Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biochem Soc Trans ; 49(2): 727-745, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33929506

RESUMEN

YbeY is an ultraconserved small protein belonging to the unique heritage shared by most existing bacteria and eukaryotic organelles of bacterial origin, mitochondria and chloroplasts. Studied in more than a dozen of evolutionarily distant species, YbeY is invariably critical for cellular physiology. However, the exact mechanisms by which it exerts such penetrating influence are not completely understood. In this review, we attempt a transversal analysis of the current knowledge about YbeY, based on genetic, structural, and biochemical data from a wide variety of models. We propose that YbeY, in association with the ribosomal protein uS11 and the assembly GTPase Era, plays a critical role in the biogenesis of the small ribosomal subunit, and more specifically its platform region, in diverse genetic systems of bacterial type.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Filogenia , Unión Proteica , Ribonucleasas/clasificación , Ribonucleasas/genética , Homología de Secuencia de Aminoácido
2.
J Biol Chem ; 295(49): 16863-16876, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32994223

RESUMEN

RNase J enzymes are metallohydrolases that are involved in RNA maturation and RNA recycling, govern gene expression in bacteria, and catalyze both exonuclease and endonuclease activity. The catalytic activity of RNase J is regulated by multiple mechanisms which include oligomerization, conformational changes to aid substrate recognition, and the metal cofactor at the active site. However, little is known of how RNase J paralogs differ in expression and activity. Here we describe structural and biochemical features of two Staphylococcus epidermidis RNase J paralogs, RNase J1 and RNase J2. RNase J1 is a homodimer with exonuclease activity aided by two metal cofactors at the active site. RNase J2, on the other hand, has endonuclease activity and one metal ion at the active site and is predominantly a monomer. We note that the expression levels of these enzymes vary across Staphylococcal strains. Together, these observations suggest that multiple interacting RNase J paralogs could provide a strategy for functional improvisation utilizing differences in intracellular concentration, quaternary structure, and distinct active site architecture despite overall structural similarity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ribonucleasas/metabolismo , Staphylococcus epidermidis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Dimerización , Regulación Bacteriana de la Expresión Génica , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Estructura Cuaternaria de Proteína , ARN/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ribonucleasas/química , Ribonucleasas/clasificación , Ribonucleasas/genética , Especificidad por Sustrato
3.
Microbiol Spectr ; 6(2)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29651979

RESUMEN

RNases are key enzymes involved in RNA maturation and degradation. Although they play a crucial role in all domains of life, bacteria, archaea, and eukaryotes have evolved with their own sets of RNases and proteins modulating their activities. In bacteria, these enzymes allow modulation of gene expression to adapt to rapidly changing environments. Today, >20 RNases have been identified in both Escherichia coli and Bacillus subtilis, the paradigms of the Gram-negative and Gram-positive bacteria, respectively. However, only a handful of these enzymes are common to these two organisms and some of them are essential to only one. Moreover, although sets of RNases can be very similar in closely related bacteria such as the Firmicutes Staphylococcus aureus and B. subtilis, the relative importance of individual enzymes in posttranscriptional regulation in these organisms varies. In this review, we detail the role of the main RNases involved in RNA maturation and degradation in Gram-positive bacteria, with an emphasis on the roles of RNase J1, RNase III, and RNase Y. We also discuss how other proteins such as helicases can modulate the RNA-degradation activities of these enzymes.


Asunto(s)
ADN Helicasas/fisiología , Bacterias Grampositivas/enzimología , Ribonucleasas/fisiología , Proteínas Bacterianas , Endorribonucleasas/fisiología , Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/genética , Estabilidad del ARN , Ribonucleasas/clasificación , Especificidad por Sustrato
4.
Biochem Soc Trans ; 45(3): 683-691, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28620029

RESUMEN

Recent structural and mechanistic studies have shed considerable light on the catalytic mechanisms of nucleolytic ribozymes. The discovery of several new ribozymes in this class has now allowed comparisons to be made, and the beginnings of mechanistic groupings to emerge.


Asunto(s)
ARN Catalítico/metabolismo , Biocatálisis , Dominio Catalítico , Coenzimas , Eucariontes/enzimología , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Catalítico/química , ARN Catalítico/clasificación , Ribonucleasas/química , Ribonucleasas/clasificación , Ribonucleasas/metabolismo
5.
Nucleic Acids Res ; 45(12): 6995-7020, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28575517

RESUMEN

PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence-structure-function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.


Asunto(s)
Desoxirribonucleasas/química , Desoxirribonucleasas/clasificación , Ribonucleasas/química , Ribonucleasas/clasificación , Secuencia de Aminoácidos , Bacterias/enzimología , Bacterias/genética , Bacteriófagos/enzimología , Bacteriófagos/genética , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Hongos/enzimología , Hongos/genética , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Estructura Terciaria de Proteína , Ribonucleasas/genética , Ribonucleasas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
6.
J Gen Appl Microbiol ; 62(4): 181-8, 2016 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-27373509

RESUMEN

The potential of microbial ribonucleases as promising antitumor and antiviral agents, determines today's directions of their study. One direction is connected with biodiversity of RNases. We have analyzed completed and drafted Bacillus genomes deposited in GenBank for the presence of coding regions similar to the gene of an extracellular guanyl-preferring RNase of Bacillus amyloliquefaciens (barnase). Orthologues of the barnase gene were detected in 9 species out of 83. All of these belong to "B. subtilis" group within the genus. B. subtilis itself, as well as some other species within this group, lack such types of RNases. RNases similar to barnase were also found in species of "B. cereus" group as a part of plasmid-encoded S-layer toxins. It was also found that taxonomic states of culture collection strains, which were initially described based on a limited set of phenotypic characteristics, can be misleading and need to be confirmed. Using several approaches such as matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), sequencing of genes for 16S ribosomal RNA and RNA polymerase subunit beta followed by reconstruction of phylogenetic trees, we have re-identified two RNase-secreting Bacillus strains: B. thuringiensis B-388 which should be assigned as B. altitudinis B388 and B. intermedius 7P which should be renamed as B. pumilus 7P. Therefore, small secreted guanyl-preferring RNases are the feature of "B. subtilis" group only, which is characterized by distinctive lifestyle and adaptation strategies to environment.


Asunto(s)
Bacillus amyloliquefaciens/genética , Bacillus/clasificación , Guanina/metabolismo , Filogenia , Ribonucleasas/genética , Secuencia de Aminoácidos , Bacillus/enzimología , Bacillus/genética , Bacillus amyloliquefaciens/enzimología , Bacillus pumilus/enzimología , Bacillus pumilus/genética , Bacillus pumilus/aislamiento & purificación , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/genética , Bacillus thuringiensis/aislamiento & purificación , Proteínas Bacterianas , Secuencia de Bases , Clasificación/métodos , ADN Bacteriano , Genoma Bacteriano , ARN Ribosómico 16S , Ribonucleasas/clasificación , Ribonucleasas/metabolismo , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
7.
Nucleic Acids Res ; 42(12): 7894-910, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24878921

RESUMEN

DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3'-5' exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium smegmatis/enzimología , Ribonucleasas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Exonucleasas/metabolismo , Modelos Moleculares , Mutación , Operón , Hidrolasas Diéster Fosfóricas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Filogenia , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/clasificación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribonucleasas/clasificación , Ribonucleasas/genética , Ribonucleasas/metabolismo , Alineación de Secuencia
8.
Nucleic Acids Res ; 41(16): 7783-92, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23814182

RESUMEN

The initiation factor 4E (eIF4E) is implicated in most of the crucial steps of the mRNA life cycle and is recognized as a pivotal protein in gene regulation. Many of these roles are mediated by its interaction with specific proteins generally known as eIF4E-interacting partners (4E-IPs), such as eIF4G and 4E-BP. To screen for new 4E-IPs, we developed a novel approach based on structural, in silico and biochemical analyses. We identified the protein Angel1, a member of the CCR4 deadenylase family. Immunoprecipitation experiments provided evidence that Angel1 is able to interact in vitro and in vivo with eIF4E. Point mutation variants of Angel1 demonstrated that the interaction of Angel1 with eIF4E is mediated through a consensus eIF4E-binding motif. Immunofluorescence and cell fractionation experiments showed that Angel1 is confined to the endoplasmic reticulum and Golgi apparatus, where it partially co-localizes with eIF4E and eIF4G, but not with 4E-BP. Furthermore, manipulating Angel1 levels in living cells had no effect on global translation rates, suggesting that the protein has a more specific function. Taken together, our results illustrate that we developed a powerful method for identifying new eIF4E partners and open new perspectives for understanding eIF4E-specific regulation.


Asunto(s)
Proteínas Portadoras/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/clasificación , Citoplasma/química , Retículo Endoplásmico/química , Factor 4E Eucariótico de Iniciación/análisis , Aparato de Golgi/química , Células HeLa , Humanos , Ratones , Dominios y Motivos de Interacción de Proteínas , Ribonucleasas/clasificación
9.
Nucleic Acids Res ; 41(2): 1091-103, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23222134

RESUMEN

Bacterial RNase J and eukaryal cleavage and polyadenylation specificity factor (CPSF-73) are members of the ß-CASP family of ribonucleases involved in mRNA processing and degradation. Here we report an in-depth phylogenomic analysis that delineates aRNase J and archaeal CPSF (aCPSF) as distinct orthologous groups and establishes their repartition in 110 archaeal genomes. The aCPSF1 subgroup, which has been inherited vertically and is strictly conserved, is characterized by an N-terminal extension with two K homology (KH) domains and a C-terminal motif involved in dimerization of the holoenzyme. Pab-aCPSF1 (Pyrococcus abyssi homolog) has an endoribonucleolytic activity that preferentially cleaves at single-stranded CA dinucleotides and a 5'-3' exoribonucleolytic activity that acts on 5' monophosphate substrates. These activities are the same as described for the eukaryotic cleavage and polyadenylation factor, CPSF-73, when engaged in the CPSF complex. The N-terminal KH domains are important for endoribonucleolytic cleavage at certain specific sites and the formation of stable high molecular weight ribonucleoprotein complexes. Dimerization of Pab-aCPSF is important for exoribonucleolytic activity and RNA binding. Altogether, our results suggest that aCPSF1 performs an essential function and that an enzyme with similar activities was present in the last common ancestor of Archaea and Eukarya.


Asunto(s)
Proteínas Arqueales/clasificación , Ribonucleasas/clasificación , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/clasificación , Secuencia Conservada , Endorribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Datos de Secuencia Molecular , Filogenia , Multimerización de Proteína , Estructura Terciaria de Proteína , Pyrococcus abyssi/enzimología , Ribonucleasas/química , Ribonucleasas/metabolismo
10.
PLoS One ; 6(6): e21019, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21731641

RESUMEN

Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.


Asunto(s)
Coffea/enzimología , Coffea/genética , Regulación de la Expresión Génica de las Plantas , Polinización/genética , Polimorfismo Genético , Ribonucleasas/genética , África , Alelos , Secuencia Conservada , Perfilación de la Expresión Génica , Genes de Plantas/genética , Células Germinativas de las Plantas/metabolismo , Heterocigoto , Madagascar , Filogenia , Estructura Terciaria de Proteína , Ribonucleasas/química , Ribonucleasas/clasificación , Especificidad de la Especie
11.
Nucleic Acids Res ; 37(15): 5114-25, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19553197

RESUMEN

Escherichia coli possesses only one essential oligoribonuclease (Orn), an enzyme that can degrade oligoribonucleotides of five residues and shorter in length (nanoRNA). Firmicutes including Bacillus subtilis do not have an Orn homolog. We had previously identified YtqI (NrnA) as functional analog of Orn in B. subtilis. Screening a genomic library from B. subtilis for genes that can complement a conditional orn mutant, we identify here YngD (NrnB) as a second nanoRNase in B. subtilis. Like NrnA, NrnB is a member of the DHH/DHHA1 protein family of phosphoesterases. NrnB degrades nanoRNA 5-mers in vitro similarily to Orn. Low expression levels of NrnB are sufficient for orn complementation. YhaM, a known RNase present in B. subtilis, degrades nanoRNA efficiently in vitro but requires high levels of expression for only partial complementation of the orn(-) strain. A triple mutant (nrnA(-), nrnB(-), yhaM(-)) in B. subtilis is viable and shows almost no impairment in growth. Lastly, RNase J1 seems also to have some 5'-to-3' exoribonuclease activity on nanoRNA and thus can potentially finish degradation of RNA. We conclude that, unlike in E. coli, degradation of nanoRNA is performed in a redundant fashion in B. subtilis.


Asunto(s)
Bacillus subtilis/enzimología , Oligorribonucleótidos/metabolismo , Ribonucleasas/metabolismo , Bacillus subtilis/genética , ADN/metabolismo , Prueba de Complementación Genética , Mutación , Oligorribonucleótidos/química , Filogenia , ARN/química , ARN/metabolismo , Ribonucleasas/clasificación , Ribonucleasas/genética
12.
BMC Genomics ; 9: 451, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18826656

RESUMEN

BACKGROUND: Important developmental processes in both plants and animals are partly regulated by genes whose expression is modulated at the post-transcriptional level by processes such as RNA interference (RNAi). Dicers, Argonautes and RNA-dependent RNA polymerases (RDR) form the core components that facilitate gene silencing and have been implicated in the initiation and maintenance of the trigger RNA molecules, central to process of RNAi. Investigations in eukaryotes have revealed that these proteins are encoded by variable number of genes with plants showing relatively higher number in each gene family. To date, no systematic expression profiling of these genes in any of the organisms has been reported. RESULTS: In this study, we provide a complete analysis of rice Dicer-like, Argonaute and RDR gene families including gene structure, genomic localization and phylogenetic relatedness among gene family members. We also present microarray-based expression profiling of these genes during 14 stages of reproductive and 5 stages of vegetative development and in response to cold, salt and dehydration stress. We have identified 8 Dicer-like (OsDCLs), 19 Argonaute (OsAGOs) and 5 RNA-dependent RNA polymerase (OsRDRs) genes in rice. Based on phylogeny, each of these genes families have been categorized into four subgroups. Although most of the genes express both in vegetative and reproductive organs, 2 OsDCLs, 14 OsAGOs and 3 OsRDRs were found to express specifically/preferentially during stages of reproductive development. Of these, 2 OsAGOs exhibited preferential up-regulation in seeds. One of the Argonautes (OsAGO2) also showed specific up-regulation in response to cold, salt and dehydration stress. CONCLUSION: This investigation has identified 23 rice genes belonging to DCL, Argonaute and RDR gene families that could potentially be involved in reproductive development-specific gene regulatory mechanisms. These data provide an insight into probable domains of activity of these genes and a basis for further, more detailed investigations aimed at understanding the contribution of individual components of RNA silencing machinery during reproductive phase of plant development.


Asunto(s)
Genes de Plantas , Genoma de Planta , Oryza/genética , Proteínas de Plantas/genética , ARN Polimerasa Dependiente del ARN/genética , Ribonucleasas/genética , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , ARN Polimerasa Dependiente del ARN/clasificación , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Ribonucleasas/clasificación , Ribonucleasas/metabolismo , Semillas/genética , Alineación de Secuencia
13.
FEBS Lett ; 582(17): 2577-82, 2008 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-18582464

RESUMEN

The CCCH class of zinc fingers occurs in a large number of Arabidopsis proteins. Previous studies revealed that one such protein is a nuclease, the activity of which is attributable to one of the CCCH motifs. To examine whether nuclease activity is a more general characteristic of CCCH zinc finger containing proteins, five other such Arabidopsis proteins were assayed for a similar activity. The results indicate that all of these proteins possess nuclease activity. Thus, nuclease activity may be a common characteristic of Arabidopsis CCCH-containing proteins.


Asunto(s)
Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ribonucleasas/clasificación , Ribonucleasas/metabolismo , Dedos de Zinc , Secuencias de Aminoácidos , Proteínas de Arabidopsis/genética , Ribonucleasas/genética
14.
J Biol Chem ; 282(43): 31789-802, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17766245

RESUMEN

The ancient eukaryotic human pathogen, Entamoeba histolytica, is a nucleo-base auxotroph (i.e. lacks the ability to synthesize purines or pyrimidines de novo) and therefore is totally dependent upon its host for the supply of these essential nutrients. In this study, we identified two unique 28-kDa, dithiothreitol-sensitive nucleases and showed that they are constitutively released/secreted by parasites during axenic culture. Using several different molecular approaches, we identified and characterized the structure of EhNucI and EhNucII, genes that encode ribonuclease T2 family proteins. Homologous episomal expression of epitope-tagged EhNucI and EhNucII chimeric constructs was used to define the functional and biochemical properties of these released/secreted enzymes. Results of coupled immunoprecipitation-enzyme activity analyses demonstrated that these "secretory" enzymes could hydrolyze a variety of synthetic polynucleotides, as well as the natural nucleic acid substrate RNA. Furthermore, our results demonstrated that sera from acutely infected amebiasis patients recognized and immunoprecipitated these parasite secretory enzymes. Based on these observations, we hypothesize that within its host, these secretory nucleases could function, at a distance away from the parasite, to harness (i.e. hydrolyze/access) host-derived nucleic acids to satisfy the essential purine and pyrimidine requirements of these organisms. Thus, these enzymes might play an important role in facilitating the survival, growth, and development of this important human pathogen.


Asunto(s)
Entamoeba histolytica/enzimología , Ribonucleasas/química , Ribonucleasas/fisiología , Secuencia de Aminoácidos , Animales , Catálisis , Sistema Libre de Células/enzimología , Cisteína/química , Disulfuros/química , Entamoeba histolytica/patogenicidad , Epítopos , Genes Protozoarios , Histidina/química , Humanos , Hidrólisis , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Plásmidos , Pruebas de Precipitina , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Ribonucleasas/clasificación , Ribonucleasas/genética , Ribonucleasas/metabolismo
15.
Mol Biol Evol ; 24(5): 1259-68, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17347156

RESUMEN

Understanding the evolutionary origin of the ribonuclease (RNase) A superfamily is of great interest because the superfamily is the sole vertebrate-specific enzyme family known to date. Although mammalian RNases have a diverse array of biochemical and physiological functions, the original function of the superfamily at its birth is enigmatic. Such information may be obtained by studying basal lineages of the vertebrate phylogeny and is necessary for discerning how and why this superfamily originated. Here, we clone and characterize 3 RNase genes from the zebrafish, the most basal vertebrate examined for RNases. We report 1) that all the 3 zebrafish RNases are ribonucleolytically active, with one of them having an RNase activity comparable to that of bovine RNase A, the prototype of the superfamily; 2) that 2 zebrafish RNases have prominent expressions in adult liver and gut, whereas the 3rd is expressed in adult eye and heart; and 3) that all 3 RNases have antibacterial activities in vitro. These results, together with the presence of antibacterial and/or antiviral activities in multiple distantly related mammalian RNases, strongly suggest that the superfamily started as a host-defense mechanism in vertebrate evolution.


Asunto(s)
Antibacterianos/metabolismo , Evolución Molecular , Ribonucleasa Pancreática , Ribonucleasas/fisiología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Peces/genética , Peces/metabolismo , Expresión Génica , Genoma , Humanos , Hígado/enzimología , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , ARN de Transferencia/metabolismo , Ribonucleasa Pancreática/genética , Ribonucleasas/clasificación , Ribonucleasas/genética , Distribución Tisular , Vertebrados , Pez Cebra/genética , Pez Cebra/microbiología
16.
J Biol Chem ; 282(13): 10079-10095, 2007 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-17276983

RESUMEN

The primitive protozoan pathogen of humans, Leishmania donovani, resides and multiplies in highly restricted micro-environments within their hosts (i.e. as promastigotes in the gut lumen of their sandfly vectors and as amastigotes in the phagolysosomal compartments of infected mammalian macrophages). Like other trypanosomatid parasites, they are purine auxotrophs (i.e. lack the ability to synthesize purines de novo) and therefore are totally dependent upon salvaging these essential nutrients from their hosts. In that context, in this study we identified a unique 35-kDa, dithiothreitol-sensitive nuclease and showed that it was constitutively released/secreted by both promastigote and amastigote developmental forms of this parasite. By using several different molecular approaches, we identified and characterized the structure of LdNuc(s), a gene that encodes this new 35-kDa class I nuclease family member in these organisms. Homologous episomal expression of an epitope-tagged LdNuc(s) chimeric construct was used in conjunction with an anti-LdNuc(s) peptide antibody to delineate the functional and biochemical properties of this unique 35-kDa parasite released/secreted enzyme. Results of coupled immunoprecipitation-enzyme activity analyses demonstrated that this "secretory" enzyme could hydrolyze a variety of synthetic polynucleotides as well as several natural nucleic acid substrates, including RNA and single- and double-stranded DNA. Based on these cumulative observations, we hypothesize that within the micro-environments of its host, this leishmanial "secretory" nuclease could function at a distance away from the parasite to harness (i.e. hydrolyze/access) host-derived nucleic acids to satisfy the essential purine requirements of these organisms. Thus, this enzyme might play an important role(s) in facilitating the survival, growth, and development of this important human pathogen.


Asunto(s)
Desoxirribonucleasas/química , Desoxirribonucleasas/fisiología , Leishmania donovani/enzimología , Ribonucleasas/química , Ribonucleasas/fisiología , Secuencia de Aminoácidos , Animales , Desoxirribonucleasas/clasificación , Desoxirribonucleasas/metabolismo , Humanos , Datos de Secuencia Molecular , Ribonucleasas/clasificación , Ribonucleasas/metabolismo
17.
Acta biol. colomb ; 11(2): 31-44, jul. 2006. ilus, tab
Artículo en Español | LILACS | ID: lil-469080

RESUMEN

En la actualidad existe un gran interés por identificar proteínas o péptidos antimicrobianos que puedan ser herramientas terapéuticas que eviten el establecimiento o permitan el control de diferentes infecciones. Las ribonucleasas (RNasas), pertenecientes a la superfamilia Ribonucleasa A, son enzimas que participan en varios procesos fisiológicos, que van desde el procesamiento alternativo del RNA hasta la angiogénesis. Estas enzimas son expresadas por diferentes tejidos y exhiben especificidades variables contra diferentes sustratos de RNA. El potencial terapéutico de las RNasas se ha sugerido en procesos oncogénicos; adicionalmente, se ha descrito que tienen actividad antiviral directa y el potencial de activar células del sistema inmune innato induciendo su maduración y la producción de citoquinas proinflamatorias. Nuestro grupo de investigación ha realizado estudios que señalan la capacidad de cuatro RNasas recombinantes: EDN, 4EDN, RNasa A y angiogenina de inhibir la replicación del virus de la inmunodeficiencia humana tipo 1 en linfocitos T de sangre periférica activados. En este artículo se revisará la clasificación de las ribonucleasas que constituyen la superfamilia RNasa A y se describirá, en forma detallada, lo que se conoce de la función biológica, acción antiviral y mecanismo de acción de las RNasas a las que se les ha reportado actividad antiviral.


Asunto(s)
Antivirales/análisis , Antivirales/inmunología , Ribonucleasas/clasificación , Ribonucleasas/fisiología , Ribonucleasas/inmunología
18.
J Mol Model ; 12(4): 462-7, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16437209

RESUMEN

In this work, the conformational behavior of ribonuclease Sso7d is studied as a function of chirality of its constituting amino acids. Both optimized structures (using molecular mechanics with the CHARMM force field) and dynamic behavior (obtained by molecular dynamic simulations) are compared.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Sitios de Unión , Modelos Moleculares , Estructura Terciaria de Proteína , Ribonucleasas/clasificación , Estereoisomerismo , Homología Estructural de Proteína
19.
J Mol Biol ; 356(1): 165-78, 2006 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-16343535

RESUMEN

Ribonuclease HIII (Bst-RNase HIII) from the moderate thermophile Bacillus stearothermophilus is a type 2 RNase H but shows poor amino acid sequence identity with another type 2 RNase H, RNase HII. It is composed of 310 amino acid residues and acts as a monomer. Bst-RNase HIII has a large N-terminal extension with unknown function and a unique active-site motif (DEDE), both of which are characteristics common to RNases HIII. To understand the role of these N-terminal extension and active-site residues, the crystal structure of Bst-RNase HIII was determined in both metal-free and metal-bound forms at 2.1-2.6 angstroms resolutions. According to these structures, Bst-RNase HIII consists of the N-terminal domain and C-terminal RNase H domain. The structures of the N and C-terminal domains were similar to those of TATA-box binding proteins and archaeal RNases HII, respectively. The steric configurations of the four conserved active-site residues were very similar to those of other type 1 and type 2 RNases H. Single Mn and Mg ions were coordinated with Asp97, Glu98, and Asp202, which correspond to Asp10, Glu48, and Asp70 of Escherichia coli RNase HI, respectively. The mutational studies indicated that the replacement of either one of these residues with Ala resulted in a great reduction of the enzymatic activity. Overproduction, purification, and characterization of the Bst-RNase HIII derivatives with N and/or C-terminal truncations indicated that the N-terminal domain and C-terminal helix are involved in substrate binding, but the former contributes to substrate binding more greatly than the latter.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Geobacillus stearothermophilus/enzimología , Ribonucleasas/química , Ribonucleasas/metabolismo , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Secuencia Conservada , Cristalografía por Rayos X , Geobacillus stearothermophilus/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Pliegue de Proteína , Estructura Terciaria de Proteína , Ribonucleasas/clasificación , Ribonucleasas/genética , Alineación de Secuencia , Homología de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Resonancia por Plasmón de Superficie
20.
FEBS Lett ; 575(1-3): 71-6, 2004 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-15388335

RESUMEN

We have demonstrated that wheatwin1, a wheat pathogenesis-related protein of class 4 (PR4), has ribonuclease activity. Both native and recombinant proteins hydrolyse RNA from wheat coleoptils and have antifungal activity. Sepharose-bound wheatwin1 is able to interact with either wheat or Fusarium culmorum RNA. 3D modelling studies showed that, like ribonucleases A and T1, the action mechanism should involve two His residues, an Arg residue and an Asp residue.


Asunto(s)
Proteínas de Plantas/metabolismo , Ribonucleasas/metabolismo , Triticum/enzimología , Triticum/microbiología , Secuencia de Aminoácidos , Fusarium/citología , Fusarium/genética , Fusarium/patogenicidad , Datos de Secuencia Molecular , Estructura Molecular , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasas/clasificación , Ribonucleasas/genética , Esporas Fúngicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...