Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Elife ; 132024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985571

RESUMEN

Diaphorina citri serves as the primary vector for 'Candidatus Liberibacter asiaticus (CLas),' the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3' untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.


Asunto(s)
Fertilidad , Hemípteros , Hormonas de Insectos , Ácido Pirrolidona Carboxílico , Transducción de Señal , Animales , Hormonas de Insectos/metabolismo , Hormonas de Insectos/genética , Femenino , Hemípteros/microbiología , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Rhizobiaceae/fisiología , Rhizobiaceae/metabolismo , Metabolismo de los Lípidos , Ovario/microbiología , Ovario/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Hormonas Juveniles/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Liberibacter , Oligopéptidos
2.
Front Cell Infect Microbiol ; 14: 1408362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938879

RESUMEN

The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama is the leading vector of Candidatus Liberibacter asiaticus (CLas), the causative agent of citrus Huanglongbing (HLB) disease. The distribution and dynamics of CLas within ACP are critical to understanding how the transmission, spread and infection of CLas occurs within its host vector in nature. In this study, the distribution and titer changes of CLas in various tissues of ACP 5th instar nymphs and adults were examined by fluorescence in situ hybridization (FISH) and real-time quantitative PCR (qPCR) techniques. Results demonstrated that 100% of ACP 5th instar nymphs and adults were infected with CLas following feeding on infected plants, and that CLas had widespread distribution in most of the tissues of ACP. The titers of CLas within the midgut, salivary glands and hemolymph tissues were the highest in both 5th instar nymphs and adults. When compared with adults, the titers of CLas in these three tissues of 5th instar nymphs were significantly higher, while in the mycetome, ovary and testes they were significantly lower than those of adults. FISH visualization further confirmed these findings. Dynamic analysis of CLas demonstrated that it was present across all the developmental ages of ACP adults. There was a discernible upward trend in the presence of CLas with advancing age in most tissues of ACP adults, including the midgut, hemolymph, salivary glands, foot, head, cuticula and muscle. Our findings have significant implications for the comprehensive understanding of the transmission, dissemination and infestation of CLas, which is of much importance for developing novel strategies to halt the spread of CLas, and therefore contribute to the efficient prevention and control of HLB.


Asunto(s)
Citrus , Hemípteros , Hibridación Fluorescente in Situ , Insectos Vectores , Ninfa , Enfermedades de las Plantas , Animales , Hemípteros/microbiología , Insectos Vectores/microbiología , Enfermedades de las Plantas/microbiología , Ninfa/microbiología , Citrus/microbiología , Rhizobiaceae/genética , Rhizobiaceae/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Glándulas Salivales/microbiología , Hemolinfa/microbiología
3.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652336

RESUMEN

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Asunto(s)
Arabidopsis , Proteínas Bacterianas , Nicotiana , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Citrus/microbiología , Citrus/genética , Citrus/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Liberibacter/patogenicidad , Liberibacter/fisiología , Interacciones Huésped-Patógeno , Plantas Modificadas Genéticamente , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizobiaceae/fisiología , Resistencia a la Enfermedad/genética
4.
Pest Manag Sci ; 80(8): 4013-4023, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38554028

RESUMEN

BACKGROUND: Citrus huanglongbing (HLB) is a devastating disease caused by Candidatus Liberibacter asiaticus (CLas) that affects the citrus industry. In nature, CLas relies primarily on Diaphorina citri Kuwayama as its vector for dissemination. After D. citri ingests CLas-infected citrus, the pathogen infiltrates the insect's body, where it thrives, reproduces, and exerts regulatory control over the growth and metabolism of D. citri. Previous studies have shown that CLas alters the composition of proteins in the saliva of D. citri, but the functions of these proteins remain largely unknown. RESULTS: In this study, we detected two proteins (DcitSGP1 and DcitSGP3) with high expression levels in CLas-infected D. citri. Quantitative PCR and Western blotting analysis showed that the two proteins were highly expressed in the salivary glands and delivered into the host plant during feeding. Silencing the two genes significantly decreased the survival rate for D. citri, reduced phloem nutrition sucking and promoted jasmonic acid (JA) defenses in citrus. By contrast, after overexpressing the two genes in citrus, the expression levels of JA pathway-associated genes decreased. CONCLUSION: Our results suggest that CLas can indirectly suppress the defenses of citrus and support feeding by D. citri via increasing the levels of effectors in the insect's saliva. This discovery facilitates further research into the interaction between insect vectors and pathogens. © 2024 Society of Chemical Industry.


