Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Immunol ; 15: 1410082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156889

RESUMEN

The immune system requires a high energy expenditure to resist pathogen invasion. Macrophages undergo metabolic reprogramming to meet these energy requirements and immunologic activity and polarize to M1-type macrophages. Understanding the metabolic pathway switching in large yellow croaker (Larimichthys crocea) macrophages in response to lipopolysaccharide (LPS) stimulation and whether this switching affects immunity is helpful in explaining the stronger immunity of hypoxia-tolerant L. crocea. In this study, transcript levels of glycolytic pathway genes (Glut1 and Pdk1), mRNA levels or enzyme activities of glycolytic enzymes [hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase A (LDHA)], aerobic respiratory enzymes [pyruvate dehydrogenase (PDH), isocitrate dehydrogenase (IDH), and succinate dehydrogenase (SDH)], metabolites [lactic acid (LA) and adenosine triphosphate (ATP)], levels of bactericidal products [reactive oxygen species (ROS) and nitric oxide (NO)], and transcripts and level changes of inflammatory factors [IL1ß, TNFα, and interferon (IFN) γ] were detected in LPS-stimulated L. crocea head kidney macrophages. We showed that glycolysis was significantly induced, the tricarboxylic acid (TCA) cycle was inhibited, and metabolic reprogramming occurred, showing the Warburg effect when immune cells were activated. To determine the potential regulatory mechanism behind these changes, LcHIF-1α was detected and found to be significantly induced and transferred to the nucleus after LPS stimulation. LcHif-1α interference led to a significant reduction in glycolytic pathway gene transcript expression, enzyme activity, metabolites, bactericidal substances, and inflammatory factor levels; a significant increase in the aerobic respiration enzymes; and decreased migration, invasion, and phagocytosis. Further ultrastructural observation by electron microscopy showed that fewer microspheres contained phagocytes and that more cells were damaged after LcHif-1α interference. LcHif-1α overexpression L. crocea head kidney macrophages showed the opposite trend, and promoter activities of Ldha and Il1ß were significantly enhanced after LcHif-1α overexpression in HEK293T cells. Our data showed that LcHIF-1α acted as a metabolic switch in L. crocea macrophages and was important in polarization. Hypoxia-tolerant L. crocea head kidney showed a stronger Warburg effect and inhibited the TCA cycle, higher metabolites, and bactericidal substance levels. These results collectively revealed that LcHif-1α may promote the functional activities of head kidney macrophages in protecting hypoxia-tolerant L. crocea from Aeromonas hydrophila infection.


Asunto(s)
Aeromonas hydrophila , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Macrófagos , Perciformes , Animales , Perciformes/inmunología , Perciformes/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Aeromonas hydrophila/fisiología , Aeromonas hydrophila/inmunología , Lipopolisacáridos/inmunología , Glucólisis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Activación de Macrófagos/inmunología , Hipoxia/inmunología , Hipoxia/metabolismo , Riñón Cefálico/inmunología , Riñón Cefálico/metabolismo
2.
Fish Shellfish Immunol ; 152: 109794, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089638

RESUMEN

To ensure welfare-friendly and effective internal tagging, the tagging process should not cause a long-term burden on individuals given that tagged fish serve as representatives for the entire population in telemetry applications. To some extent, stress is inevitable within regular aquaculture practices, and thus, the consequences of long-term stress should be described in terms of their effects on internal tagging. In fish, stressors activate the Hypothalamus-Pituitary-Interrenal (HPI) and Brain-Sympathetic-Chromaffin Cell (BSC) axes, leading to neuroimmunoendocrine communication and paracrine interactions among stress hormones. The interrelation between wound healing and stress is complex, owing to their shared components, pathways, and energy demands. This study assessed 14 genes (mmp9, mmp13, il-2, il-4, il-8a, il-10, il-12, il-17d, il-1b, tnfa, ifng, leg-3, igm, and crh) in the skin (1.5 cm from the wound) and head kidney over eight weeks. These genes, associated with cell signaling in immunity, wound healing, and stress, have previously been identified as influenced and regulated by these processes. Half of a group of Atlantic salmon (n = 90) with surgically implanted dummy smart-tags were exposed to daily crowding stress. The goal was to investigate how this gene panel responds to a wound alone and then to the combined effects of wounding and daily crowding stress. Our observations indicate that chronic stress impacts inflammation and impedes wound healing, as seen through the expression of matrix metalloproteinases genes in the skin but not in the head kidney. This difference is likely due to the ongoing internal wound repair, in contrast to the externally healed wound incision. Cytokine expression, when significant in the skin, was mainly downregulated in both treatments compared to control values, particularly in the study's first half. Conversely, the head kidney showed initial cytokine downregulation followed by upregulation. Across all weeks observed and combining both tissues, the significantly expressed gene differences were 12 % between the Wound and Stress+ groups, 28 % between Wound and Control, and 25 % between Stress+ and Control. Despite significant fluctuations in cytokines, sustained variations across multiple weeks are only evident in a few select genes. Furthermore, Stress+ individuals demonstrated the most cytokine correlations within the head kidney, which may suggest that chronic stress affects cytokine expression. This investigation unveils that the presence of stress and prolonged activation of the HPI axis in an eight weeklong study has limited yet detectable effects on the selected gene expression within immunity, wound healing, and stress, with notable tissue-specific differences.


Asunto(s)
Riñón Cefálico , Salmo salar , Piel , Estrés Fisiológico , Animales , Riñón Cefálico/inmunología , Riñón Cefálico/metabolismo , Salmo salar/genética , Salmo salar/inmunología , Piel/inmunología , Aglomeración , Proteínas de Peces/genética , Regulación de la Expresión Génica/inmunología , Expresión Génica , Cicatrización de Heridas/genética
3.
Fish Shellfish Immunol ; 151: 109728, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936521

RESUMEN

The non-specific cytotoxic cell receptor protein 1 (NCCRP1) is considered the universal marker for teleost non-specific cytotoxic cells (NCCs). However, the specific distribution characteristics and response patterns of NCCRP1, and the confirmed existence of NCCs in fish species remain debatable. In this study, we investigated the distribution of NCCRP1 in the croaker and observed the most dominant abundance in the head kidney. While most common markers of cytotoxicity were localized in the trunk kidney lymphocytes (TKLs) and spleen lymphocytes (SPLs), NCCRP1-positive cells were predominantly detected in head kidney lymphocytes (HKLs) with a positive rate of approximately 10 %, where present a huge amount of macrophages (Mϕ) as well. Furthermore, the remarkable induction evidence of NCCRP1 in HKLs was determined. Collectively, these findings contribute significantly to comprehending the immunological function of NCCRP1 in fish species and enhancing our understanding of its evolutionary development.


Asunto(s)
Proteínas de Peces , Perciformes , Animales , Perciformes/inmunología , Proteínas de Peces/inmunología , Proteínas de Peces/genética , Riñón Cefálico/inmunología , Inmunidad Innata , Linfocitos/inmunología
4.
Sci Rep ; 14(1): 10947, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740811

RESUMEN

The immunomodulatory effects of omega-3 and omega-6 fatty acids are a crucial subject of investigation for sustainable fish aquaculture, as fish oil is increasingly replaced by terrestrial vegetable oils in aquafeeds. Unlike previous research focusing on fish oil replacement with vegetable alternatives, our study explored how the omega-6 to omega-3 polyunsaturated fatty acid (PUFA) ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida) or viral-like (polyriboinosinic polyribocytidylic acid) antigens. The head kidneys of salmon fed high dietary omega-3 levels exhibited a more anti-inflammatory fatty acid profile and a restrained induction of pro-inflammatory and neutrophil-related genes during the immune challenges. The high-omega-3 diet also promoted a higher expression of genes associated with the interferon-mediated signaling pathway, potentially enhancing antiviral immunity. This research highlights the capacity of vegetable oils with different omega-6 to omega-3 PUFA ratios to modulate specific components of fish immune responses, offering insights for future research on the intricate lipid nutrition-immunity interplay and the development of novel sustainable low-fish oil clinical aquaculture feeds.


Asunto(s)
Aeromonas salmonicida , Ácidos Grasos Omega-3 , Ácidos Grasos Omega-6 , Enfermedades de los Peces , Salmo salar , Animales , Salmo salar/inmunología , Ácidos Grasos Omega-6/farmacología , Ácidos Grasos Omega-3/farmacología , Aeromonas salmonicida/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Riñón Cefálico/inmunología , Alimentación Animal , Aceite de Soja/farmacología , Aceites de Pescado/farmacología , Acuicultura/métodos
5.
Fish Shellfish Immunol ; 150: 109649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797336

RESUMEN

In mammals, CD4 is found to be expressed on T cells and innate immune cells, however, teleost cells bearing CD4 have not been well identified and characterized. In this study, we identified two different CD4-1+ cell subsets in grass carp (Ctenopharyngodon idella): CD4-1+ lymphocytes (Lym) and CD4-1+ myeloid cells (Mye), both of which had the highest proportions in the head kidney. The mRNA expression analysis showed that CD4-1, CD4-2, TCRß, CD3γ/δ, and LCK1 are highly expressed in CD4-1+ Lym and also expressed in CD4-1+ Mye. Furthermore, we found that CD4-1+ Lym have a Lym morphology and highly express T-cell cytokines, suggesting that they are CD4+ T cells equivalent to mammalian Th cells. On the other hand, CD4-1+ Mye were found to have a morphology of macrophage and highly express macrophage marker gene MCSFR, indicating that they are macrophages. In addition, functional analysis revealed that CD4-1+ Mye possess phagocytic ability and great antigen-processing ability. Taken together, our study sheds further light on the composition and function of CD4+ cells in teleost fish.


Asunto(s)
Carpas , Proteínas de Peces , Animales , Carpas/inmunología , Carpas/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos CD4/genética , Antígenos CD4/inmunología , Antígenos CD4/metabolismo , Riñón Cefálico/inmunología , Riñón Cefálico/citología , Células Mieloides/inmunología , Inmunidad Innata/genética
6.
Sci Total Environ ; 928: 172389, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615763

RESUMEN

PFAAs (Perfluoroalkyl acids) are a class of bioaccumulative, persistent and ubiquitous environmental contaminants which primarily occupy the hydrosphere and its sediments. Currently, a paucity of toxicological information exists for short chain PFAAs and complex mixtures. In order to address these knowledge gaps, we performed a 3-week, aqueous exposure of rainbow trout to 3 different concentrations of a PFAA mixture (50, 100 and 500 ng/L) modeled after the composition determined in Lake Ontario. We conducted an additional set of exposures to individual PFAAs (25 nM each of PFOS (12,500 ng/L), PFOA (10,300 ng/L), PFBS (7500 ng/L) or PFBA (5300 ng/L) to evaluate differences in biological response across PFAA congeners. Untargeted proteomics and phosphorylated metabolomics were conducted on the blood plasma and head kidney tissue to evaluate biological response. Plasma proteomic responses to the mixtures revealed several unexpected outcomes including Similar proteomic profiles and biological processes as the PFOS exposure regime while being orders of magnitude lower in concentration and an atypical dose response in terms of the number of significantly altered proteins (FDR < 0.1). Biological pathway analysis revealed the low mixture, medium mixture and PFOS to significantly alter (FDR < 0.05) a number of processes including those involved in lipid metabolism, oxidative stress and the nervous system. We implicate plasma increases in PPARD and PPARG as being directly related to these biological processes as they are known to be important regulators in all 3 processes. In contrast to the blood plasma, the high mixture and PFOA exposure regimes caused the greatest change to the head kidney proteome, altering many proteins being involved in lipid metabolism, oxidative stress and inflammation. Our findings support the pleiotropic effect PFAAs have on aquatic organisms at environmentally relevant doses including those on PPAR signaling, metabolic dysregulation, immunotoxicity and neurotoxicity.


Asunto(s)
Fluorocarburos , Riñón Cefálico , Oncorhynchus mykiss , Proteoma , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/fisiología , Fluorocarburos/toxicidad , Proteoma/metabolismo , Riñón Cefálico/efectos de los fármacos , Riñón Cefálico/metabolismo
7.
Mol Immunol ; 170: 26-34, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38603988

RESUMEN

Neutrophils represent an important asset of innate immunity. Neutrophils express myeloperoxidase (MPO) which is a heme-containing peroxidase involved in microbial killing. In this study, by using real-time quantitative PCR and Western blot analysis, the flounder MPO (PoMPO) was observed to be highly expressed in the head kidney, followed by spleen, gill, and intestine during ontogeny - during developmental stages from larvae to adults. Furthermore, PoMPO positive cells were present in major immune organs of flounder at all developmental stages, and the number of neutrophils was generally higher as the fish grew to a juvenile stage. In addition, flow cytometry analysis revealed that the proportion of PoMPO positive cells relative to leukocytes, in the peritoneal cavity, head kidney, and peripheral blood of flounder juvenile stage was 18.3 %, 34.8 %, and 6.0 %, respectively, which is similar to the adult stage in flounder as previously reported. The presence and tissue distribution of PoMPO during ontogeny suggests that PoMPO positive cells are indeed a player of the innate immunity at all developmental stages of flounder.


Asunto(s)
Lenguado , Inmunidad Innata , Neutrófilos , Peroxidasa , Animales , Lenguado/inmunología , Peroxidasa/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Inmunidad Innata/inmunología , Branquias/inmunología , Riñón Cefálico/inmunología , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Proteínas de Peces/genética , Citometría de Flujo , Bazo/inmunología
8.
Dev Comp Immunol ; 157: 105188, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38677664

RESUMEN

Emerging and re-emerging diseases in fish cause drastic economic losses in the aquaculture sector. To combat the impact of disease outbreaks and prevent the emergence of infections in culture systems, understanding the advanced strategies for protecting fish against infections is inevitable in fish health research. Therefore, the present study aimed to evaluate the induction of trained immunity and its protective efficacy against Streptococcus agalactiae in tilapia. For this, Nile tilapia and the Tilapia head kidney macrophage primary culture were primed using ß-glucan @200 µg/10 g body weight and 10 µg/mL respectively. Expression profiles of the markers of trained immunity and production of metabolites were monitored at different time points, post-priming and training, which depicted enhanced responsiveness. Higher lactate and lactate dehydrogenase (LDH) production in vitro suggests heightened glycolysis induced by priming of the cells using ß-glucan. A survival rate of 60% was observed in ß-glucan trained fish post challenge with virulent S. agalactiae at an LD50 of 2.6 × 107 cfu/ml, providing valuable insights into promising strategies of trained immunity for combating infections in fish.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Macrófagos , Infecciones Estreptocócicas , Streptococcus agalactiae , beta-Glucanos , Animales , beta-Glucanos/metabolismo , Streptococcus agalactiae/inmunología , Cíclidos/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/veterinaria , Macrófagos/inmunología , Células Cultivadas , Riñón Cefálico/inmunología , Acuicultura , Inmunidad Innata , Glucólisis , L-Lactato Deshidrogenasa/metabolismo , Memoria Inmunológica , Inmunidad Entrenada
9.
Dev Comp Immunol ; 157: 105184, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38643939

RESUMEN

Ammonia toxicity in fish is closely related to ferroptosis, oxidative stress, and inflammatory responses. Iron is an essential trace element that plays a key role in many biological processes for cells and organisms, including ferroptosis, oxidative stress response, and inflammation. This study aimed to investigate the effect of iron on indicators of fish exposed to ammonia, specifically on the three aspects mentioned above. The head kidney macrophages of yellow catfish were randomly assigned to one of four groups: CON (normal control), AM (0.046 mg L-1 total ammonia nitrogen), Fe (20 µg mL-1 FeSO4), and Fe + AM (20 µg mL-1 FeSO4, 0.046 mg L-1 total ammonia nitrogen). The cells were pretreated with FeSO4 for 6 h followed by ammonia for 24 h. The study found that iron supplementation led to an excessive accumulation of iron and ROS in macrophages, but it did not strongly induce ferroptosis, oxidative stress, or inflammatory responses. This was supported by a decrease in T-AOC, and the downregulation of SOD, as well as an increase in GSH levels and the upregulation of TFR1, CAT and Nrf2. Furthermore, the mRNA expression of HIF-1, p53 and the anti-inflammatory M2 macrophage marker Arg-1 were upregulated. The results also showed that iron supplementation increased the progression of some macrophages from early apoptosis to late apoptotic cells. However, the combined treatment of iron and ammonia resulted in a stronger intracellular ferroptosis, oxidative stress, and inflammatory reaction compared to either treatment alone. Additionally, there was a noticeable increase in necrotic cells in the Fe + AM and AM groups. These findings indicate that the biological functions of iron in macrophages of fish may vary inconsistently in the presence or absence of ammonia stress.


Asunto(s)
Amoníaco , Bagres , Ferroptosis , Riñón Cefálico , Inflamación , Hierro , Macrófagos , Estrés Oxidativo , Animales , Bagres/inmunología , Riñón Cefálico/inmunología , Riñón Cefálico/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Inflamación/inmunología , Hierro/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Enfermedades de los Peces/inmunología , Especies Reactivas de Oxígeno/metabolismo , Células Cultivadas
10.
Dev Comp Immunol ; 156: 105165, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499166

RESUMEN

Renibacterium salmoninarum causes Bacterial Kidney Disease (BKD) in several fish species. Atlantic lumpfish, a cleaner fish, is susceptible to R. salmoninarum. To profile the transcriptome response of lumpfish to R. salmoninarum at early and chronic infection stages, fish were intraperitoneally injected with either a high dose of R. salmoninarum (1 × 109 cells dose-1) or PBS (control). Head kidney tissue samples were collected at 28- and 98-days post-infection (dpi) for RNA sequencing. Transcriptomic profiling identified 1971 and 139 differentially expressed genes (DEGs) in infected compared with control samples at 28 and 98 dpi, respectively. At 28 dpi, R. salmoninarum-induced genes (n = 434) mainly involved in innate and adaptive immune response-related pathways, whereas R. salmoninarum-suppressed genes (n = 1537) were largely connected to amino acid metabolism and cellular processes. Cell-mediated immunity-related genes showed dysregulation at 98 dpi. Several immune-signalling pathways were dysregulated in response to R. salmoninarum, including apoptosis, alternative complement, JAK-STAT signalling, and MHC-I dependent pathways. In summary, R. salmoninarum causes immune suppression at early infection, whereas lumpfish induce a cell-mediated immune response at chronic infection. This study provides a complete depiction of diverse immune mechanisms dysregulated by R. salmoninarum in lumpfish and opens new avenues to develop immune prophylactic tools to prevent BKD.


Asunto(s)
Enfermedades de los Peces , Perfilación de la Expresión Génica , Riñón Cefálico , Inmunidad Innata , Renibacterium , Transcriptoma , Animales , Riñón Cefálico/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Renibacterium/inmunología , Renibacterium/genética , Inmunidad Innata/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Inmunidad Adaptativa/genética , Peces/inmunología , Peces/microbiología , Enfermedad Crónica , Perciformes/inmunología , Perciformes/microbiología , Infecciones por Bacterias Gramnegativas/inmunología , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Enfermedades Renales/genética , Enfermedades Renales/veterinaria , Micrococcaceae/genética , Micrococcaceae/inmunología
11.
Fish Shellfish Immunol ; 147: 109469, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423488

RESUMEN

Inducible nitric oxide (NO) synthase (iNOS) is a key immune mediator for production of inflammatory mediator NO from l-arginine. Tight regulation of iNOS expression and enzyme activity is critical for proper NO productions under inflammation and infection conditions. However, the regulatory mechanism for iNOS expression and enzyme activity in fish remains largely unknown. Here, we show that extracellular ATP treatment significantly up-regulates iNOS gene expression and enzyme activity, and consequently leads to enhanced NO production in Cyprinus carpio head kidney macrophages (HKMs). We further show that the extracellular ATP-induced iNOS enzyme activity and NO production can be attenuated by pharmacological inhibition of the ATP-gated P2X4 and P2X7 receptors with their respective specific antagonists, but enhanced by overexpression of P2X4 and P2X7 receptors in grass carp ovary cells. In contrast, adenosine administration significantly reduces iNOS gene expression, enzyme activity and NO production in carp HKMs, and these inhibitory effects can be reversed by pharmacological inhibition of adenosine receptors with the antagonist XAC. Furthermore, LPS- and poly(I:C)-induced iNOS gene expression, enzyme activity, and NO production are significantly attenuated by blockade of P2X4 and P2X7 receptors with their respective specific antagonists in carp HKMs, while overexpression of P2X and P2X7 receptors results in enhanced iNOS gene expression, enzyme activity and NO production in LPS- and poly(I:C)-treated grass carp ovary cells. Taken together, we firstly report an opposite role of extracellular ATP/adenosine-mediated purinergic signaling in modulating iNOS-NO system activity in fish.


Asunto(s)
Adenosina , Carpas , Animales , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Carpas/metabolismo , Lipopolisacáridos/farmacología , Riñón Cefálico/metabolismo , Macrófagos/metabolismo , Adenosina Trifosfato/metabolismo , Expresión Génica
12.
Mar Biotechnol (NY) ; 26(2): 261-275, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353762

RESUMEN

The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.


Asunto(s)
Proteínas de Peces , Hepcidinas , Inflamación , Dorada , Animales , Dorada/genética , Dorada/metabolismo , Dorada/inmunología , Hepcidinas/genética , Hepcidinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Inflamación/genética , Inflamación/metabolismo , Hígado/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/metabolismo , Riñón Cefálico/metabolismo , Hierro/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos/efectos de los fármacos , Piel/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Regiones Promotoras Genéticas
13.
Sci Total Environ ; 918: 170503, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38301776

RESUMEN

Reactive oxygen species (ROS) over-production and oxidative stress resulted from climate change and environmental pollution seriously endangered global fish populations and healthy development of marine aquaculture. Peroxiredoxins (Prxs), a highly conserved family of thiol-specific antioxidants, can mitigate ROS and protect cells from oxidative stress. We previously demonstrated that large yellow croaker PrxIV (LcPrxIV) could not only regulate the pro-inflammatory responses, but also scavenge ROS. However, the underlying mechanism how LcPrxIV regulated immune response and redox homeostasis remains unknown. MicroRNAs (miRNAs) are non-coding RNAs that play important roles in the regulation of various biological processes. In this study, mRNA and miRNA expression profiles from LYCK-pcDNA3.1 and LYCK-PrxIV cells, with or without oxidative stress stimulated by H2O2 were evaluated using high-throughput sequencing. A series of differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs), as well as DEM-DEG pairs were identified from each two-group comparison, respectively. GO and KEGG functional analyses indicated that most significant DEGs were associated with signaling pathways related to oxidative stress and immune response. Subsequent DEM-DEG interaction analysis revealed that miR-731 and miR-1388 may be involved in both redox regulation and immune response via synergistic effect with LcPrxIV. Interestingly, miR-731 could regulate the expression of different down-stream DEGs under different stimulations of LcPrxIV over-expression, H2O2, or both. Moreover, miR-731 could cause the DEG, γ-glutamyl hydrolase (GGH), to be expressed in opposite ways under different stimulations. On the other hand, the expression of miR-1388 could be negatively or positively regulated under the stimulation of LcPrxIV over-expression with or without oxidative stress, thus regulating gene expression of different mRNAs. Based on these results, we speculate that LcPrxIV may participate in immune response or redox regulation by regulating the expression of different down-stream genes through controlling the expression level of a certain miRNA or by regulating the varieties of expressed miRNAs.


Asunto(s)
MicroARNs , Perciformes , Animales , MicroARNs/genética , Especies Reactivas de Oxígeno/metabolismo , ARN Mensajero/metabolismo , Riñón Cefálico/metabolismo , Peróxido de Hidrógeno/metabolismo , Perciformes/metabolismo , Oxidación-Reducción , Perfilación de la Expresión Génica
14.
Fish Shellfish Immunol ; 146: 109357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38181891

RESUMEN

Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Regulación de la Expresión Génica , Riñón Cefálico , Células Endoteliales , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , ARN Nuclear Pequeño , Mamíferos
15.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-786975

RESUMEN

PURPOSE: Oxidized low-density lipoprotein (oxLDL) plays a key role in endothelial dysfunction, vascular inflammation, and atherogenesis. The aim of this study was to assess blood clearance and in vivo kinetics of radiolabeled oxLDL in mice.METHODS: We synthesized ¹²³I-oxLDL by the iodine monochloride method, and performed an uptake study in CHO cells transfected with lectin-like oxLDL receptor-1 (LOX-1). In addition, we evaluated the consistency between the ¹²³I-oxLDL autoradiogram and the fluorescence image of DiI-oxLDL after intravenous injection for both spleen and liver. Whole-body dynamic planar images were acquired 10 min post injection of ¹²³I-oxLDL to generate regional time-activity curves (TACs) of the liver, heart, lungs, kidney, head, and abdomen. Regional radioactivity for those excised tissues as well as the bladder, stomach, gut, and thyroid were assessed using a gamma counter, yielding percent injected dose (%ID) and dose uptake ratio (DUR). The presence of ¹²³I-oxLDL in serum was assessed by radio-HPLC.RESULTS: The cellular uptakes of ¹²³I-oxLDL were identical to those of DiI-oxLDL, and autoradiograms and fluorescence images also exhibited consistent distributions. TACs after injection of ¹²³I-oxLDL demonstrated extremely fast kinetics. The radioactivity uptake at 10 min postinjection was highest in the liver (40.8 ± 2.4% ID). Notably, radioactivity uptake was equivalent throughout the rest of the body (39.4 ± 2.7% ID). HPLC analysis revealed no remaining ¹²³I-oxLDL or its metabolites in the blood.CONCLUSION: ¹²³I-OxLDL was widely distributed not only in the liver, but also throughout the whole body, providing insight into the pathophysiological effects of oxLDL.


Asunto(s)
Animales , Cricetinae , Ratones , Abdomen , Aterosclerosis , Células CHO , Cromatografía Líquida de Alta Presión , Fluorescencia , Riñón Cefálico , Corazón , Inflamación , Inyecciones Intravenosas , Yodo , Cinética , Lipoproteínas , Hígado , Pulmón , Métodos , Radiactividad , Bazo , Estómago , Glándula Tiroides , Vejiga Urinaria
16.
Immune Network ; : 124-129, 2008.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-128533

RESUMEN

BACKGROUND: The immunomodulatory effects of Korean mistletoe (Viscum album Coloratum) on the innate immune responses of eel (Anguilla japonica) were studied. METHODS: Mistletoe, Freund's complete adjuvant (FCA), or phosphate-buffered saline (PBS) as a control was injected into eel peritoneal cavities. RESULTS: Nitroblue tetrazolium (NBT)-positive cells in the head kidney of eel were significantly augmented by the second day post-injection of mistletoe. Reactive oxygen intermediates (ROI) were more produced in mistletoe-injected fish kidney leucocytes than in FCA-injected ones. The level of lysozyme activity in the serum of fish 2 days after injection with mistletoe was also significantly higher than that in the serum of the control fish. The optimal concentration of mistletoe in inducing the highest serum lysozyme activity was revealed to 500microgram/200 g of fish. In phagocytic activity assay, mistletoe-sensitized eel kidney phagocytes captured more zymosan than did the control fish. CONCLUSION: Korean mistletoe appeared to be a good activator of the non-specific immune responses of eel.


Asunto(s)
Anguilas , Riñón Cefálico , Inmunidad Innata , Riñón , Muérdago , Muramidasa , Nitroazul de Tetrazolio , Oxígeno , Fagocitos , Zimosan
17.
Artículo en Coreano | WPRIM (Pacífico Occidental) | ID: wpr-181224

RESUMEN

Carp which receive intraperitoneal injections of sodium alginate show a high survival rate after being challenged with Edwardsiella tarda. To elucidate the immunoenhancement by sodium alginate, its effects on the non-specific defense system of carp were investigated. Sodium alginate had little influence either on the activity of the alternative complement pathway or on the phagocytic and respiratory burst activities of head kidney phagocytes (HKP), yet it greatly enhanced the migration of HKP to the peritoneal cavity (the site of injection) and concurrently elevated their phagocytic activity. The number of phagocytes mobilized by sodium alginate was 2 to 50 times greater than that by the well-known peritoneal exudate cell-eliciting agents when injected at the same dose. Accordingly, it is highly probable that the early elimination of challenge bacteria by such mobilized and activated phagocytes was responsible for the high survival rate of the alginateinjected fish. In chemotaxis assays, it was revealed that sodium alginate stimulated sorne leukocyte subpopulation (s) within the peritoneal cavity to produce and/or secrete chemotactic factor (s), while concurrently enhancing the sensitivity of HKP to the factor (s).


Asunto(s)
Bacterias , Carpas , Quimiotaxis , Vía Alternativa del Complemento , Edwardsiella tarda , Exudados y Transudados , Riñón Cefálico , Inyecciones Intraperitoneales , Leucocitos , Cavidad Peritoneal , Fagocitos , Estallido Respiratorio , Sodio , Tasa de Supervivencia
18.
Artículo en Coreano | WPRIM (Pacífico Occidental) | ID: wpr-126173

RESUMEN

Treatment of rainbow trout macrophages with glycyrrhizin (GL), an aqueous extract of licorice (Glycyrrhiza glabra), enhanced their respiratory burst activity. Maximal effects were seen using concentrations of 10-100 ug/ml. GL also modulated trout lymphocytes, increasing proliferation responses to the mitogen phytohemagglutinin two-fold over a range of GL concentrations. In addition, GL elicited the release of a macrophage activating factor (MAF) kom head kidney leukocytes, as assessed by the ability of generated supernatants to increase respiratory burst activity of target macrophages. MAF activity was most apparent using 100 ug/ml GL to induce MAF release and a 48 h incubation period with the target macrophages. Finally, GL was shown to enhance the release oF MAF in response to the mitogen concanavalin A. The results suggest that GL might modulate the innate defences in fish.


Asunto(s)
Concanavalina A , Glycyrrhiza , Ácido Glicirrínico , Riñón Cefálico , Leucocitos , Linfocitos , Macrófagos , Oncorhynchus mykiss , Oncorhynchus , Estallido Respiratorio , Trucha
19.
Artículo en Coreano | WPRIM (Pacífico Occidental) | ID: wpr-117929

RESUMEN

Serum immunoglobulins from carp Cyprinus carpio were purified using affinity chromatography methods. Fish were immunized with bovine serum albumin (BSA) and the specific fish antibodies purified from the immune serum on a BSA-irnmobilized Sepharose 4B gel. The analysis of the immunoglobulins by reducing SDS-PAGE showed them to be composed of a single p,-like heavy chain of 76 kd and light chain of 28 kd. Polyclonal rabbit antibodies against the fish IgM were produced to further analyze IgM' B-like cells from carp. Irrespective of a BSA immunization, the distribution rates of IgM' B-like cells in the head kidney and spleen were about 49% and 24%, respectively. The IgM' cells were magnetically purified by using Mini-Macs column. To study whether the purified IgM' cells are B-like lymphocytes, those cells were cultured with hrIL-4 (50 U/ml) for 48 hr at 25C in 5% CO, incubator. And the titer of antibodies secreted from IgM' and IgM cells was analyzed by an enzyme-linked immunosorbent assay (ELISA). We found the IgM' cells produced a greater amount of antibodies to BSA than both IgM cells and negative control. Unexpectedly, however, moderate amount of antibodies were also detected in the supernatant of IgM cell population, indicating the difference of humoral immune responses between a fish and mammalian.


Asunto(s)
Anticuerpos , Carpas , Cromatografía de Afinidad , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Riñón Cefálico , Inmunidad Humoral , Inmunización , Inmunoglobulina M , Inmunoglobulinas , Incubadoras , Linfocitos , Sefarosa , Albúmina Sérica Bovina , Bazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA