Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arq. Ciênc. Vet. Zool. UNIPAR (Online) ; 25(2): e8795, jul-dez. 2022. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1399598

RESUMEN

Climate change has caused major changes in abiotic factors, with water stress as the greatest threat to agricultural production. The measures aimed at alleviating the problems caused by this limiting production factor have occurred through the adoption of sustainable strategies, especially microbial biotechnology, which uses the interactions between the microorganism and the plant, ensuring productive quality and inducing plant resistance to stresses biotic and abiotic. The objective of the present work was to evaluate the biological nitrogen fixation and the development of bean seedlings, with co-inoculation of two types of inoculants, which were subjected to water stress by different pot capacities. The experiment was conducted in a greenhouse, at Universidade Paranaense - UNIPAR, from April to June 2019. The experimental design was completely randomized (DIC), with 5 replications, 16 treatments and 80 experimental units. The cultivar used was SCS Riqueza. The parameters evaluated were pot capacity (25%, 50%, 75% and 90%); small, large and total nodules, shoot and root length, dry and fresh weight, total carbon and nitrogen. The evaluation of the morphological parameters of the bean seedlings indicated that the co- inoculation technique promoted beneficial effects for the dry mass parameters of shoot, nodule and root. The analysis of the percentage of carbon and nitrogen in the tissues of the seedlings provided an increase in the concentration of these elements in treatments that involved co-inoculation (Azospirillum brasilensis and Rhizobium tropici) with pot capacities of 25 and 75% (CV), demonstrating that the association of microorganisms is beneficial in the limiting water situation.(AU)


A mudança climática tem causado grandes mudanças nos fatores abióticos, sendo o estresse hídrico a maior ameaça à produção agrícola. As medidas destinadas a aliviar os problemas causados por este fator limitante de produção ocorreram através da adoção de estratégias sustentáveis, especialmente a biotecnologia microbiana, que utiliza as interações entre o microorganismo e a planta, garantindo a qualidade produtiva e induzindo a resistência da planta ao estresse biótico e abiótico. O objetivo do presente trabalho foi avaliar a fixação biológica de nitrogênio e o desenvolvimento de mudas de feijão, com co-inoculação de dois tipos de inoculantes, que foram submetidos ao estresse hídrico por diferentes capacidades de vaso. A experiência foi realizada em uma estufa, na Universidade Paranaense - UNIPAR, de abril a junho de 2019. O projeto experimental foi completamente randomizado (DIC), com 5 réplicas, 16 tratamentos e 80 unidades experimentais. A cultivar utilizada foi a SCS Riqueza. Os parâmetros avaliados foram a capacidade do vaso (25%, 50%, 75% e 90%); nódulos pequenos, grandes e totais, comprimento do rebento e da raiz, peso seco e fresco, carbono total e nitrogênio. A avaliação dos parâmetros morfológicos das mudas de feijão indicou que a técnica de co-inoculação promoveu efeitos benéficos para os parâmetros de massa seca do turião, nódulo e raiz. A análise da porcentagem de carbono e nitrogênio nos tecidos das mudas proporcionou um aumento na concentração destes elementos nos tratamentos que envolveram a co-inoculação (Azospirillum brasilensis e Rhizobium tropici) com capacidades de vaso de 25 e 75% (CV), demonstrando que a associação de microorganismos é benéfica na situação limite da água.(AU)


El cambio climático ha provocado importantes cambios en los factores abióticos, siendo el estrés hídrico la mayor amenaza para la producción agrícola. Las medidas encaminadas a paliar los problemas causados por este factor limitante de la producción se han producido mediante la adopción de estrategias sostenibles, especialmente la biotecnología microbiana, que utiliza las interacciones entre el microorganismo y la planta, asegurando la calidad productiva e induciendo la resistencia de la planta a los estreses bióticos y abióticos. El objetivo del presente trabajo fue evaluar la fijación biológica de nitrógeno y el desarrollo de plántulas de frijol, con la co-inoculación de dos tipos de inoculantes, que fueron sometidos a estrés hídrico por diferentes capacidades de maceta. El experimento se realizó en un invernadero, en la Universidade Paranaense - UNIPAR, de abril a junio de 2019. El diseño experimental fue completamente al azar (DIC), con 5 repeticiones, 16 tratamientos y 80 unidades experimentales. El cultivar utilizado fue SCS Riqueza. Los parámetros evaluados fueron capacidad de maceta (25%, 50%, 75% y 90%); nódulos pequeños, grandes y totales, longitud de brotes y raíces, peso seco y fresco, carbono y nitrógeno total. La evaluación de los parámetros morfológicos de las plántulas de frijol indicó que la técnica de coinoculación promovió efectos beneficiosos para los parámetros de masa seca de brotes, nódulos y raíces. El análisis del porcentaje de carbono y nitrógeno en los tejidos de las plántulas proporcionó un aumento en la concentración de estos elementos en los tratamientos que involucraron la coinoculación (Azospirillum brasilensis y Rhizobium tropici) con capacidades de maceta de 25 y 75% (CV), demostrando que la asociación de microorganismos es beneficiosa en la situación de agua limitante.(AU)


Asunto(s)
Azospirillum brasilense/fisiología , Phaseolus/fisiología , Rhizobium tropici/fisiología , Deshidratación , Fijación del Nitrógeno/fisiología
2.
Arch Microbiol ; 203(3): 1033-1038, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33140139

RESUMEN

Association of rhizobia with other plant growth-promoting bacteria (PGPB), such as Azospirillum, have the potential to increase crop yields. This work aimed to assess how Rhizobium tropici and Azospirillum brasilense alone or in combination, affect the growth and yields of common bean grains (Phaseolus vulgaris L.). In a field experiment, R. tropici and A. brasilense were inoculated on seeds, alone or in combination, associated or not with foliar spraying of A. brasilense. Shoot biomass, nitrogen accumulation, thousand-grain weight, and grain yield were evaluated. Application of A. brasilense, on seed or by foliar spraying, and seed inoculation of R. tropici, had an additive effect, increasing biomass and accumulated nitrogen, thousand-grain weight, and grain yield.


Asunto(s)
Azospirillum brasilense/fisiología , Phaseolus/microbiología , Hojas de la Planta/microbiología , Rhizobium tropici/fisiología , Semillas/microbiología , Biomasa , Nitrógeno/metabolismo , Desarrollo de la Planta , Hojas de la Planta/crecimiento & desarrollo
3.
BMC Genomics ; 20(1): 800, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684871

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) are generated by NADPH oxidases known as respiratory burst oxidase homologs (RBOHs) in plants. ROS regulate various cellular processes, including the mutualistic interactions between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. Rboh is a multigene family comprising nine members (RbohA-I) in common bean (Phaseolus vulgaris). The RNA interference-mediated silencing of RbohB (PvRbohB-RNAi) in this species diminished its ROS production and greatly impaired nodulation. By contrast, the PvRbohB-RNAi transgenic roots showed early hyphal root colonization with enlarged fungal hypopodia; therefore, we proposed that PvRbohB positively regulates rhizobial infection (Rhizobium tropici) and inhibits AM colonization by Rhizophagus irregularis in P. vulgaris. RESULTS: To corroborate this hypothesis, an RNA-Seq transcriptomic analysis was performed to identify the differentially expressed genes in the PvRbohB-RNAi roots inoculated with Rhizobium tropici or Rhizophagus irregularis. We found that, in the early stages, root nodule symbioses generated larger changes of the transcriptome than did AM symbioses in P. vulgaris. Genes related to ROS homeostasis and cell wall flexibility were markedly upregulated in the early stages of rhizobial colonization, but not during AM colonization. Compared with AM colonization, the rhizobia induced the expression of a greater number of genes encoding enzymes involved in the metabolism of auxins, cytokinins, and ethylene, which were typically repressed in the PvRbohB-RNAi roots. CONCLUSIONS: Our research provides substantial insights into the genetic interaction networks in the early stages of rhizobia and AM symbioses with P. vulgaris, as well as the differential roles that RbohB plays in processes related to ROS scavenging, cell wall remodeling, and phytohormone homeostasis during nodulation and mycorrhization in this legume.


Asunto(s)
Perfilación de la Expresión Génica , Glomeromycota/fisiología , NADPH Oxidasas/genética , Phaseolus/genética , Phaseolus/microbiología , Raíces de Plantas/genética , Rhizobium tropici/fisiología , Pared Celular/metabolismo , Phaseolus/citología , Phaseolus/enzimología , Raíces de Plantas/microbiología , Transducción de Señal/genética , Simbiosis
4.
Microbiology (Reading) ; 165(6): 651-661, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31081746

RESUMEN

Rhizobium tropici CIAT 899 is a facultative symbiotic diazotroph able to deal with stressful concentrations of metals. Nevertheless the molecular mechanisms involved in metal tolerance have not been elucidated. Copper (Cu2+) is a metal component essential for the heme-copper respiratory oxidases and enzymes that catalyse redox reactions, however, it is highly toxic when intracellular trace concentrations are surpassed. In this study, we report that R. tropici CIAT 899 is more tolerant to Cu2+ than other Rhizobium and Sinorhizobium species. Through Tn5 random mutagenesis we identify a R. tropici mutant strain with a severe reduction in Cu2+ tolerance. The Tn5 insertion disrupted the gene RTCIAT899_CH17575, encoding a putative heavy metal efflux P1B-1-type ATPase designated as copA. Phaseolus vulgaris plants inoculated with the copA::Tn5 mutant in the presence of toxic Cu2+ concentrations showed a drastic reduction in plant and nodule dry weight, as well as nitrogenase activity. Nodules induced by the copA::Tn5 mutant present an increase in H2O2 concentration, lipoperoxidation and accumulate 40-fold more Cu2+ than nodules formed by the wild-type strain. The copA::Tn5 mutant complemented with the copA gene recovered the wild-type symbiotic phenotypes. Therefore, the copA gene is essential for R. tropici CIAT 899 to survive in copper-rich environments in both free life and symbiosis with P. vulgaris plants.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Phaseolus/microbiología , Rhizobium tropici/fisiología , Proteínas Bacterianas/genética , Cobre/toxicidad , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Mutagénesis Insercional , Mutación , Phaseolus/efectos de los fármacos , Phaseolus/crecimiento & desarrollo , Phaseolus/metabolismo , Nodulación de la Raíz de la Planta/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Rhizobium tropici/genética , Rhizobium tropici/metabolismo , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis
5.
Rev Argent Microbiol ; 51(1): 47-55, 2019.
Artículo en Español | MEDLINE | ID: mdl-29887272

RESUMEN

Allelopathy is a phenomenon that involves the production of secondary metabolites that influence the growth of plants and microorganisms; however, this alellopathic effect has been scarcely studied on the rhizobia-legume symbiosis. The aims of this research were 1) to assess the allelopathic potential of aqueous extracts of Ipomoea purpurea L. Roth on seed germination and root length of common bean seedlings (Phaseolus vulgaris L.), 2) to determine its effects on the in vitro growth of Rhizobium tropici CIAT899, and 3) to evaluate the allelopathic potential of I. purpurea on the growth, nodulation and physiology of common bean plants inoculated with R. tropici. After 48h, 15% of the aqueous root extract of I. purpurea stimulated seed germination, whereas 4% of the aqueous shoot extracts stimulated such germination. Both the root or shoot extracts stimulated seed germination and e root length. In vitro growth of R. tropici was inhibited as a result of the application of both aqueous extracts. The presence of I. purpurea negatively affected both the growth and physiological responses of common bean plants, and this effect was attenuated after the inoculation of R. tropici; nevertheless, this allelopathic plant affected root nodulation. Our results suggest that the symbiosis of rhizobia and roots of common bean plants is an important element for attenuating the negative effects caused by the allelopathic plant.


Asunto(s)
Alelopatía , Ipomoea , Phaseolus/efectos de los fármacos , Phaseolus/microbiología , Extractos Vegetales/farmacología , Rhizobium tropici/fisiología , Simbiosis , Phaseolus/fisiología
6.
J Exp Bot ; 70(3): 1049-1061, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30462254

RESUMEN

Bax-inhibitor 1 (BI-1) is a cell death suppressor conserved in all eukaryotes that modulates cell death in response to abiotic stress and pathogen attack in plants. However, little is known about its role in the establishment of symbiotic interactions. Here, we demonstrate the functional relevance of an Arabidopsis thaliana BI-1 homolog (PvBI-1a) to symbiosis between the common bean (Phaseolus vulgaris) and Rhizobium tropici. We show that the changes in expression of PvBI-1a observed during early symbiosis resemble those of some defence response-related proteins. By using gain- and loss-of-function approaches, we demonstrate that the overexpression of PvBI-1a in the roots of common bean increases the number of rhizobial infection events (and therefore the final number of nodules per root), but induces the premature death of nodule cells, affecting their nitrogen fixation efficiency. Nodule morphological alterations are known to be associated with changes in the expression of genes tied to defence, autophagy, and vesicular trafficking. Results obtained in the present work suggest that BI-1 has a dual role in the regulation of programmed cell death during symbiosis, extending our understanding of its critical function in the modulation of host immunity while responding to beneficial microbes.


Asunto(s)
Proteínas de la Membrana/genética , Phaseolus/genética , Proteínas de Plantas/genética , Rhizobium tropici/fisiología , Apoptosis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/metabolismo , Phaseolus/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Simbiosis/genética
7.
Sci Rep ; 7: 46712, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28488698

RESUMEN

In the symbiotic associations between rhizobia and legumes, NodD promotes the expression of the nodulation genes in the presence of appropriate flavonoids. This set of genes is implied in the synthesis of Nodulation factors, which are responsible for launching the nodulation process. Rhizobium tropici CIAT 899 is the most successful symbiont of Phaseolus vulgaris and can nodulate a variety of legumes. This strain produces Nodulation factors under abiotic stress such as acidity or high concentration of salt. Genome sequencing of CIAT 899 allowed the identification of five nodD genes. Whereas NodD1 is essential to nodulate Leucaena leucocephala, Lotus japonicus and Macroptilium atropurpureum, symbiosis with P. vulgaris and Lotus burtii decreased the nodule number but did not abolish the symbiotic process when NodD1 is absent. Nodulation factor synthesis under salt stress is not regulated by NodD1. Here we confirmed that NodD2 is responsible for the activation of the CIAT 899 symbiotic genes under salt stress. We have demonstrated that NodD1 and NodD2 control the synthesis of the Nod factor necessary for a successful symbiosis with P. vulgaris and L. burtii. This is the first time that NodD is directly implied in the activation of the symbiotic genes under an abiotic stress.


Asunto(s)
Glucosamina/análogos & derivados , Oligosacáridos/metabolismo , Proteínas de Plantas/metabolismo , Rhizobium tropici/metabolismo , Quitina/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Fabaceae/microbiología , Flavonoides/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosamina/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Phaseolus/microbiología , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rhizobium tropici/genética , Rhizobium tropici/fisiología , Estrés Salino , Sulfatos/metabolismo , Simbiosis/genética
8.
PLoS One ; 11(4): e0154029, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27096734

RESUMEN

The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species.


Asunto(s)
Phaseolus/microbiología , Raíces de Plantas/microbiología , Rhizobium tropici/genética , Rhizobium tropici/fisiología , Simbiosis , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Genes Bacterianos , Mutación , Fijación del Nitrógeno , Phaseolus/fisiología , Raíces de Plantas/fisiología , Plásmidos/genética , Activación Transcripcional
9.
BMC Genomics ; 17: 198, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26951045

RESUMEN

BACKGROUND: Rhizobium tropici strain CIAT 899 establishes effective symbioses with several legume species, including Phaseolus vulgaris and Leucaena leucocephala. This bacterium synthesizes a large variety of nodulation factors in response to nod-gene inducing flavonoids and, surprisingly, also under salt stress conditions. The aim of this study was to identify differentially expressed genes in the presence of both inducer molecules, and analyze the promoter regions located upstream of these genes. RESULTS: Results obtained by RNA-seq analyses of CIAT 899 induced with apigenin, a nod gene-inducing flavonoid for this strain, or salt allowed the identification of 19 and 790 differentially expressed genes, respectively. Fifteen of these genes were up-regulated in both conditions and were involved in the synthesis of both Nod factors and indole-3-acetic acid. Transcription of these genes was presumably activated through binding of at least one of the five NodD proteins present in this strain to specific nod box promoter sequences when the bacterium was induced by both apigenin and salt. Finally, under saline conditions, many other transcriptional responses were detected, including an increase in the transcription of genes involved in trehalose catabolism, chemotaxis and protein secretion, as well as ribosomal genes, and a decrease in the transcription of genes involved in transmembrane transport. CONCLUSIONS: To our knowledge this is the first time that a transcriptomic study shows that salt stress induces the expression of nodulation genes in the absence of flavonoids. Thus, in the presence of both nodulation inducer molecules, apigenin and salt, R. tropici CIAT 899 up-regulated the same set of symbiotic genes. It could be possible that the increases in the transcription levels of several genes related to nodulation under saline conditions could represent a strategy to establish symbiosis under abiotic stressing conditions.


Asunto(s)
Apigenina/química , Rhizobium tropici/genética , Cloruro de Sodio/química , Simbiosis/genética , Transcriptoma , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Ácidos Indolacéticos/metabolismo , Operón , Nodulación de la Raíz de la Planta/genética , Regiones Promotoras Genéticas , ARN Bacteriano/genética , Rhizobium tropici/fisiología , Análisis de Secuencia de ARN , Estrés Fisiológico
10.
BMC Genomics ; 16: 251, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25880529

RESUMEN

BACKGROUND: Nodulation and symbiotic nitrogen fixation are mediated by several genes, both of the host legume and of the bacterium. The rhizobial regulatory nodD gene plays a critical role, orchestrating the transcription of the other nodulation genes. Rhizobium tropici strain CIAT 899 is an effective symbiont of several legumes-with an emphasis on common bean (Phaseolus vulgaris)-and is unusual in carrying multiple copies of nodD, the roles of which remain to be elucidated. RESULTS: Phenotypes, Nod factors and gene expression of nodD1 and nodD2 mutants of CIAT 899 were compared with those of the wild type strain, both in the presence and in the absence of the nod-gene-inducing molecules apigenin and salt (NaCl). Differences between the wild type and mutants were observed in swimming motility and IAA (indole acetic acid) synthesis. In the presence of both apigenin and salt, large numbers of Nod factors were detected in CIAT 899, with fewer detected in the mutants. nodC expression was lower in both mutants; differences in nodD1 and nodD2 expression were observed between the wild type and the mutants, with variation according to the inducing molecule, and with a major role of apigenin with nodD1 and of salt with nodD2. In the nodD1 mutant, nodulation was markedly reduced in common bean and abolished in leucaena (Leucaena leucocephala) and siratro (Macroptilium atropurpureum), whereas a mutation in nodD2 reduced nodulation in common bean, but not in the other two legumes. CONCLUSION: Our proposed model considers that full nodulation of common bean by R. tropici requires both nodD1 and nodD2, whereas, in other legume species that might represent the original host, nodD1 plays the major role. In general, nodD2 is an activator of nod-gene transcription, but, in specific conditions, it can slightly repress nodD1. nodD1 and nodD2 play other roles beyond nodulation, such as swimming motility and IAA synthesis.


Asunto(s)
Proteínas Bacterianas/genética , Fabaceae/microbiología , Genes Bacterianos , Rhizobium tropici/genética , Apigenina/farmacología , Proteínas Bacterianas/metabolismo , Fabaceae/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Mutación , Fijación del Nitrógeno/efectos de los fármacos , Fenotipo , Nodulación de la Raíz de la Planta/efectos de los fármacos , Raíces de Plantas/microbiología , Rhizobium tropici/fisiología , Cloruro de Sodio/farmacología , Simbiosis/genética
11.
BMC Genomics ; 13: 735, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23270491

RESUMEN

BACKGROUND: Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris) in South America and Africa. Both strains display intrinsic resistance to several abiotic stressful conditions such as low soil pH and high temperatures, which are common in tropical environments, and to several antimicrobials, including pesticides. The genetic determinants of these interesting characteristics remain largely unknown. RESULTS: Genome sequencing revealed that CIAT 899 and PRF 81 share a highly-conserved symbiotic plasmid (pSym) that is present also in Rhizobium leucaenae CFN 299, a rhizobium displaying a similar host range. This pSym seems to have arisen by a co-integration event between two replicons. Remarkably, three distinct nodA genes were found in the pSym, a characteristic that may contribute to the broad host range of these rhizobia. Genes for biosynthesis and modulation of plant-hormone levels were also identified in the pSym. Analysis of genes involved in stress response showed that CIAT 899 and PRF 81 are well equipped to cope with low pH, high temperatures and also with oxidative and osmotic stresses. Interestingly, the genomes of CIAT 899 and PRF 81 had large numbers of genes encoding drug-efflux systems, which may explain their high resistance to antimicrobials. Genome analysis also revealed a wide array of traits that may allow these strains to be successful rhizosphere colonizers, including surface polysaccharides, uptake transporters and catabolic enzymes for nutrients, diverse iron-acquisition systems, cell wall-degrading enzymes, type I and IV pili, and novel T1SS and T5SS secreted adhesins. CONCLUSIONS: Availability of the complete genome sequences of CIAT 899 and PRF 81 may be exploited in further efforts to understand the interaction of tropical rhizobia with common bean and other legume hosts.


Asunto(s)
Adaptación Fisiológica/genética , Inoculantes Agrícolas/genética , Ambiente , Genómica , Phaseolus/microbiología , Rhizobium tropici/genética , Rhizobium tropici/fisiología , Inoculantes Agrícolas/citología , Inoculantes Agrícolas/metabolismo , Inoculantes Agrícolas/fisiología , Antibacterianos/farmacología , Transporte Biológico/genética , Secuencia Conservada/genética , Farmacorresistencia Bacteriana/genética , Genoma de Planta/genética , Concentración de Iones de Hidrógeno , Hidrogenasas/genética , Hierro/metabolismo , Metales/farmacología , Familia de Multigenes/genética , Fijación del Nitrógeno/genética , Nitrosación/genética , Presión Osmótica , Estrés Oxidativo/genética , Phaseolus/fisiología , Filogenia , Reguladores del Crecimiento de las Plantas/biosíntesis , Nodulación de la Raíz de la Planta/genética , Plásmidos/genética , Polisacáridos/genética , Rhizobium tropici/citología , Rhizobium tropici/metabolismo , Especificidad de la Especie , Estrés Fisiológico/genética , Simbiosis/genética , Temperatura
12.
J Exp Bot ; 63(13): 4723-30, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22771853

RESUMEN

Although previous studies on N2-fixing legumes have demonstrated the contribution of acid phosphatases to their phosphorus (P) use efficiency under P-deficient growth conditions, localization of these enzymes in bean nodules has not been demonstrated. In this study, phosphoenol pyruvate phosphatase (PEPase) gene transcripts were localized within the nodule tissues of two recombinant inbred lines, RIL115 (P-deficiency tolerant) and RIL147 (P-deficiency sensitive), of Phaseolus vulgaris. Nodules were induced by Rhizobium tropici CIAT899 under hydroaeroponic conditions with a sufficient versus a deficient P supply. The results indicated that PEPase transcripts were particularly abundant in the nodule infected zone and cortex of both RILs. Analysis of fluorescence intensity indicated that nodule PEPase was induced under conditions of P deficiency to a significantly higher extent in RIL147 than in RIL115, and more in the inner cortex (91%) than in the outer cortex (71%) or the infected zone (79%). In addition, a significant increase (39%) in PEPase enzyme activity in the P-deficient RIL147 correlated with an increase (58%) in the efficiency of use in rhizobial symbiosis. It was concluded that nodule PEPase is upregulated under conditions of P deficiency in the P-deficiency-sensitive RIL147, and that this gene may contribute to adaptation of rhizobial symbiosis to low-P environments.


Asunto(s)
Fosfatasa Ácida/genética , Phaseolus/enzimología , Fósforo/deficiencia , Rhizobium tropici/fisiología , Fosfatasa Ácida/metabolismo , Adaptación Fisiológica , Endogamia , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Phaseolus/citología , Phaseolus/genética , Phaseolus/crecimiento & desarrollo , Fósforo/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/citología , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , ARN Mensajero/genética , ARN de Planta/genética , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Plantones/citología , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Simbiosis
13.
BMC Microbiol ; 12: 84, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22647150

RESUMEN

BACKGROUND: Rhizobium tropici strain PRF 81 (= SEMIA 4080) has been used in commercial inoculants for application to common-bean crops in Brazil since 1998, due to its high efficiency in fixing nitrogen, competitiveness against indigenous rhizobial populations and capacity to adapt to stressful tropical conditions, representing a key alternative to application of N-fertilizers. The objective of our study was to obtain an overview of adaptive responses to heat stress of strain PRF 81, by analyzing differentially expressed proteins when the bacterium is grown at 28°C and 35°C. RESULTS: Two-dimensional gel electrophoresis (2DE) revealed up-regulation of fifty-nine spots that were identified by MALDI-TOF/TOF-TOF. Differentially expressed proteins were associated with the functional COG categories of metabolism, cellular processes and signaling, information storage and processing. Among the up-regulated proteins, we found some related to conserved heat responses, such as molecular chaperones DnaK and GroEL, and other related proteins, such as translation factors EF-Tu, EF-G, EF-Ts and IF2. Interestingly, several oxidative stress-responsive proteins were also up-regulated, and these results reveal the diversity of adaptation mechanisms presented by this thermotolerant strain, suggesting a cross-talk between heat and oxidative stresses. CONCLUSIONS: Our data provide valuable protein-expression information relevant to the ongoing genome sequencing of strain PRF 81, and contributes to our still-poor knowledge of the molecular determinants of the thermotolerance exhibited by R. tropici species.


Asunto(s)
Proteínas Bacterianas/análisis , Proteoma/análisis , Rhizobium tropici/química , Rhizobium tropici/fisiología , Estrés Fisiológico , Electroforesis en Gel Bidimensional , Proteómica , Rhizobium tropici/crecimiento & desarrollo , Rhizobium tropici/efectos de la radiación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura
14.
Mol Plant Microbe Interact ; 25(7): 954-63, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22668002

RESUMEN

The non-legume genus Parasponia has evolved the rhizobium symbiosis independent from legumes and has done so only recently. We aim to study the promiscuity of such newly evolved symbiotic engagement and determine the symbiotic effectiveness of infecting rhizobium species. It was found that Parasponia andersonii can be nodulated by a broad range of rhizobia belonging to four different genera, and therefore, we conclude that this non-legume is highly promiscuous for rhizobial engagement. A possible drawback of this high promiscuity is that low-efficient strains can infect nodules as well. The strains identified displayed a range in nitrogen-fixation effectiveness, including a very inefficient rhizobium species, Rhizobium tropici WUR1. Because this species is able to make effective nodules on two different legume species, it suggests that the ineffectiveness of P. andersonii nodules is the result of the incompatibility between both partners. In P. andersonii nodules, rhizobia of this strain become embedded in a dense matrix but remain vital. This suggests that sanctions or genetic control against underperforming microsymbionts may not be effective in Parasponia spp. Therefore, we argue that the Parasponia-rhizobium symbiosis is a delicate balance between mutual benefits and parasitic colonization.


Asunto(s)
Cannabaceae/microbiología , Especificidad del Huésped/fisiología , Nodulación de la Raíz de la Planta/fisiología , Rhizobium tropici/fisiología , Simbiosis/fisiología , Secuencia de Bases , Cannabaceae/ultraestructura , Muerte Celular , Fabaceae/microbiología , Fabaceae/ultraestructura , Genes Bacterianos/genética , Genoma Bacteriano/genética , Datos de Secuencia Molecular , Fijación del Nitrógeno , Filogenia , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Proteobacteria/fisiología , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Rhizobium tropici/genética , Rhizobium tropici/aislamiento & purificación , Nódulos de las Raíces de las Plantas/ultraestructura , Análisis de Secuencia de ADN , Sinorhizobium/genética , Sinorhizobium/aislamiento & purificación , Sinorhizobium/fisiología
15.
Molecules ; 17(5): 5244-54, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22565477

RESUMEN

To study the interactions between a Rhizobium tropici strain and lectins isolated from the seeds of Canavalia ensiformis (ConA) and Canavalia brasiliensis (ConBr), a lectin fluorescence assay was performed. In addition, an experiment was designed to evaluate the effect of the two lectins on bacterial growth. Both lectins were found to bind to R. tropici cells, but the interactions were inhibited by D-mannose. Interestingly, only ConBr stimulated bacterial growth in proportion to the concentrations used (15.6-500 µg/mL), and the bacterial growth stimulation was inhibited by D-mannose as well. Structure/Function analyses by bioinformatics were carried out to evaluate the volume and carbohydrate recognition domain (CRD) configuration of ConA and ConBr. The difference of spatial arrangement and volume of CRD may indicate the variation between biological activities of both lectins. The results suggest that ConBr could be a promising tool for studies focusing on the interactions between rhizobia and host plants.


Asunto(s)
Canavalia/química , Lectinas de Plantas/farmacología , Rhizobium tropici/efectos de los fármacos , Semillas/química , Bioensayo , Relación Dosis-Respuesta a Droga , Fluoresceína-5-Isotiocianato , Colorantes Fluorescentes , Manosa/farmacología , Modelos Moleculares , Fijación del Nitrógeno/fisiología , Lectinas de Plantas/aislamiento & purificación , Lectinas de Plantas/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Rhizobium tropici/fisiología , Espectrometría de Fluorescencia , Relación Estructura-Actividad
16.
Int J Syst Evol Microbiol ; 62(Pt 5): 1179-1184, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21742822

RESUMEN

Rhizobium tropici is a well-studied legume symbiont characterized by high genetic stability of the symbiotic plasmid and tolerance to tropical environmental stresses such as high temperature and low soil pH. However, high phenetic and genetic variabilities among R. tropici strains have been largely reported, with two subgroups, designated type A and B, already defined within the species. A polyphasic study comprising multilocus sequence analysis, phenotypic and genotypic characterizations, including DNA-DNA hybridization, strongly supported the reclassification of R. tropici type A strains as a novel species. Type A strains formed a well-differentiated clade that grouped with R. tropici, Rhizobium multihospitium, Rhizobium miluonense, Rhizobium lusitanum and Rhizobium rhizogenes in the phylogenies of the 16S rRNA, recA, gltA, rpoA, glnII and rpoB genes. Several phenotypic traits differentiated type A strains from all related taxa. The novel species, for which the name Rhizobium leucaenae sp. nov. is proposed, is a broad host range rhizobium being able to establish effective root-nodule symbioses with Leucaena leucocephala, Leucaena esculenta, common beans (Phaseolus vulgaris) and Gliricidia sepium. Strain CFN 299(T) ( = USDA 9039(T) = LMG 9517(T) = CECT 4844(T) = JCM 21088(T) = IAM 14230(T) = SEMIA 4083(T) = CENA 183(T) = UMR1026(T) = CNPSo 141(T)) is designated the type strain of Rhizobium leucaenae sp. nov.


Asunto(s)
Rhizobium tropici/clasificación , Rhizobium tropici/genética , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Rhizobium tropici/fisiología , Análisis de Secuencia de ADN
17.
J Plant Physiol ; 169(3): 242-8, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22078996

RESUMEN

The demand for iron in leguminous plants increases during symbiosis, as the metal is utilised for the synthesis of various Fe-containing proteins in both plant and bacteroids. However, the acquisition of this micronutrient is problematic due to its low bioavailability at physiological pH under aerobic conditions. Induction of root Fe(III)-reductase activity is necessary for Fe uptake and can be coupled to the rhizosphere acidification capacity linked to the H(+)-ATPase activity. Fe uptake is related to the expression of a Fe(2+) transporter (IRT1). In order to verify the possible role of nodules in the acquisition of Fe directly from the soil solution, the localization of H(+)-ATPase and IRT1 was carried out in common bean nodules by immuno-histochemical analysis. The results showed that these proteins were particularly abundant in the central nitrogen-fixing zone of nodules, around the periphery of infected and uninfected cells as well as in the vascular bundle of control nodules. Under Fe deficiency an over-accumulation of H(+)-ATPase and IRT1 proteins was observed especially around the cortex cells of nodules. The results obtained in this study suggest that the increase in these proteins is differentially localized in nodules of Fe-deficient plants when compared to the Fe-sufficient condition and cast new light on the possible involvement of nodules in the direct acquisition of Fe from the nutrient solution.


Asunto(s)
Deficiencias de Hierro , Phaseolus/enzimología , Proteínas de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , FMN Reductasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Inmunohistoquímica , Hierro/metabolismo , Fijación del Nitrógeno , Phaseolus/genética , Phaseolus/metabolismo , Phaseolus/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Nodulación de la Raíz de la Planta , Raíces de Plantas/metabolismo , Rhizobium tropici/fisiología , Rizosfera , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
18.
Mol Plant Microbe Interact ; 24(7): 819-26, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21425924

RESUMEN

Receptor for activated C kinase (RACK1) is a highly conserved, eukaryotic protein of the WD-40 repeat family. Its peculiar ß-propeller structure allows its interaction with multiple proteins in various plant signal-transduction pathways, including those arising from hormone responses, development, and environmental stress. During Phaseolus vulgaris root development, RACK1 (PvRACK1) mRNA expression was induced by auxins, abscissic acid, cytokinin, and gibberellic acid. In addition, during P. vulgaris nodule development, PvRACK1 mRNA was highly accumulated at 12 to 15 days postinoculation, suggesting an important role after nodule meristem initiation and Rhizobium nodule infection. PvRACK1 transcript accumulation was downregulated by a specific RNA interference construct which was expressed in transgenic roots of composite plants of P. vulgaris inoculated with Rhizobium tropici. PvRACK1 downregulated transcript levels were monitored by quantitative reverse-transcription polymerase chain reaction analysis in individual transgenic roots and nodules. We observed a clear phenotype in PvRACK1-knockdown nodules, in which nodule number and nodule cell expansion were impaired, resulting in altered nodule size. Microscopic analysis indicated that, in PvRACK1-knockdown nodules, infected and uninfected cells were considerably smaller (80 and 60%, respectively) than in control nodules. In addition, noninfected cells and symbiosomes in silenced nodules showed significant defects in membrane structure under electron microscopy analysis. These findings indicate that PvRACK1 has a pivotal role in cell expansion and in symbiosome and bacteroid integrity during nodule development.


Asunto(s)
Phaseolus/fisiología , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Rhizobium tropici/fisiología , Membrana Celular/ultraestructura , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Morfogénesis , Phaseolus/genética , Phaseolus/crecimiento & desarrollo , Phaseolus/microbiología , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteína Quinasa C/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN de Planta/genética , Receptores de Cinasa C Activada , Receptores de Superficie Celular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhizobium tropici/genética , Rhizobium tropici/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal
19.
Mol Microbiol ; 79(6): 1496-514, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21205018

RESUMEN

Ornithine lipids (OLs) are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. OLs can be hydroxylated within the secondary fatty acyl moiety and this modification has been related to increased stress tolerance. Rhizobium tropici, a nodule-forming α-proteobacterium known for its stress tolerance, forms four different OLs. Studies of the function of these OLs have been hampered due to lack of knowledge about their biosynthesis. Here we describe that OL biosynthesis increases under acid stress and that OLs are enriched in the outer membrane. Using a functional expression screen, the OL hydroxylase OlsE was identified, which in combination with the OL hydroxylase OlsC is responsible for the synthesis of modified OLs in R. tropici. Unlike described OL hydroxylations, the OlsE-catalysed hydroxylation occurs within the ornithine moiety. Mutants deficient in OlsE or OlsC and double mutants deficient in OlsC/OlsE were characterized. R. tropici mutants deficient in OlsC-mediated OL hydroxylation are more susceptible to acid and temperature stress. All three mutants lacking OL hydroxylases are affected during symbiosis.


Asunto(s)
Ornitina/análogos & derivados , Rhizobium tropici/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidroxilación , Lípidos/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Estructura Molecular , Mutación , Ornitina/química , Ornitina/metabolismo , Rhizobium tropici/química , Rhizobium tropici/enzimología , Rhizobium tropici/genética , Estrés Fisiológico
20.
J Bacteriol ; 192(4): 925-35, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20023036

RESUMEN

Synthesis of the hydrogen uptake (Hup) system in Rhizobium leguminosarum bv. viciae requires the function of an 18-gene cluster (hupSLCDEFGHIJK-hypABFCDEX). Among them, the hupE gene encodes a protein showing six transmembrane domains for which a potential role as a nickel permease has been proposed. In this paper, we further characterize the nickel transport capacity of HupE and that of the translated product of hupE2, a hydrogenase-unlinked gene identified in the R. leguminosarum genome. HupE2 is a potential membrane protein that shows 48% amino acid sequence identity with HupE. Expression of both genes in the Escherichia coli nikABCDE mutant strain HYD723 restored hydrogenase activity and nickel transport. However, nickel transport assays revealed that HupE and HupE2 displayed different levels of nickel uptake. Site-directed mutagenesis of histidine residues in HupE revealed two motifs (HX(5)DH and FHGX[AV]HGXE) that are required for HupE functionality. An R. leguminosarum double mutant, SPF22A (hupE hupE2), exhibited reduced levels of hydrogenase activity in free-living cells, and this phenotype was complemented by nickel supplementation. Low levels of symbiotic hydrogenase activity were also observed in SPF22A bacteroid cells from lentil (Lens culinaris L.) root nodules but not in pea (Pisum sativum L.) bacteroids. Moreover, heterologous expression of the R. leguminosarum hup system in bacteroid cells of Rhizobium tropici and Mesorhizobium loti displayed reduced levels of hydrogen uptake in the absence of hupE. These data support the role of R. leguminosarum HupE as a nickel permease required for hydrogen uptake under both free-living and symbiotic conditions.


Asunto(s)
Proteínas Bacterianas/fisiología , Hidrogenasas/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Níquel/metabolismo , Rhizobium leguminosarum/fisiología , Rhizobium tropici/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Medios de Cultivo/química , Escherichia coli/genética , Eliminación de Gen , Expresión Génica , Orden Génico , Genes Bacterianos , Prueba de Complementación Genética , Hidrogenasas/genética , Hidrogenasas/fisiología , Lens (Planta)/microbiología , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Pisum sativum/microbiología , Rhizobium leguminosarum/genética , Rhizobium tropici/genética , Alineación de Secuencia , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...