrate. In the inhibitory assay, esterases were found to be inhibited by PMSF, indicating the presence of serine residue at catalytic triad. The partial cds of carboxylesterase and domain II of sodium channel genes were sequenced to determine any proposed mutations in resistant isolates of H. anatolicum ticks, however, no mutations were observed in either gene, indicating that increased expression of detoxification enzymes as a possible mechanism for resistance development, in the current study.


Asunto(s)
Acaricidas , Cumafos , Ixodidae , Nitrilos , Piretrinas , Animales , Piretrinas/farmacología , Nitrilos/farmacología , Acaricidas/farmacología , Ixodidae/efectos de los fármacos , Ixodidae/genética , Ixodidae/fisiología , Cumafos/farmacología , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , India , Resistencia a Medicamentos/genética , Resistencia a los Insecticidas/genética , Femenino , Esterasas/metabolismo , Esterasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...