Asunto(s)
Citrus , Ciclopentanos , Hemípteros , Oxilipinas , Rhizobiaceae , Hemípteros/microbiología , Hemípteros/fisiología , Hemípteros/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Animales , Citrus/microbiología , Rhizobiaceae/fisiología , Enfermedades de las Plantas/microbiología , Liberibacter/metabolismo , Insectos Vectores/microbiología , Insectos Vectores/fisiología
5.
Phytopathology ; 114(5): 961-970, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38478730

RESUMEN

Citrus Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which has been suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested as a useful strategy to reduce HLB damages. To provide information regarding the application timing to mitigate ROS, we investigated monthly dynamics of CLas concentration, CLas-triggered ROS, and phloem cell death in the bark tissues of asymptomatic and symptomatic branches of HLB-positive Hamlin and Valencia sweet orange trees in the field. Healthy branches in the screenhouse were used as controls. CLas concentration exhibited significant variations over the course of the year, with two distinct peaks observed in Florida citrus groves-late spring/early summer and late fall. Within both Hamlin and Valencia asymptomatic tissues, CLas concentration demonstrated a negative correlation with the deviation between the monthly average mean temperature and the optimal temperature for CLas colonization in plants (25.7°C). However, such a correlation was not evident in symptomatic tissues of Hamlin or Valencia sweet oranges. ROS levels were consistently higher in symptomatic or asymptomatic branches than in healthy branches in most months. ROS concentrations were higher in symptomatic branches than in asymptomatic branches in most months. CLas triggered significant increases in ion leakage in most months for asymptomatic and symptomatic branches compared with healthy controls. In asymptomatic branches of Hamlin, a positive correlation was observed between CLas concentration and ROS concentrations, CLas concentration and ion leakage levels, as well as ROS and ion leakage. Intriguingly, such a relationship was not observed in Valencia asymptomatic branches or in the symptomatic branches of Hamlin and Valencia. This study sheds light on the pathogenicity of CLas by providing useful information on the temporal dynamics of ROS production, phloem cell death, and CLas growth, as well as provides useful information in determining the timing for application of antioxidants and antimicrobial agents to control HLB.


Asunto(s)
Citrus sinensis , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Rhizobiaceae , Especies Reactivas de Oxígeno/metabolismo , Citrus sinensis/microbiología , Enfermedades de las Plantas/microbiología , Rhizobiaceae/fisiología , Floema/microbiología , Corteza de la Planta/microbiología , Liberibacter , Iones/metabolismo
6.
Phytopathology ; 114(6): 1380-1392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38349804

RESUMEN

Citrus Huanglongbing, one of the most devastating citrus diseases, is caused by 'Candidatus Liberibacter asiaticus' (CLas). Polyamines are aliphatic nitrogen-containing compounds that play important roles in disease resistance and are synthesized primarily by two pathways: an arginine decarboxylation pathway and an ornithine decarboxylation pathway. However, it is unclear whether polyamines play a role in the tolerance of citrus to infection by CLas and, if so, whether one or both of the core polyamine metabolic pathways are important. We used high-performance liquid chromatography and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry to detect the contents of nine polyamine metabolism-related compounds in six citrus cultivars with varying levels of tolerance to CLas. We also systematically detected the changes in polyamine metabolism-related compounds and H2O2 contents and compared the gene expression levels and the activities of enzymes involved in the polyamine metabolic pathway among healthy, asymptomatic, and symptomatic leaves of Newhall navel oranges infected with CLas. The tolerant and moderately tolerant varieties showed higher polyamine metabolism-related compound levels than those of susceptible varieties. Compared with the healthy group, the symptomatic group showed significantly increased contents of arginine, ornithine, γ-aminobutyric acid, and putrescine by approximately 180, 19, 1.5, and 0.2 times, respectively, and upregulated expression of biosynthetic genes. Arginase and ornithine decarboxylase enzyme activities were the highest in the symptomatic group, whereas arginine decarboxylase and agmatine deiminase enzyme activities were the highest in the asymptomatic group. The two polyamine biosynthetic pathways showed different trends with the increase of the CLas titer, indicating that polyamines were mainly synthesized through the arginine decarboxylase pathway in the asymptomatic leaves and were synthesized via the ornithine decarboxylase pathway in symptomatic leaves. These findings provide new insight into the changes in polyamine metabolism in citrus infected with CLas.


Asunto(s)
Citrus , Enfermedades de las Plantas , Poliaminas , Rhizobiaceae , Poliaminas/metabolismo , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Rhizobiaceae/fisiología , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Peróxido de Hidrógeno/metabolismo , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/genética , Liberibacter/fisiología , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas
7.
Sci Rep ; 14(1): 455, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172384

RESUMEN

The Asian Citrus Psyllid (ACP), Diaphorina citri, is a vector of the pathological bacterium Candidatus Liberibacter asiaticus (CLas), which causes the most devastating disease to the citrus industry worldwide, known as greening or huanglongbing (HLB). Earlier field tests with an acetic acid-based lure in greening-free, 'Valencia' citrus orange groves in California showed promising results. The same type of lures tested in São Paulo, Brazil, showed unsettling results. During the unsuccessful trials, we noticed a relatively large proportion of females in the field, ultimately leading us to test field-collected males and females for Wolbachia and CLas. The results showed high rates of Wolbachia and CLas infection in field populations. We then compared the olfactory responses of laboratory-raised, CLas-free, and CLas-infected males to acetic acid. As previously reported, CLas-uninfected males responded to acetic acid at 1 µg. Surprisingly, CLas-infected males required 50 × higher doses of the putative sex pheromone, thus explaining the failure to capture CLas-infected males in the field. CLas infection was also manifested in electrophysiological responses. Electroantennogram responses from CLas-infected ACP males were significantly higher than those obtained with uninfected males. To the best of our knowledge, this is the first report of a pathogen infection affecting a vector's response to a sex attractant.


Asunto(s)
Citrus sinensis , Citrus , Hemípteros , Rhizobiaceae , Atractivos Sexuales , Wolbachia , Femenino , Masculino , Animales , Hemípteros/fisiología , Atractivos Sexuales/farmacología , Brasil , Citrus/microbiología , Rhizobiaceae/fisiología , Acetatos , Enfermedades de las Plantas/microbiología
8.
PLoS One ; 18(11): e0294360, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37963163

RESUMEN

Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria), an obligate mutualist of an important agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera). Our previous study demonstrated that diaphorin, at physiological concentrations in D. citri, inhibits the growth and cell division of Bacillus subtilis (Firmicutes) but promotes the growth and metabolic activity of Escherichia coli (Gammaproteobacteria). This unique property of diaphorin may aid microbial mutualism in D. citri, potentially affecting the transmission of "Candidatus Liberibacter spp." (Alphaproteobacteria), the pathogens of the most destructive citrus disease Huanglongbing. Moreover, this property may be exploited to promote microbes' efficiency in producing industrial materials. However, the mechanism underlying this activity is unknown. Diaphorin belongs to the family of pederin-type compounds, which inhibit protein synthesis in eukaryotes by binding to eukaryotic ribosomes. Therefore, as a first step to assess diaphorin's direct influence on bacterial gene expression, this study examined the effect of diaphorin on the in vitro translation using ribosomes of B. subtilis and E. coli, quantifying the production of the green fluorescent protein. The results showed that the gene expression involving B. subtilis and E. coli ribosomes along with five millimolar diaphorin was 29.6% and 13.1%, respectively, less active than the control. This suggests that the diaphorin's adverse effects on B. subtilis are attributed to, at least partly, its inhibitory effects on gene expression. Moreover, as ingredients of the translation system were common other than ribosomes, the greater inhibitory effects observed with the B. subtilis ribosome imply that the ribosome is among the potential targets of diaphorin. On the other hand, the results also imply that diaphorin's positive effects on E. coli are due to targets other than the core machinery of transcription and translation. This study demonstrated for the first time that a pederin congener affects bacterial gene expression.


Asunto(s)
Citrus , Gammaproteobacteria , Hemípteros , Policétidos , Rhizobiaceae , Animales , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hemípteros/microbiología , Policétidos/farmacología , Policétidos/metabolismo , Citrus/microbiología , Gammaproteobacteria/metabolismo , Expresión Génica , Enfermedades de las Plantas/microbiología , Rhizobiaceae/fisiología
9.
Phytopathology ; 113(9): 1708-1715, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37665323

RESUMEN

'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manipulation of the host immune responses; these proteins are called effectors. In this study, we identified six LsoB-specific proteins with a conserved secretion motif as well as a conserved N-terminal domain in the mature protein. These proteins had different expression and secretion patterns but a similar subcellular localization in Nicotiana benthamiana leaves, suggesting that they play different roles regardless of their conserved secretion motif. One of these proteins, CKC_04425, was expressed at high levels in the insect vector and the host plant, indicating that it could play a role in both the plant and insect hosts, whereas the others were mainly expressed in the plant. One protein, CKC_05701, was able to efficiently suppress programmed cell death and reactive oxygen species production, suggesting that it may have a virulence role in LsoB-specific pathogenesis.


Asunto(s)
Hemípteros , Rhizobiaceae , Animales , Liberibacter , Haplotipos , Enfermedades de las Plantas/microbiología , Hemípteros/microbiología , Productos Agrícolas , Rhizobiaceae/fisiología
10.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108662

RESUMEN

Huanglongbing (HLB) is a vascular disease of Citrus caused by three species of the α-proteobacteria "Candidatus Liberibacter", with "Candidatus Liberibacter asiaticus" (CLas) being the most widespread and the one causing significant economic losses in citrus-producing regions worldwide. However, Persian lime (Citrus latifolia Tanaka) has shown tolerance to the disease. To understand the molecular mechanisms of this tolerance, transcriptomic analysis of HLB was performed using asymptomatic and symptomatic leaves. RNA-Seq analysis revealed 652 differentially expressed genes (DEGs) in response to CLas infection, of which 457 were upregulated and 195 were downregulated. KEGG analysis revealed that after CLas infection, some DEGs were present in the plant-pathogen interaction and in the starch and sucrose metabolism pathways. DEGs present in the plant-pathogen interaction pathway suggests that tolerance against HLB in Persian lime could be mediated, at least partly, by the ClRSP2 and ClHSP90 genes. Previous reports documented that RSP2 and HSP90 showed low expression in susceptible citrus genotypes. Regarding the starch and sucrose metabolism pathways, some genes were identified as being related to the imbalance of starch accumulation. On the other hand, eight biotic stress-related genes were selected for further RT-qPCR analysis to validate our results. RT-qPCR results confirmed that symptomatic HLB leaves had high relative expression levels of the ClPR1, ClNFP, ClDR27, and ClSRK genes, whereas the ClHSL1, ClRPP13, ClPDR1, and ClNAC genes were expressed at lower levels than those from HLB asymptomatic leaves. Taken together, the present transcriptomic analysis contributes to the understanding of the CLas-Persian lime interaction in its natural environment and may set the basis for developing strategies for the integrated management of this important Citrus disease through the identification of blanks for genetic improvement.


Asunto(s)
Citrus , Rhizobiaceae , Citrus/genética , Citrus/microbiología , Transcriptoma , Perfilación de la Expresión Génica , Liberibacter , Sacarosa , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Rhizobiaceae/fisiología
11.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982808

RESUMEN

Huanglongbing (HLB) is one of the most severe citrus diseases in the world, causing huge economic losses. However, efficient methods of protecting citrus from HLB have not yet been developed. microRNA (miRNA)-mediated regulation of gene expression is a useful tool to control plant diseases, but the miRNAs involved in regulating resistance to HLB have not yet been identified. In this study, we found that miR171b positively regulated resistance to HLB in citrus. Upon infection with HLB bacteria, the bacteria were detected in the second month in the control plants. However, in the miR171b-overexpressing transgenic citrus plants, the bacteria could not be detected until the 24th month. RNA-seq data indicated that multiple pathways, such as photosynthesis, plant-pathogen interaction, the MAPK signaling pathway, etc., might be involved in improving the resistance to HLB in miR171b-overexpressing plants compared with the control. Finally, we determined that miR171b could target SCARECROW-like (SCL) genes to downregulate their expression, which then led to promoted resistance to HLB stress. Collectively, our results demonstrate that miR171b plays a positive regulatory role in resistance to citrus HLB, and provides a new insight into the role of miRNAs in the adaptation of citrus to HLB stress.


Asunto(s)
Citrus , MicroARNs , Rhizobiaceae , Citrus/metabolismo , Rhizobiaceae/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Fotosíntesis , Transducción de Señal , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
12.
J Econ Entomol ; 116(2): 379-388, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36723158

RESUMEN

The Rio Grande Valley (RGV) in southern Texas is well-suited for vegetable production due to its relatively mild/warm weather conditions in the fall and winter. Consequently, insects inflict year-round, persistent damage to crops in the RGV and regions with similar climate. Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), commonly known as the potato psyllid, is a known vector of Candidatus Liberibacter solanacearum (CLso) (Hyphomicrobiales: Rhizobiaceae), a fastidious phloem-limited bacterium associated to vein-greening in tomatoes and Zebra Chip in potatoes. Vector control is the primary approach of integrated pest management (IPM) strategies that aim to prevent plant diseases in commercial agricultural systems. However, resistance-selective pressures that decrease the effectiveness of chemical control (insecticide) applications over time are of increasing concern. Therefore, we explore an ecological approach to devising alternative IPM methodologies to manage the psyllid-transmitted CLso pathogen to supplement existing chemical products and application schedules without increasing resistance. In this study, our objective was to examine the effects of plant-growth promoting rhizobacteria (PGPR) on host-vector-pathogen interactions. Soil-drench applications of PGPRs to Solanum lycopersicum (Solanales: Solanaceae) seedlings revealed structural and possible physiological changes to the plant host and indirect changes on psyllid behavior: host plants had increased length and biomass of roots and exhibited delayed colonization by CLso, while psyllids displayed changes in parental (F0) psyllid behavior (orientation and oviposition) in response to treated hosts and in the sex ratio of their progeny (F1). Based on our results, we suggest that PGPR may have practical use in commercial tomato production.


Asunto(s)
Hemípteros , Rhizobiaceae , Solanum lycopersicum , Solanum tuberosum , Femenino , Animales , Liberibacter , Solanum tuberosum/microbiología , Rhizobiaceae/fisiología , Enfermedades de las Plantas/microbiología
13.
J Agric Food Chem ; 71(2): 1246-1257, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36606748

RESUMEN

Huanglongbing (HLB) is one of the most destructive citrus diseases, mainly caused by the Gram-negative bacteria Candidatus Liberibacter asiaticus. Aiming at unraveling the mechanisms of different scion/rootstock combinations on improving HLB-affected orange juice quality, the effects of rootstocks on the metabolites of HLB-affected sweet orange juices were investigated using a combined strategy of untargeted metabolomics and machine learning. A total of 2531 ion features were detected using UHPLC-Q-Orbitrap high-resolution electrospray ionization mass spectrometry, and 54 metabolites including amino acids, amines, flavonoids, coumarins, fatty acids, and glycosides were definitely or tentatively identified as the differential markers based on the random forest algorithm. Furthermore, 24 metabolites were verified and semi-quantified using authentic standards. Notably, the presence of specific amino acids and amines, especially polyamines, indicated that different rootstocks might affect glutamate, aspartate, proline, and arginine metabolism to regulate the physiological response against HLB. Meanwhile, the production of flavonoids and prenylated coumarins suggested that rootstocks influenced phenylalanine and phenylpropanoid metabolism. The possible metabolic pathways were proposed, and the important intermediates were verified by authentic standards. These results provide new insights on the effects of rootstocks on the metabolites of HLB-affected sweet orange juices.


Asunto(s)
Citrus sinensis , Citrus , Rhizobiaceae , Citrus sinensis/química , Rhizobiaceae/fisiología , Citrus/microbiología , Aminoácidos/metabolismo , Aminas , Flavonoides/metabolismo , Aprendizaje Automático , Enfermedades de las Plantas/microbiología
14.
Phytopathology ; 113(6): 1010-1021, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36474420

RESUMEN

Huanglongbing (HLB) is a devastating bacterial disease associated with 'Candidatus Liberibacter asiaticus'. The location of the pathogen within the vasculature of the tree has left growers with limited options for the effective management of the disease. Trunk injection is a crop protection technique that applies therapeutics directly into the xylem of woody tree species and allows for their systemic uptake and transport, which may provide more effective management of vascular diseases such as HLB. In this study, mature 'Valencia' and 'Hamlin' sweet orange (Citrus sinensis) and 'Duncan' grapefruit (C. paradisi) trees were injected with oxytetracycline (OTC) in the spring and/or fall to evaluate the effects of injection timing and response to injection. In addition to seasonal evaluations of tree health and bacterial titer, preharvest fruit drop, yield, and fruit quality were measured at harvest to determine the effects of OTC injection. The benefits associated with injection included a reduction in fruit drop, an increase in fruit yield and fruit size, and improvements in juice quality. However, results varied due to the timing of injection and were not consistent across all three varieties. Residue analysis at different time points after injection suggests that trunk injection effectively delivers therapeutics to mature citrus trees. This study provides fundamental information on the short-term benefits associated with trunk injection of OTC for HLB management in citrus groves. The potential for use of trunk injection at the commercial scale and the possible risks are discussed.


Asunto(s)
Citrus paradisi , Citrus sinensis , Citrus , Oxitetraciclina , Rhizobiaceae , Citrus sinensis/microbiología , Rhizobiaceae/fisiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Árboles
15.
Plant Dis ; 107(6): 1769-1776, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36399004

RESUMEN

'Candidatus Liberibacter asiaticus' is the bacterium associated with the citrus disease known as huanglongbing (HLB). This study evaluated the influence of 'Ca. L. asiaticus' infection on a number of key plant physiological variables concerning photosynthesis, cell integrity, reactive oxygen species scavengers' activity, and osmoregulation of two different species of citrus-the pomelo Citrus maxima and the mandarin C. reticulata 'Tankan'-relative to their measured 'Ca. L. asiaticus' infection load. Results indicated that all measured physiological variables except soluble sugar were affected by increased 'Ca. L. asiaticus' infection titers, wherein the variety C. maxima proved overall more resistant than C. reticulata. 'Ca. L. asiaticus' infection was linked in both plants to decrease in chlorophyll concentration, cell membrane permeability, and malondialdehyde, as well as increased free proline and starch contents. Chlorophyll fluorescence measurements taken 9 months after grafting the mandarin C. reticulata with 'Ca. L. asiaticus' scions revealed a significant decrease in the photosynthesis variables maximum photochemical quantum yield of photosystem II (PSII), effective photochemical quantum yield of PSII, and coefficient of photochemical fluorescence quenching assuming interconnected PSII antennae, whereas nonphotochemical fluorescence quenching increased significantly; C. maxima plants, on the other hand, did not show significant differences until the 12th month from infection exposure. The variables superoxide dismutase, catalase, peroxidase, and soluble protein initially increased and later decreased. In addition, progression of 'Ca. L. asiaticus' replication in both citrus species was accompanied by rapid changes in three reactive oxygen species scavenging enzymes in C. maxima, while the pattern was different in C. reticulata. We hypothesize that the observed interspecific differences in physiological change are related to their relative resistance against 'Ca. L. asiaticus' infection. These results provide a scaffold for better describing the pathogenesis, selecting the most resistant breeds, or even validating pertaining omics research; ultimately, these detailed observations can facilitate the diagnosis of 'Ca. L. asiaticus' infection.


Asunto(s)
Citrus , Rhizobiaceae , Citrus/microbiología , Liberibacter , Rhizobiaceae/fisiología , Especies Reactivas de Oxígeno , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Clorofila
16.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012507

RESUMEN

Huanglongbing (HLB) is an obstinate disease in the citrus industry. No resistant citrus resources were currently available, but various degrees of Huanglongbing tolerance exist in different germplasm. Citrus junos is emerging as one of the popular rootstocks widely used in the citrus production. However, its responses to the HLB causal agent, Candidatus Liberibacter asiaticus (CLas), were still elusive. In the current study, we investigated the physiological, anatomical, and metabolomic responses of a C. junos rootstock 'Pujiang Xiangcheng' by a controlled CLas grafting inoculation. The summer flushes and roots were impaired at 15 weeks after inoculation, although typical leaf symptomatic phenotypes were not obvious. The chlorophyll pigments and the photosynthetic rate were compromised. The phloem sieve tubes were still working, despite the fact that the callose was deposited and the starch granules were accumulated in the phloem cells. A wide, targeted metabolomic analysis was carried out to explore the systematic alterations of the metabolites at this early stage of infection in the leaves and root system. The differentially accumulated metabolites in the CLas-affected leaves and roots compared with the mock-inoculation control tissues revealed that distinct responses were obvious. Besides the commonly observed alteration of sugar and amino acids, the active break down of starch in the roots was discovered. The different types of fatty acids were altered in the two tissues, with a more pronounced content decline in the roots. Our results not only provided fundamental knowledge about the response of the C. junos rootstock to the HLB disease, but also presented new insights into the host-pathogen interaction in the early stages.


Asunto(s)
Citrus , Rhizobiaceae , Liberibacter , Enfermedades de las Plantas , Hojas de la Planta , Rhizobiaceae/fisiología , Almidón
17.
Mol Plant Microbe Interact ; 35(12): 1067-1080, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35952362

RESUMEN

Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Hemípteros , Rhizobiaceae , Animales , Rhizobiaceae/fisiología , Hemípteros/microbiología , Liberibacter , Enfermedades de las Plantas/microbiología
18.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35887193

RESUMEN

'Candidatus Liberibacter asiaticus' (CLas) is a bacterium that causes Huanglongbing, also known as citrus greening, in citrus plants. 'Candidatus Liberibacter solanacearum' (Lso) is a close relative of CLas and in the US it infects solanaceous crops, causing zebra chip disease in potato. Previously, we have identified the Lso hypothetical protein effector 1 (Lso-HPE1). This protein uses a signal peptide for secretion; disrupts programmed cell death; and interacts with tomato RAD23c, d, and e proteins, but not with RAD23a. In this study, we evaluated whether CLIBASIA_00460, the CLas homolog of Lso-HPE1 interacted with citrus RAD23 proteins and disrupted their programmed cell death. Based on the yeast two-hybrid assay results, CLIBASIA_00460 interacted with citrus RAD23c and RAD23d, but not with citrus RAD23b. These results were confirmed using bimolecular fluorescence complementation assays, which showed that these interactions occurred in cell puncta, but not in the nucleus or cytoplasm. Additionally, CLIBASIA_00460 was able to disrupt the PrfD1416V-induced hypersensitive response. Therefore, based on the similar interactions between Lso-HPE1 and CLIBASIA_00460 with the host RAD23 proteins and their ability to inhibit cell death in plants, we propose that these effectors may have similar functions during plant infection.


Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Solanum lycopersicum , Animales , Citrus/microbiología , Hemípteros/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas , Rhizobiaceae/fisiología
19.
J Agric Food Chem ; 70(16): 5262-5269, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35426311

RESUMEN

Phytopathogen infections not only affect the physiology of host plants but also the preference of insect vectors; these modifications may increase the spread of infection. For this, we determined the effects of "Candidatus Liberibacter asiaticus" (CLas) infection on the preference of an insect vector (Diaphorina citri) for its uninfected or CLas-infected host (Citrus sinensis) and found that the infected vector preferred uninfected citrus, while the uninfected vector preferred infected citrus. We identified two compounds, (Z)-3 hexenyl and methyl salicylate, that were differentially abundant in the volatiles emitted by infected and uninfected citrus and two odorant-binding protein (OBP) genes differentially expressed between infected and uninfected vectors. The results of receptor-ligand binding assays indicated that CLas upregulated OBP A10 expression in the infected vector to target (Z)-3 hexenyl acetate emitted by uninfected citrus and induced citrus to emit more methyl salicylate for binding to OBP2 in the uninfected vector. Our results might be useful for the effective control of CLas infections.


Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Animales , Citrus/metabolismo , Insectos Vectores , Enfermedades de las Plantas , Rhizobiaceae/fisiología
20.
Pest Manag Sci ; 78(9): 3731-3745, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35415948

RESUMEN

Zebra chip disease (ZC), associated with the plant pathogenic bacterium 'Candidatus Liberibacter solanacearum' (psyllaurous) (CLso), is a major threat to global potato production. In addition to yield loss, CLso infection causes discoloration in the tubers, rendering them unmarketable. CLso is transmitted by the potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). ZC is managed by prophylactic insecticide applications to control the vector, which is costly and carries environmental and human health risks. Given the expense, difficulty, and unsustainability of managing vector-borne diseases with insecticides, identifying sources of resistance to CLso and developing varieties that are resistant or tolerant to CLso and/or potato psyllids has become a major goal of breeding efforts. These efforts include field and laboratory evaluations of noncultivated germplasm and cultivars, studies of tubers in cold storage, detailed quantifications of biochemical responses to infection with CLso, possible mechanisms underlying insect resistance, and traditional examination of potato quality following infections. This review provides a brief history of ZC and potato psyllid, a summary of currently available tools to manage ZC, and a comprehensive review of breeding efforts for ZC and potato psyllid management within the greater context of Integrated Pest Management (IPM) strategies. © 2022 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Hemípteros , Insecticidas , Rhizobiaceae , Solanum tuberosum , Animales , Hemípteros/fisiología , Humanos , Insectos Vectores/fisiología , Liberibacter , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rhizobiaceae/fisiología , Solanum tuberosum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...