Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 33(1): 424-427, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29372649

RESUMEN

BACKGROUND: Small nucleolar RNAs (snoRNAs) are small non-coding RNA sequences whose most studied function is ribosome biogenesis. The altered expression of snoRNA is observed in tumoral processes such as breast cancer and multiple myeloma. However, we have not found any references to snoRNAs in oral squamous cell carcinomas (OSCC) in the literature at the time this article was written. MATERIAL AND METHODS: We have analyzed snoRNA expression in frozen OSCC tissue samples and have compared them to healthy controls. RNA was extracted from a total of eight OSCC samples and eight control samples, measuring the differential expression of small RNAs with the Affymetrix® miRNA 4.1 Array Plate microarray platform. RESULTS: Results were analyzed using the Transcriptome Analysis Console 3.0 (TAC) software. We obtained a total of 16 deregulated snoRNAs of which one was over expressed and 15 were under expressed. SnoRNAs expression was altered in OSCC and could serve as a diagnostic marker.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/diagnóstico , Neoplasias de la Boca/diagnóstico , Ribonucleoproteínas Nucleolares Pequeñas/genética , Adolescente , Adulto , Anciano , Carcinoma de Células Escamosas/genética , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Adulto Joven
2.
Nucleic Acids Res ; 40(8): 3641-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22180534

RESUMEN

Yeast snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) that promotes 18S rRNA processing through forming transient base-pairing interactions with the newly synthesized 35S pre-rRNA. By using a novel tandem RNA affinity selection approach, followed by coimmunoprecipitation and in vivo cross-linking experiments, we demonstrate that in addition to the four H/ACA core proteins, Cbf5p, Nhp2p, Nop10p and Gar1p, a fraction of snR30 specifically associates with the Utp23p and Kri1p nucleolar proteins. Depletion of Utp23p and Kri1p has no effect on the accumulation and recruitment of snR30 to the nascent pre-ribosomes. However, in the absence of Utp23p, the majority of snR30 accumulates in large pre-ribosomal particles. The retained snR30 is not base-paired with the 35S pre-rRNA, indicating that its aberrant tethering to nascent preribosomes is likely mediated by pre-ribosomal protein(s). Thus, Utp23p may promote conformational changes of the pre-ribosome, essential for snR30 release. Neither Utp23p nor Kri1p is required for recruitment of snR30 to the nascent pre-ribosome. On the contrary, depletion of snR30 prevents proper incorporation of both Utp23p and Kri1p into the 90S pre-ribosome containing the 35S pre-rRNA, indicating that snR30 plays a central role in the assembly of functionally active small subunit processome.


Asunto(s)
Proteínas Nucleares/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/fisiología , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/aislamiento & purificación , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/fisiología
3.
Nucleic Acids Res ; 39(22): 9659-70, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21893585

RESUMEN

H/ACA small nucleolar RNPs (snoRNPs) that guide pseudouridylation reactions are comprised of one small nucleolar RNA (snoRNA) and four common proteins (Cbf5, Gar1, Nhp2 and Nop10). Unlike other H/ACA snoRNPs, snR30 is essential for the early processing reactions that lead to the production of 18S ribosomal RNA in the yeast Saccharomyces cerevisiae. To determine whether snR30 RNP contains specific proteins that contribute to its unique functional properties, we devised an affinity purification strategy using TAP-tagged Gar1 and an RNA aptamer inserted in snR30 snoRNA to selectively purify the RNP. Northern blotting and pCp labeling experiments showed that S1-tagged snR30 snoRNA can be selectively purified with streptavidin beads. Protein analysis revealed that aptamer-tagged snR30 RNA was associated with the four H/ACA proteins and a number of additional proteins: Nop6, ribosomal proteins S9 and S18 and histones H2B and H4. Using antibodies raised against Nop6 we show that endogenous Nop6 localizes to the nucleolus and that it cosediments with snR30 snoRNA in sucrose density gradients. We demonstrate through primer extension experiments that snR30 snoRNA is required for cleavages at site A0, A1 and A2, and that the absence of Nop6 decreases the efficiency of cleavage at site A2. Finally, electron microscopy analyses of chromatin spreads from cells depleted of snR30 snoRNA show that it is required for SSU processome assembly.


Asunto(s)
ARN Nucleolar Pequeño/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/análisis , Proteínas de Saccharomyces cerevisiae/análisis , Nucléolo Celular/química , Cromatina/ultraestructura , Cromatografía de Afinidad , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/química , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/aislamiento & purificación , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/aislamiento & purificación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nucleic Acids Res ; 39(15): 6715-28, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21558325

RESUMEN

Small nuclear and nucleolar RNAs that program pre-mRNA splicing and rRNA processing have a signature 5'-trimethylguanosine (TMG) cap. Whereas the mechanism of TMG synthesis by Tgs1 methyltransferase has been elucidated, we know little about whether or how RNP biogenesis, structure and function are perturbed when TMG caps are missing. Here, we analyzed RNPs isolated by tandem-affinity purification from TGS1 and tgs1Δ yeast strains. The protein and U-RNA contents of total SmB-containing RNPs were similar. Finer analysis revealed stoichiometric association of the nuclear cap-binding protein (CBP) subunits Sto1 and Cbc2 with otherwise intact Mud1- and Nam8-containing U1 snRNPs from tgs1Δ cells. CBP was not comparably enriched in Lea1-containing U2 snRNPs from tgs1Δ cells. Moreover, CBP was not associated with mature Nop58-containing C/D snoRNPs or mature Cbf5- and Gar1-containing H/ACA snoRNPs from tgs1Δ cells. The protein composition and association of C/D snoRNPs with the small subunit (SSU) processosome were not grossly affected by absence of TMG caps, nor was the composition of H/ACA snoRNPs. The cold-sensitive (cs) growth defect of tgs1Δ yeast cells could be suppressed by mutating the cap-binding pocket of Cbc2, suggesting that ectopic CBP binding to the exposed U1 m(7)G cap in tgs1Δ cells (not lack of TMG caps per se) underlies the cs phenotype.


Asunto(s)
Metiltransferasas/genética , Complejo Proteico Nuclear de Unión a la Caperuza/análisis , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Saccharomyces cerevisiae/genética , Autoantígenos/aislamiento & purificación , Frío , Eliminación de Gen , Complejo Proteico Nuclear de Unión a la Caperuza/química , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Complejo Proteico Nuclear de Unión a la Caperuza/aislamiento & purificación , Fenotipo , Caperuzas de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Supresión Genética
5.
Methods Enzymol ; 425: 241-62, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17673087

RESUMEN

Box H/ACA RNPs, each consisting of four common core proteins and a single unique RNA, are the most complex pseudouridylases yet discovered. The RNA component serves as a guide that directs a target uridine for modification. To study the functions and mechanisms of RNA pseudouridylation, it is desirable to isolate the intact box H/ACA RNP complexes. Purified RNPs will allow further identification and characterization of the RNA component in each RNP complex and permit a systematic analysis of the mechanism by which the enzymes convert uridines to pseudouridines in a site-specific manner. Over the years, a number of purification techniques have been developed, providing important tools for RNA pseudouridylation research. Here, we describe three of these techniques, including biotin-streptavidin affinity purification by use of biotinylated 5-fluorouridine (5FU)-containing RNA, tandem affinity purification (TAP) by TAP-tagging one of the four core proteins in the complex, and immunoprecipitation by use of antibodies against one of the four core proteins.


Asunto(s)
Cromatografía de Afinidad/métodos , Seudouridina/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Animales , Biotina , Humanos , Estreptavidina
6.
Methods Enzymol ; 425: 317-53, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17673090

RESUMEN

When isolating ribonucleoprotein (RNP) complexes by an affinity selection approach, tagging the RNA component can prove to be strategically important. This is especially true for purifying single types of snoRNPs, because in most cases the snoRNA is thought to be the only unique component. Here, we present a general strategy for selecting specific snoRNPs that features a high-affinity tag in the snoRNA and another in a snoRNP core protein. The RNA tag (called U1hpII) is a small (26 nt) stem-loop domain from human U1 snRNA. This structure binds with high affinity (K(D)=10(-11)M) to the RRM domain of the snRNP protein U1A. In our approach, the U1A protein contains a unique affinity tag and is coexpressed in vivo with the tagged snoRNA to yield snoRNP-U1A complexes with two unique protein tags-one in the bound U1A protein and the other in the snoRNP core protein. This scheme has been used effectively to select C/D and H/ACA snoRNPs, including both processing and modifying snoRNPs, and the snoRNA and core proteins are highly enriched. Depending on selection stringency other proteins are isolated as well, including an RNA helicase involved in snoRNP release from pre-rRNA and additional proteins that function in ribosome biogenesis. Tagging the snoRNA component alone is also effective when U1A is expressed with a myc-Tev-protein A fusion sequence. Combined with reduced stringency, enrichment of the U14 snoRNP with this latter system revealed potential interactions with two other snoRNPs, including one processing snoRNP involved in the same cleavages of pre-rRNA.


Asunto(s)
Marcadores de Afinidad , Cromatografía de Afinidad/métodos , ARN Nuclear Pequeño , Ribonucleoproteínas Nucleolares Pequeñas/análisis , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Secuencia de Bases , Datos de Secuencia Molecular , Saccharomyces cerevisiae
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 22(5): 654-6, 2006 Sep.
Artículo en Chino | MEDLINE | ID: mdl-16948918

RESUMEN

AIM: To prepare the rabbit antibody against Dnop5 and identify its specificity. METHODS: Dnop5 cDNA was amplified by RT-PCR, and then was subcloned into the fusion expression vectors pET28a(+). After being expressed in E.coli BL21, the truncated Dnop5 protein was purified and used to immunize rabbit. Purified antibody was obtained through affinity chromatography column with the expressed Dnop5. The specificity of the purified antibody was characterized by Western blot and immunohistochemical staining. RESULTS: The Dnop5 gene was successfully inserted into pET28a(+). After induction, the fusion protein was expressed in the form of inclusion body. The purified fusion protein was obtained by affinity chromatography. After immunization of rabbits, the antibody against Dnop5 was obtained. Western blot analysis and immunohistochemical staining showed that the antibody had a good specificity. CONCLUSION: The rabbit antibody against Dnop5 has been successfully prepared, which lays the foundation for further study on the Dnop5 function.


Asunto(s)
Anticuerpos/inmunología , Proteínas de Drosophila/inmunología , Drosophila , Proteínas Nucleares/inmunología , Ribonucleoproteínas Nucleolares Pequeñas/inmunología , Animales , Anticuerpos/análisis , Especificidad de Anticuerpos , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Ribonucleoproteínas Nucleolares Pequeñas/biosíntesis , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación
8.
Mol Cell Biol ; 22(24): 8457-66, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12446766

RESUMEN

The isomerization of up to 100 uridines to pseudouridines (Psis) in eukaryotic rRNA is guided by a similar number of box H/ACA small nucleolar RNAs (snoRNAs), each forming a unique small nucleolar ribonucleoprotein particle (snoRNP) with the same four core proteins, NAP57 (also known as dyskerin or Cbf5p), GAR1, NHP2, and NOP10. Additionally, the nucleolar and Cajal body protein Nopp140 (Srp40p) associates with the snoRNPs. To understand the role of these factors in pseudouridylation, we established an in vitro assay system. Short site-specifically (32)P-labeled rRNA substrates were incubated with subcellular fractions, and the conversion of uridine to Psi was monitored by thin-layer chromatography after digestion to single nucleotides. Immunopurified box H/ACA core particles were sufficient for the reaction. SnoRNPs associated quantitatively and reversibly with Nopp140. However, pseudouridylation activity was independent of Nopp140, consistent with a chaperoning role for this highly phosphorylated protein. Although up to 14 bp between the snoRNA and rRNA were required for the in vitro reaction, rRNA pseudouridylation and release occurred in the absence of ATP and magnesium. These data suggest that substrate release takes place without RNA helicase activity but may be aided by the snoRNP core proteins.


Asunto(s)
Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Seudouridina/metabolismo , ARN Ribosómico/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Animales , Bioensayo/métodos , Fraccionamiento Celular , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Células Cultivadas , Células HeLa , Humanos , Hígado/citología , Hígado/metabolismo , Hibridación de Ácido Nucleico , Fosforilación , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Endogámicas BUF , Ribonucleoproteínas Nucleares Pequeñas , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación
9.
Mol Cell Biol ; 22(19): 6663-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12215523

RESUMEN

Small nucleolar RNAs (snoRNAs) are associated in ribonucleoprotein particles localized to the nucleolus (snoRNPs). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Although the selection of the target nucleotide requires the antisense element and the conserved box D or D' of the snoRNA, the methyltransferase activity is supposed to reside in one of the protein components. Through protein tagging of a snoRNP-specific factor, we purified to homogeneity box C/D snoRNPs from the yeast Saccharomyces cerevisiae. Mass spectrometric analysis demonstrated the presence of Nop1p, Nop58p, Nop56p, and Snu13p as integral components of the particle. We show that purified snoRNPs are able to reproduce the site-specific methylation pattern on target RNA and that the predicted S-adenosyl-L-methionine-binding region of Nop1p is responsible for the catalytic activity.


Asunto(s)
Metiltransferasas/química , ARN de Hongos/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Sitios de Unión , Secuencia Conservada , Proteínas Fúngicas/química , Sustancias Macromoleculares , Espectrometría de Masas , Metilación , Metiltransferasas/aislamiento & purificación , Proteínas Nucleares/química , Oligorribonucleótidos/química , ARN Ribosómico/química , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
10.
Clin Exp Immunol ; 126(2): 339-44, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11703380

RESUMEN

New antibodies against a U3 snRNP, which were named anti-Myo 22/25 antibodies, were detected in four (8%) of 53 serum samples from patients with polymyositis/dermatomyositis (PM/DM) by RNA immunoprecipitation. In the protein immunoprecipitation analysis, all four serum samples precipitated 22 kDa and 25 kDa proteins, which were not precipitated by normal serum or serum positive for antifibrillarin antibodies. Three of the four PM/DM patients had other identified autoantibodies including anti-PL-12 antibodies, antihistone antibodies (AHA), anti-SS-A antibodies and anti-SS-B antibodies defined by double immunodiffusion, ELISA or RNA immunoprecipitation, although there were no significant correlations between anti-Myo 22/25 antibodies and clinical or laboratory findings. There may be a subgroup of PM/DM patients whose sera are positive for anti-Myo 22/25 antibodies.


Asunto(s)
Autoanticuerpos/sangre , Dermatomiositis/inmunología , Polimiositis/inmunología , Ribonucleoproteínas Nucleolares Pequeñas/inmunología , Adolescente , Adulto , Anciano , Especificidad de Anticuerpos , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/inmunología , Proteínas Cromosómicas no Histona/aislamiento & purificación , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Sustancias Macromoleculares , Masculino , Persona de Mediana Edad , Peso Molecular , Pruebas de Precipitina , Ribonucleoproteínas Nucleolares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación
11.
Cell ; 103(3): 457-66, 2000 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-11081632

RESUMEN

The box C/D snoRNAs function in directing 2'-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5 kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5 kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/ 15.5 kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP.


Asunto(s)
Evolución Molecular , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Empalmosomas/química , Levaduras/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Células HeLa , Humanos , Peso Molecular , Conformación de Ácido Nucleico , Pruebas de Precipitina , Unión Proteica , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Recombinantes , Secuencias Reguladoras de Ácidos Nucleicos/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Empalmosomas/genética , Especificidad por Sustrato , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...