Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Pharm Res ; 41(10): 1009-1018, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30117083

RESUMEN

Abnormal accumulation of the free-form all-trans-retinal (atRAL), a major intermediate of human visual cycle, is considered to be a key cause of retinal pigment epithelial (RPE) dysfunction in the pathogenesis of retinal degenerative diseases such as age-related macular degeneration (AMD). Paeoniflorin (PF), a monoterpene glucoside isolated from Paeonia lactiflora Pall., has been used in clinical treatment of retinal degenerative diseases in China for several years; however, the underlying mechanism remains unclear. The aim of this study is to investigate the protective effect of PF against atRAL toxicity in human ARPE-19 cells and its molecular mechanism. The results of our study showed that the pre-treatment of PF dose-dependently attenuated atRAL-induced cell injury by the reduction of Nox1/ROS-associated oxidative stress, mitochondrial dysfunction and GRP78-PERK-eIF2α-ATF4-CHOP-regulated endoplasmic reticulum (ER) stress in ARPE-19 cells. Additionally, our data showed that PF mainly exerted its activity via triggering calcium-calmodulin dependent protein kinase II (CaMKII)-mediated activation of AMP-activated protein kinase (AMPK). AMPK inhibition significantly reversed the protective effect of PF against atRAL toxicity in ARPE-19 cells. Overall, our findings provided the novel mechanism of PF protecting human RPE cells, which may prevent the progression of retinal degenerative diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glucósidos/farmacología , Mitocondrias/efectos de los fármacos , Monoterpenos/farmacología , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/citología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Activación Enzimática/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Retinaldehído/análogos & derivados , Retinaldehído/antagonistas & inhibidores , Retinaldehído/farmacología
2.
Nat Rev Neurosci ; 7(11): 860-72, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17033682

RESUMEN

The central retina mediates high acuity vision, and its progressive dysfunction due to macular degeneration is the leading cause of visual disability among adults in industrialized societies. Here, we summarize recent progress in understanding the pathophysiology of macular degeneration and the implications of this new knowledge for treatment and prevention. The past decade has witnessed remarkable advances in this field, including the development of new, non-invasive retinal imaging technologies, the development of animal models for macular disease, and the isolation of many of the genes responsible for both early- and late-onset macular diseases. These advances have set the stage for the development of effective mechanism-based therapies.


Asunto(s)
Degeneración Macular/fisiopatología , Retina/fisiopatología , Arteria Retiniana/fisiopatología , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Predisposición Genética a la Enfermedad/genética , Humanos , Terapia por Láser , Degeneración Macular/genética , Degeneración Macular/terapia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Epitelio Pigmentado Ocular/metabolismo , Epitelio Pigmentado Ocular/patología , Epitelio Pigmentado Ocular/fisiopatología , Retina/metabolismo , Retina/patología , Arteria Retiniana/patología , Retinaldehído/antagonistas & inhibidores , Retinaldehído/metabolismo
3.
Biochemistry ; 44(18): 7035-47, 2005 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-15865448

RESUMEN

Retinol dehydrogenase 12 (RDH12) is a novel member of the short-chain dehydrogenase/reductase superfamily of proteins that was recently linked to Leber's congenital amaurosis 3 (LCA). We report the first biochemical characterization of purified human RDH12 and analysis of its expression in human tissues. RDH12 exhibits approximately 2000-fold lower K(m) values for NADP(+) and NADPH than for NAD(+) and NADH and recognizes both retinoids and lipid peroxidation products (C(9) aldehydes) as substrates. The k(cat) values of RDH12 for retinaldehydes and C(9) aldehydes are similar, but the K(m) values are, in general, lower for retinoids. The enzyme exhibits the highest catalytic efficiency for all-trans-retinal (k(cat)/K(m) approximately 900 min(-)(1) microM(-)(1)), followed by 11-cis-retinal (450 min(-)(1) mM(-)(1)) and 9-cis-retinal (100 min(-)(1) mM(-)(1)). Analysis of RDH12 activity toward retinoids in the presence of cellular retinol-binding protein (CRBP) type I or cellular retinaldehyde-binding protein (CRALBP) suggests that RDH12 utilizes the unbound forms of all-trans- and 11-cis-retinoids. As a result, the widely expressed CRBPI, which binds all-trans-retinol with much higher affinity than all-trans-retinaldehyde, restricts the oxidation of all-trans-retinol by RDH12, but has little effect on the reduction of all-trans-retinaldehyde, and CRALBP inhibits the reduction of 11-cis-retinal stronger than the oxidation of 11-cis-retinol, in accord with its higher affinity for 11-cis-retinal. Together, the tissue distribution of RDH12 and its catalytic properties suggest that, in most tissues, RDH12 primarily contributes to the reduction of all-trans-retinaldehyde; however, at saturating concentrations of peroxidic aldehydes in the cells undergoing oxidative stress, for example, photoreceptors, RDH12 might also play a role in detoxification of lipid peroxidation products.


Asunto(s)
Oxidorreductasas de Alcohol/aislamiento & purificación , Proteínas Portadoras/química , Retina/enzimología , Retinaldehído/química , Retinoides/química , Proteínas de Unión al Retinol/química , Oxidorreductasas de Alcohol/biosíntesis , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aldehídos/química , Proteínas Portadoras/metabolismo , Catálisis , Histidina/genética , Humanos , Cinética , Mutagénesis Insercional , Especificidad de Órganos/genética , Oxidación-Reducción , Células Fotorreceptoras de Vertebrados/metabolismo , Unión Proteica , Retina/metabolismo , Retinaldehído/antagonistas & inhibidores , Retinaldehído/metabolismo , Retinoides/metabolismo , Proteínas de Unión al Retinol/metabolismo , Proteínas Celulares de Unión al Retinol
4.
J Biol Chem ; 274(33): 23535-40, 1999 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-10438533

RESUMEN

Factors regulating retinal biosynthesis in halobacteria are not clearly understood. In halobacteria, events leading to the biosynthesis of bacteriorhodopsin have been proposed to participate in stringent regulation of retinal biosynthesis. The present study describes a novel approach of in vivo introductions of mRNA and membrane proteins via liposome fusion to test their role in cellular metabolism. Both the bacterioopsin-encoding mRNA and the liposome-encapsulated bacterioopsin (apoprotein) are independently introduced in spheroplasts of the purple membrane-negative strain Halobacterium salinarium that initially contain neither bacterioopsin nor retinal. Isoprenoid analyses of these cells indicate that the expression/presence of bacterioopsin triggers retinal biosynthesis from lycopene, and its subsequent binding to opsin generates bacteriorhodopsin. When bacteriorhodopsin and excess retinal were independently introduced into spheroplasts of purple membrane-negative cells, the introduction of bacteriorhodopsin resulted in an accumulation of lycopene, indicating an inhibition of retinal biosynthesis. These results provide direct evidence that the formation of bacterioopsin acts as a trigger for lycopene conversion to beta-carotene in retinal biosynthesis. The trigger for this event does not lie with either transcription or translation of the bop gene. It is clearly associated with the folded and the membrane-integrated state of bacterioopsin. On the other hand, the trigger signaling inhibition of retinal biosynthesis does not lie with the presence of excess retinal but with the correctly folded, retinal-bound form, bacteriorhodopsin.


Asunto(s)
Bacteriorodopsinas/biosíntesis , Bacteriorodopsinas/metabolismo , Halobacterium salinarum/metabolismo , Retinaldehído/biosíntesis , Secuencia de Aminoácidos , Bacteriorodopsinas/genética , Secuencia de Bases , Carotenoides/metabolismo , Licopeno , Datos de Secuencia Molecular , ARN Mensajero/genética , Retinaldehído/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA