Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Funct Integr Genomics ; 20(5): 711-721, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32705366

RESUMEN

Puccinia triticina (P. triticina) is one of the most devastating fungal pathogens of wheat which causes significant annual yield loss to the crop. Understanding the gene regulatory mechanism of the biotrophic pathogen is one of the important aspects of host-pathogen interaction studies. Dicer-like genes are considered as important mediators of RNAi-based gene regulation. In this study, we report the presence of three Dicer-like genes (Pt-DCL1, Pt-DCL2, Pt-DCL3) in P. triticina genome identified through computational and biological analyses. Quantitative real-time PCR studies revealed an increase in the expression of these genes in germinating spore stages. Heterologous expression combined with mass spectrometry analysis of Pt-DCL2 confirmed the presence of a canonical Dicer-like gene in P. triticina. Phylogenetic analysis of the Pt-DCLs with the Dicer-like proteins from other organisms showed a distinct cluster of rust pathogens from the order Pucciniales. The results indicated a species-specific duplication of Dicer-like genes within the wheat rust pathogens. This study, for the first time, reports the presence of Dicer-dependent RNAi pathway in P. triticina that may play a role in gene regulatory mechanism of the pathogen during its development. Our study serves as a vital source of information for further RNAi-based molecular studies for better understanding and management of the wheat leaf rust disease.


Asunto(s)
Genes Fúngicos , Puccinia/genética , Ribonucleasa III/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Puccinia/metabolismo , Ribonucleasa III/clasificación , Ribonucleasa III/metabolismo , Triticum/microbiología
2.
Cell ; 173(1): 234-247.e7, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551264

RESUMEN

Dicer proteins are known to produce small RNAs (sRNAs) from long double-stranded RNA (dsRNA) templates. These sRNAs are bound by Argonaute proteins, which select the guide strand, often with a 5' end sequence bias. However, Dicer proteins have never been shown to have sequence cleavage preferences. In Paramecium development, two classes of sRNAs that are required for DNA elimination are produced by three Dicer-like enzymes: Dcl2, Dcl3, and Dcl5. Through in vitro cleavage assays, we demonstrate that Dcl2 has a strict size preference for 25 nt and a sequence preference for 5' U and 5' AGA, while Dcl3 has a sequence preference for 5' UNG. Dcl5, however, has cleavage preferences for 5' UAG and 3' CUAC/UN, which leads to the production of RNAs precisely matching short excised DNA elements with corresponding end base preferences. Thus, we characterize three Dicer-like enzymes that are involved in Paramecium development and propose a biological role for their sequence-biased cleavage products.


Asunto(s)
Paramecium/genética , Proteínas Protozoarias/metabolismo , Ribonucleasa III/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Elementos Transponibles de ADN/genética , Paramecium/metabolismo , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , División del ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Alineación de Secuencia , Análisis de Secuencia de ARN
3.
J Biomol Struct Dyn ; 36(1): 139-151, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27928938

RESUMEN

miRNA biogenesis is a multistage process for the generation of a mature miRNA and involves several different proteins. In this work, we have carried out both sequence- and structure-based analysis for crucial proteins involved in miRNA biogenesis, namely Dicer, Drosha, Argonaute (Ago), and Exportin-5 to understand evolution of these proteins in animal kingdom and also to identify key sequence and structural features that are determinants of their function. Our analysis reveals that in animals the miRNA biogenesis pathway first originated in molluscs. The phylogeny of Dicer and Ago indicated evolution through gene duplication followed by sequence divergence that resulted in functional divergence. Our detailed structural analysis also revealed that RIIIDb domains of Drosha and Dicer, share significant similarity in sequence, structure, and substrate-binding pocket. On the other hand, PAZ domains of Dicer and Ago show only conservation of the substrate-binding pockets in the catalytic sites despite significant divergence in sequence and overall structure. Based on a comparative structural analysis of all four human Ago proteins (hAgo1-4) and their known biochemical activity, we have also attempted to identify key residues in Ago2 which are responsible for the unique slicer activity of hAgo2 among all isoforms. We have identified six key residues in N domain of hAgo2, which are located far away from the catalytic pocket, but might be playing a major role in slicer activity of hAgo2 protein because of their involvement in mRNA binding.


Asunto(s)
Proteínas Argonautas/genética , ARN Helicasas DEAD-box/genética , Carioferinas/genética , MicroARNs/genética , Ribonucleasa III/genética , Secuencia de Aminoácidos , Animales , Proteínas Argonautas/clasificación , Proteínas Argonautas/metabolismo , Secuencia de Bases , Sitios de Unión , ARN Helicasas DEAD-box/clasificación , ARN Helicasas DEAD-box/metabolismo , Evolución Molecular , Humanos , Carioferinas/clasificación , Carioferinas/metabolismo , MicroARNs/metabolismo , Filogenia , Unión Proteica , Ribonucleasa III/clasificación , Ribonucleasa III/metabolismo , Homología de Secuencia de Aminoácido
4.
Sci Rep ; 7: 44832, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28317870

RESUMEN

RNaseIII proteins are dsRNA-specific endonucleases involved in many important biological processes, such as small RNA processing and maturation in eukaryotes. Various small RNAs have been identified in a protozoan parasite Entamoeba histolytica. EhRNaseIII is the only RNaseIII endonuclease domain (RIIID)-containing protein in E. histolytica. Here, we present three crystal structures that reveal several unique structural features of EhRNaseIII, especially the interactions between the two helixes (α1 and α7) flanking the RIIID core domain. Structure and sequence analysis indicate that EhRNaseIII is a noncanonical Dicer and it lacks a dsRBD in the C-terminal region (CTR). In vitro studies suggest that EhRNaseIII prefers to bind and cleave longer dsRNAs, generating products around 25 nucleotides in length. Truncation of the CTR or attaching the dsRBD of Aquifex aeolicus RNaseIII can enhance the binding and cleavage activities of EhRNaseIII. In combination with in vitro crosslinking assay, our results suggested that EhRNaseIII functions in a cooperative mode. We speculate that some partner proteins may exist in E. histolytica and regulates the activity of EhRNaseIII through interaction with its CTR. Our studies support that EhRNaseIII plays an important role in producing small RNAs in E. histolytica.


Asunto(s)
Entamoeba histolytica/enzimología , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/metabolismo , Dominio Catalítico , Entamoeba histolytica/genética , Iones/química , Metales/química , Modelos Biológicos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , División del ARN , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Relación Estructura-Actividad
5.
Genome Biol Evol ; 7(9): 2648-62, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26338185

RESUMEN

The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales.


Asunto(s)
Metilación de ADN , Genes de Plantas , Magnoliopsida/genética , ARN Interferente Pequeño/metabolismo , Arabidopsis/genética , Cromatina/metabolismo , Cycadopsida/genética , Cycadopsida/metabolismo , Citosina/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Epigénesis Genética , Genoma de Planta , Magnoliopsida/enzimología , Magnoliopsida/metabolismo , Metilación , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , ARN de Planta/química , ARN de Planta/metabolismo , ARN Pequeño no Traducido/química , Ribonucleasa III/clasificación , Ribonucleasa III/genética
6.
BMC Genomics ; 15: 775, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25199785

RESUMEN

BACKGROUND: RNA interference (RNAi) leads to sequence specific knock-down of gene expression and has emerged as an important tool to analyse gene functions, pathway analysis and gene therapy. Although RNAi is a conserved cellular process involving common elements and factors, species-specific differences have been observed among different eukaryotes. Identification of components for RNAi pathway is pursued intensively and successful genome-wide screens have been performed for components of RNAi pathways in various organisms. Functional comparative genomics analysis offers evolutionary insight that forms basis of discoveries of novel RNAi-factors within related organisms. Keeping in view the academic and commercial utility of insect derived cell-line from Spodoptera frugiperda, we pursued the identification and functional analysis of components of RNAi-machinery of Sf21 cell-line using genome-wide application. RESULTS: The genome and transcriptome of Sf21 was assembled and annotated. In silico application of comparative genome analysis among insects allowed us to identify several RNAi factors in Sf21 line. The candidate RNAi factors from assembled genome were validated by knockdown analysis of candidate factors using the siRNA screens on the Sf21-gfp reporter cell-line. Forty two (42) potential factors were identified using the cell based assay. These include core RNAi elements including Dicer-2, Argonaute-1, Drosha, Aubergine and auxiliary modules like chromatin factors, RNA helicases, RNA processing module, signalling allied proteins and others. Phylogenetic analyses and domain architecture revealed that Spodoptera frugiperda homologs retained identity with Lepidoptera (Bombyx mori) or Coleoptera (Tribolium castaneum) sustaining an evolutionary conserved scaffold in post-transcriptional gene silencing paradigm within insects. CONCLUSION: The database of RNAi-factors generated by whole genome association survey offers comprehensive outlook about conservation as well as specific differences of the proteins of RNAi machinery. Understanding the interior involved in different phases of gene silencing also offers impending tool for RNAi-based applications.


Asunto(s)
Genoma de los Insectos , Spodoptera/genética , Secuencia de Aminoácidos , Animales , Proteínas Argonautas/antagonistas & inhibidores , Proteínas Argonautas/clasificación , Proteínas Argonautas/genética , Línea Celular , Hibridación Genómica Comparativa , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/clasificación , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Filogenia , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/clasificación , ARN Helicasas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/antagonistas & inhibidores , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Alineación de Secuencia , Spodoptera/clasificación , Spodoptera/citología , Transcriptoma
7.
PLoS One ; 9(4): e95350, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24748168

RESUMEN

Dicers are proteins of the ribonuclease III family with the ability to process dsRNA, involved in regulation of gene expression at the post-transcriptional level. Dicers are conserved from basal metazoans to higher metazoans and contain a number of functional domains that interact with dsRNA. The completed genome sequences of over 34 invertebrate species allowed us to systematically investigate Dicer genes over a diverse range of phyla. The majority of invertebrate Dicers clearly fell into the Dicer1 or Dicer2 subfamilies. Most nematodes possessed only one Dicer gene, a member of the Dicer1 subfamily, whereas two Dicer genes (Dicer1 and Dicer2) were present in all platyhelminths surveyed. Analysis of the key domains showed that a 5' pocket was conserved across members of the Dicer1 subfamily, with the exception of the nematode Bursaphelenchus xylophilus. Interestingly, Nematostella vectensis DicerB grouped into Dicer2 subfamily harbored a 5' pocket, which is commonly present in Dicer1. Similarly, the 3' pocket was also found to be conserved in all Dicer proteins with the exceptions of Schmidtea mediterranea Dicer2 and Trichoplax adherens Dicer A. The loss of catalytic residues in the RNase III domain was noted in platyhelminths and cnidarians, and the 'ball' and 'socket' junction between two RNase III domains in platyhelminth Dicers was different from the canonical junction, suggesting the possibility of different conformations. The present data suggest that Dicers might have duplicated and diversified independently, and have evolved for various functions in invertebrates.


Asunto(s)
Filogenia , Ribonucleasa III/clasificación , Secuencia de Aminoácidos , Animales , Humanos , Funciones de Verosimilitud , Nematodos , Homología de Secuencia de Aminoácido
8.
Annu Rev Genet ; 47: 405-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24274754

RESUMEN

RNase III is a global regulator of gene expression in Escherichia coli that is instrumental in the maturation of ribosomal and other structural RNAs. We examine here how RNase III itself is regulated in response to growth and other environmental changes encountered by the cell and how, by binding or processing double-stranded RNA (dsRNA) intermediates, RNase III controls the expression of genes. Recent insight into the mechanism of dsRNA binding and processing, gained from structural studies of RNase III, is reviewed. Structural studies also reveal new cleavage sites in the enzyme that can generate longer 3' overhangs.


Asunto(s)
Ribonucleasa III/fisiología , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Secuencias de Aminoácidos , Bacteriófago lambda/genética , Catálisis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células Eucariotas/enzimología , Regulación Bacteriana de la Expresión Génica , Conformación de Ácido Nucleico , Operón , Células Procariotas/enzimología , Procesamiento Proteico-Postraduccional , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Bacteriano/metabolismo , ARN Bicatenario/metabolismo , ARN Ribosómico/metabolismo , ARN Pequeño no Traducido/genética , Ribonucleasa III/química , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Relación Estructura-Actividad , Especificidad por Sustrato , Virosis/genética
9.
Open Biol ; 3(10): 130144, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24153005

RESUMEN

The ribonuclease III enzymes Drosha and Dicer are renowned for their central roles in the biogenesis of microRNAs (miRNAs). For many years, this has overshadowed the true versatility and importance of these enzymes in the processing of other RNA substrates. For example, Drosha also recognizes and cleaves messenger RNAs (mRNAs), and potentially ribosomal RNA. The cleavage of mRNAs occurs via recognition of secondary stem-loop structures similar to miRNA precursors, and is an important mechanism of repressing gene expression, particularly in progenitor/stem cell populations. On the other hand, Dicer also has critical roles in genome regulation and surveillance. These include the production of endogenous small interfering RNAs from many sources, and the degradation of potentially harmful short interspersed element and viral RNAs. These findings have sparked a renewed interest in these enzymes, and their diverse functions in biology.


Asunto(s)
MicroARNs/biosíntesis , ARN Bicatenario/metabolismo , Ribonucleasa III/clasificación , Daño del ADN/fisiología , Desoxirribonucleasas/metabolismo , Evolución Molecular , Genoma/genética , Genoma/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Filogenia , Procesamiento Postranscripcional del ARN , Virus ARN/metabolismo , ARN Bicatenario/química , ARN Mensajero/biosíntesis , ARN Ribosómico/biosíntesis , ARN Interferente Pequeño/biosíntesis , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Células Madre/metabolismo
10.
BMC Evol Biol ; 12: 216, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23145470

RESUMEN

BACKGROUND: The sequencing of the genome of the pea aphid Acyrthosiphon pisum revealed an unusual expansion of the miRNA machinery, with two argonaute-1, two dicer-1 and four pasha gene copies. In this report, we have undertaken a deeper evolutionary analysis of the phylogenetic timing of these gene duplications and of the associated selective pressures by sequencing the two copies of ago-1 and dcr-1 in different aphid species of the subfamily Aphidinae. We have also carried out an analysis of the expression of both copies of ago-1 and dcr-1 by semi-quantitative PCR in different morphs of the pea aphid life cycle. RESULTS: The analysis has shown that the duplication of ago-1 occurred in an ancestor of the subfamily Aphidinae while the duplication of dcr-1 appears to be more recent. Besides, it has confirmed a pattern of one conserved copy and one accelerated copy for both genes, and has revealed the action of positive selection on several regions of the fast-evolving ago-1b. On the other hand, the semi-quantitative PCR experiments have revealed a differential expression of these genes between the morphs of the parthenogenetic and the sexual phases of Acyrthosiphon pisum. CONCLUSIONS: The discovery of these gene duplications in the miRNA machinery of aphids opens new perspectives of research about the regulation of gene expression in these insects. Accelerated evolution, positive selection and differential expression affecting some of the copies of these genes suggests the possibility of a neofunctionalization of these duplicates, which might play a role in the display of the striking phenotypic plasticity of aphids.


Asunto(s)
Áfidos/genética , Duplicación de Gen , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , MicroARNs/genética , Empalme Alternativo , Animales , Proteínas Argonautas/clasificación , Proteínas Argonautas/genética , Evolución Molecular , Femenino , Conversión Génica , Proteínas de Insectos/clasificación , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Reproducción/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Análisis de Secuencia de ADN
11.
Funct Integr Genomics ; 9(3): 277-86, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19221817

RESUMEN

Dicer and Dicer-like (DCL) proteins are key components in small RNA biogenesis. DCLs form a small protein family in plants whose diversification time dates to the emergence of mosses (Physcomitrella patens). DCLs are ubiquitously but not evenly expressed in tissues, at different developmental stages, and in response to environmental stresses. In Arabidopsis, AtDCL1, AtDCL2, and AtDCL4 exhibit similar expression pattern during the leaf or stem development, which is distinguished from AtDCL3. However, distinct expression profiles for all DCLs are found during the development of reproductive organs flower and seed. The grape VvDCL1 and VvDCL3 may act sequentially to face the fungi challenge. Overall, the responses of DCLs to drought, cold, and salt are quite different, indicating that plants might have specialized regulatory mechanism in response to different abiotic stresses. Further analysis of the promoter regions reveals a few of cis-elements that are hormone- and stress-responsive and developmental-related. However, gain and loss of cis-elements are frequent during evolution, and not only paralogous but also orthologous DCLs have dissimilar cis-element organization. In addition to cis-elements, AtDCL1 is probably regulated by both ath-miR162 and ath-miR414. Posterior analysis has identified some critical amino acid sites that are responsible for functional divergence between DCL family members. These findings provide new insights into understanding DCL protein functions.


Asunto(s)
Proteínas de Plantas/metabolismo , Ribonucleasa III/metabolismo , Animales , Arabidopsis/fisiología , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Estrés Fisiológico
12.
BMC Genomics ; 9: 451, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18826656

RESUMEN

BACKGROUND: Important developmental processes in both plants and animals are partly regulated by genes whose expression is modulated at the post-transcriptional level by processes such as RNA interference (RNAi). Dicers, Argonautes and RNA-dependent RNA polymerases (RDR) form the core components that facilitate gene silencing and have been implicated in the initiation and maintenance of the trigger RNA molecules, central to process of RNAi. Investigations in eukaryotes have revealed that these proteins are encoded by variable number of genes with plants showing relatively higher number in each gene family. To date, no systematic expression profiling of these genes in any of the organisms has been reported. RESULTS: In this study, we provide a complete analysis of rice Dicer-like, Argonaute and RDR gene families including gene structure, genomic localization and phylogenetic relatedness among gene family members. We also present microarray-based expression profiling of these genes during 14 stages of reproductive and 5 stages of vegetative development and in response to cold, salt and dehydration stress. We have identified 8 Dicer-like (OsDCLs), 19 Argonaute (OsAGOs) and 5 RNA-dependent RNA polymerase (OsRDRs) genes in rice. Based on phylogeny, each of these genes families have been categorized into four subgroups. Although most of the genes express both in vegetative and reproductive organs, 2 OsDCLs, 14 OsAGOs and 3 OsRDRs were found to express specifically/preferentially during stages of reproductive development. Of these, 2 OsAGOs exhibited preferential up-regulation in seeds. One of the Argonautes (OsAGO2) also showed specific up-regulation in response to cold, salt and dehydration stress. CONCLUSION: This investigation has identified 23 rice genes belonging to DCL, Argonaute and RDR gene families that could potentially be involved in reproductive development-specific gene regulatory mechanisms. These data provide an insight into probable domains of activity of these genes and a basis for further, more detailed investigations aimed at understanding the contribution of individual components of RNA silencing machinery during reproductive phase of plant development.


Asunto(s)
Genes de Plantas , Genoma de Planta , Oryza/genética , Proteínas de Plantas/genética , ARN Polimerasa Dependiente del ARN/genética , Ribonucleasas/genética , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , ARN Polimerasa Dependiente del ARN/clasificación , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Ribonucleasas/clasificación , Ribonucleasas/metabolismo , Semillas/genética , Alineación de Secuencia
13.
FEBS Lett ; 582(18): 2753-60, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18625233

RESUMEN

Dicers are associated with double-stranded RNA-binding proteins (dsRBPs) in animals. In the plant, Arabidopsis, there are four dicer-like (DCL) proteins and five potential dsRBPs. These DCLs act redundantly and hierarchically. However, we show there is little or no redundancy or hierarchy amongst the DRBs in their DCL interactions. DCL1 operates exclusively with DRB1 to produce micro (mi)RNAs, DCL4 operates exclusively with DRB4 to produce trans-acting (ta) siRNAs and 21nt siRNAs from viral RNA. DCL2 and DCL3 produce viral siRNAs without requiring assistance from any dsRBP. DRB2, DRB3 and DRB5 appear unnecessary for mi-, tasi-, viral si-, or heterochromatinising siRNA production but act redundantly in a developmental pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Elementos Transponibles de ADN , MicroARNs/biosíntesis , MicroARNs/química , Mutación , Conformación de Ácido Nucleico , Fenotipo , Filogenia , ARN Bicatenario/clasificación , ARN Bicatenario/genética , ARN de Planta/biosíntesis , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/química , ARN Viral/biosíntesis , ARN Viral/química , Proteínas de Unión al ARN/clasificación , Proteínas de Unión al ARN/genética , Ribonucleasa III/clasificación , Ribonucleasa III/genética
14.
Curr Top Microbiol Immunol ; 320: 77-97, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18268840

RESUMEN

Dicer, an RNase III type endonuclease, is the key enzyme involved in RNA interference (RNAi) and microRNA (miRNA) pathways. It is required for biogenesis of miRNAs and small interfering RNAs (siRNAs), and also plays an important role in an effector step of RNA silencing, the RNA-induced silencing complex (RISC) assembly. In this article we describe different functions of Dicer in posttranscriptional regulation. We review the current knowledge about Dicers in different organisms and the functions of individual domains of the enzyme. We also discuss information about Dicer-associated proteins and their role in the biogenesis of small RNAs and assembly of RISC.


Asunto(s)
Interferencia de ARN , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Animales , Humanos , ARN Bicatenario/análisis , ARN Mensajero/análisis , Complejo Silenciador Inducido por ARN/metabolismo , Ribonucleasa III/clasificación
15.
Curr Top Microbiol Immunol ; 320: 99-116, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18268841

RESUMEN

Members of the Ribonuclease III (RNase III) family are double-stranded (ds) RNA-specific endoribonucleases, characterized by a signature motif in their active centers and a 2-nucleotide (nt) 3' overhang in their products. Dicer functions as a dsRNA-processing enzyme, producing small interfering RNA (siRNA) of approx. 24 nt in length (approx. 20-basepair RNA duplex with a 2-nt 3' overhang on each end). Bacterial RNase III functions not only as a processing enzyme, but also as a binding protein that binds dsRNA without cleaving it. As a processing enzyme it produces siRNA-like RNA of approx. 13 nt in length (approx. 9-basepair duplex with a 2-nt 3' overhang on each end) as well as various types of mature RNA. Dicer is structurally most complicated member of the family; bacterial RNase III is comparatively much simpler. One structure is known for Dicer in its RNA-free form (MacRae, Zhou, Li, Repic, Brooks, Cande, Adams, and Doudna, Science 311:195-198); many structures are available for bacterial RNase III, including the first catalytic complex of the entire family (Gan, Tropea, Austin, Court, Waugh, and Ji, Cell 124:355-366). In light of the structural and biochemical information on the RNase III proteins and the structure of a non-Dicer PAZ (Piwi Argonaute Zwille) domain in complex with a 7-basepair RNA duplex with a 2-nt 3' overhang on each end (Ma, Ye, and Patel, Nature 429:318-322), the structure and function of Dicer is being elucidated.


Asunto(s)
Interferencia de ARN , Ribonucleasa III , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Humanos , Estructura Terciaria de Proteína , ARN Bicatenario/metabolismo , Ribonucleasa III/química , Ribonucleasa III/clasificación , Ribonucleasa III/metabolismo
16.
Curr Opin Struct Biol ; 17(1): 138-45, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17194582

RESUMEN

Ribonuclease III (RNase III) enzymes occur ubiquitously in biology and are responsible for processing RNA precursors into functional RNAs that participate in protein synthesis, RNA interference and a range of other cellular activities. Members of the RNase III enzyme family, including Escherichia coli RNase III, Rnt1, Dicer and Drosha, share the ability to recognize and cleave double-stranded RNA (dsRNA), typically at specific positions or sequences. Recent biochemical and structural data have shed new light on how RNase III enzymes catalyze dsRNA hydrolysis and how substrate specificity is achieved. A major theme emerging from these studies is that accessory domains present in different RNase III enzymes are the key determinants of substrate selectivity, which in turn dictates the specialized biological function of each type of RNase III protein.


Asunto(s)
Ribonucleasa III/química , Ribonucleasa III/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Moleculares , Conformación Proteica , Ribonucleasa III/clasificación
17.
Nat Chem Biol ; 3(1): 36-43, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17173028

RESUMEN

Though they started out as somewhat mysterious components of the RNAi effector complexes, Argonaute proteins have since taken center stage in RNAi gene silencing. They interact with small RNAs to effect gene silencing in all RNAi-related pathways known so far. We will review the dramatic advances in our understanding of the role of the Argonautes in RNAi through studies of their structure and function.


Asunto(s)
Factores de Iniciación de Péptidos/fisiología , Estructura Terciaria de Proteína , Interferencia de ARN/fisiología , Procesamiento Postranscripcional del ARN , Ribonucleasa III/fisiología , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Factores de Iniciación de Péptidos/química , Pyrococcus furiosus/química , Pyrococcus furiosus/fisiología , Ribonucleasa III/clasificación , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/fisiología , Alineación de Secuencia , Transducción de Señal
18.
J Virol ; 79(11): 7227-38, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15890961

RESUMEN

Double-stranded RNA (dsRNA)-specific endonucleases belonging to RNase III classes 3 and 2 process dsRNA precursors to small interfering RNA (siRNA) or microRNA, respectively, thereby initiating and amplifying RNA silencing-based antiviral defense and gene regulation in eukaryotic cells. However, we now provide evidence that a class 1 RNase III is involved in suppression of RNA silencing. The single-stranded RNA genome of sweet potato chlorotic stunt virus (SPCSV) encodes an RNase III (RNase3) homologous to putative class 1 RNase IIIs of unknown function in rice and Arabidopsis. We show that RNase3 has dsRNA-specific endonuclease activity that enhances the RNA-silencing suppression activity of another protein (p22) encoded by SPCSV. RNase3 and p22 coexpression reduced siRNA accumulation more efficiently than p22 alone in Nicotiana benthamiana leaves expressing a strong silencing inducer (i.e., dsRNA). RNase3 did not cause intracellular silencing suppression or reduce accumulation of siRNA in the absence of p22 or enhance silencing suppression activity of a protein encoded by a heterologous virus. No other known RNA virus encodes an RNase III or uses two independent proteins cooperatively for RNA silencing suppression.


Asunto(s)
Crinivirus/enzimología , Crinivirus/patogenicidad , Silenciador del Gen , ARN de Planta/genética , ARN de Planta/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/fisiología , Crinivirus/genética , Genes Virales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasa III/clasificación , Nicotiana/genética , Nicotiana/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA