Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(3): 481-495, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36334591

RESUMEN

Viral reproduction is contingent on viral protein synthesis that relies on the host ribosomes. As such, viruses have evolved remarkable strategies to hijack the host translational apparatus in order to favor viral protein production and to interfere with cellular innate defenses. Here, we describe the approaches viruses use to exploit the translation machinery, focusing on commonalities across diverse viral families, and discuss the functional relevance of this process. We illustrate the complementary strategies host cells utilize to block viral protein production and consider how cells ensure an efficient antiviral response that relies on translation during this tug of war over the ribosome. Finally, we highlight potential roles mRNA modifications and ribosome quality control play in translational regulation and innate immunity. We address these topics in the context of the COVID-19 pandemic and focus on the gaps in our current knowledge of these mechanisms, specifically in viruses with pandemic potential.


Asunto(s)
COVID-19 , Biosíntesis de Proteínas , Virosis , Virus , Humanos , COVID-19/genética , COVID-19/inmunología , Pandemias , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/inmunología , ARN Viral/genética , ARN Viral/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Virosis/genética , Virosis/inmunología , Virus/genética , Virus/inmunología , Ribosomas/genética , Ribosomas/inmunología , Ribosomas/virología
2.
Viruses ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215780

RESUMEN

Viruses are obligate intracellular parasites that depend on the host's protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo , Virosis/metabolismo , Virus/genética , Animales , Humanos , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/genética , Ribosomas/metabolismo , Ribosomas/virología , Virosis/genética , Virosis/virología , Virus/metabolismo
3.
RNA ; 27(9): 1025-1045, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34127534

RESUMEN

Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a nonstructural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation levels. We discover that a functionally coherent subset of human genes is preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5' terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. Using reporter assays, we validated that 5' UTRs from TOP transcripts can drive preferential expression in the presence of Nsp1. Finally, we found that LARP1, a key effector protein in the mTOR pathway, may contribute to preferential translation of TOP transcripts in response to Nsp1 expression. Collectively, our study suggests fine-tuning of host gene expression and translation by Nsp1 despite its global repressive effect on host protein synthesis.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Biosíntesis de Proteínas , Proteínas/química , Proteínas/genética , Proteínas no Estructurales Virales/genética , Regiones no Traducidas 5' , Autoantígenos/genética , Autoantígenos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Pliegue de Proteína , Pirimidinas , ARN Mensajero/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribosomas/genética , Ribosomas/virología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas no Estructurales Virales/metabolismo , Antígeno SS-B
4.
Commun Biol ; 4(1): 715, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112887

RESUMEN

While SARS-CoV-2 is causing modern human history's most serious health crisis and upending our way of life, clinical and basic research on the virus is advancing rapidly, leading to fascinating discoveries. Two studies have revealed how the viral virulence factor, nonstructural protein 1 (Nsp1), binds human ribosomes to inhibit host cell translation. Here, we examine the main conclusions on the molecular activity of Nsp1 and its role in suppressing innate immune responses. We discuss different scenarios potentially explaining how the viral RNA can bypass its own translation blockage and speculate on the suitability of Nsp1 as a therapeutic target.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Ribosomas/virología , SARS-CoV-2/patogenicidad , Proteínas no Estructurales Virales/metabolismo , Regiones no Traducidas 5' , Regulación Viral de la Expresión Génica , Humanos , Inmunidad Innata , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , SARS-CoV-2/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
5.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806254

RESUMEN

The global COVID-19 pandemic caused by SARS-CoV-2 has resulted in over 2.2 million deaths. Disease outcomes range from asymptomatic to severe with, so far, minimal genotypic change to the virus so understanding the host response is paramount. Transcriptomics has become incredibly important in understanding host-pathogen interactions; however, post-transcriptional regulation plays an important role in infection and immunity through translation and mRNA stability, allowing tight control over potent host responses by both the host and the invading virus. Here, we apply ribosome profiling to assess post-transcriptional regulation of host genes during SARS-CoV-2 infection of a human lung epithelial cell line (Calu-3). We have identified numerous transcription factors (JUN, ZBTB20, ATF3, HIVEP2 and EGR1) as well as select antiviral cytokine genes, namely IFNB1, IFNL1,2 and 3, IL-6 and CCL5, that are restricted at the post-transcriptional level by SARS-CoV-2 infection and discuss the impact this would have on the host response to infection. This early phase restriction of antiviral transcripts in the lungs may allow high viral load and consequent immune dysregulation typically seen in SARS-CoV-2 infection.


Asunto(s)
Citocinas/genética , Procesamiento Postranscripcional del ARN , Ribosomas/metabolismo , Ribosomas/virología , SARS-CoV-2/inmunología , Factores de Transcripción/genética , Animales , Antivirales/antagonistas & inhibidores , Línea Celular Tumoral , Chlorocebus aethiops , Biología Computacional , Citocinas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/virología , Perfilación de la Expresión Génica , Interacciones Microbiota-Huesped , Humanos , Inmunidad Innata/genética , Pulmón/inmunología , Pulmón/virología , ARN Mensajero/metabolismo , RNA-Seq , Ribosomas/genética , SARS-CoV-2/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Células Vero
6.
Biochemistry ; 59(46): 4429-4438, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33166472

RESUMEN

Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.


Asunto(s)
Sistema de Lectura Ribosómico , Virus del Mono Mason-Pfizer/genética , ARN Viral/química , Electroforesis en Gel de Poliacrilamida Nativa , Conformación de Ácido Nucleico , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/genética , Ribosomas/genética , Ribosomas/virología
7.
J Proteome Res ; 19(11): 4275-4290, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32686937

RESUMEN

SARS-CoV-2 (COVID-19) has infected millions of people worldwide, with lethality in hundreds of thousands. The rapid publication of information, both regarding the clinical course and the viral biology, has yielded incredible knowledge of the virus. In this review, we address the insights gained for the SARS-CoV-2 proteome, which we have integrated into the Viral Integrated Structural Evolution Dynamic Database, a publicly available resource. Integrating evolutionary, structural, and interaction data with human proteins, we present how the SARS-CoV-2 proteome interacts with human disorders and risk factors ranging from cytokine storm, hyperferritinemic septic, coagulopathic, cardiac, immune, and rare disease-based genetics. The most noteworthy human genetic potential of SARS-CoV-2 is that of the nucleocapsid protein, where it is known to contribute to the inhibition of the biological process known as nonsense-mediated decay. This inhibition has the potential to not only regulate about 10% of all biological transcripts through altered ribosomal biology but also associate with viral-induced genetics, where suppressed human variants are activated to drive dominant, negative outcomes within cells. As we understand more of the dynamic and complex biological pathways that the proteome of SARS-CoV-2 utilizes for entry into cells, for replication, and for release from human cells, we can understand more risk factors for severe/lethal outcomes in patients and novel pharmaceutical interventions that may mitigate future pandemics.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Interacciones Huésped-Patógeno , Pandemias , Neumonía Viral , Proteoma , Ribosomas , COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Neumonía Viral/genética , Neumonía Viral/metabolismo , Neumonía Viral/virología , Proteoma/genética , Proteoma/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Ribosomas/virología , SARS-CoV-2 , Transcriptoma , Proteínas Virales
8.
J Biol Chem ; 294(42): 15386-15394, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31455634

RESUMEN

During enteroviral infections, the canonical translation factor eukaryotic translation initiation factor 4 γ I (eIF4GI) is cleaved by viral protease 2A. The resulting C-terminal fragment is recruited by the viral internal ribosome entry site (IRES) for efficient translation of the viral RNA. However, the 2A protease is not present in the viral capsid and is synthesized only after the initial round of translation. This presents the conundrum of how the initial round of translation occurs in the absence of the C-terminal eIF4GI fragment. Interestingly, the host protein DAP5 (also known as p97, eIF4GIII, and eIF4G2), an isoform of eIF4GI, closely resembles the eIF4GI C-terminal fragment produced after 2A protease-mediated cleavage. Using the Coxsackievirus B3 (CVB3) IRES as a model system, here we demonstrate that DAP5, but not the full-length eIF4GI, is required for CVB3 IRES activity for translation of input viral RNA. Additionally, we show that DAP5 is specifically required by type I IRES but not by type II or type III IRES, in which cleavage of eIF4GI has not been observed. We observed that both DAP5 and C-terminal eIF4GI interact with CVB3 IRES in the same region, but DAP5 exhibits a lower affinity for CVB3 IRES compared with the C-terminal eIF4GI fragment. It appears that DAP5 is required for the initial round of viral RNA translation by sustaining a basal level of CVB3 IRES activity. This activity leads to expression of 2A protease and consequent robust CVB3 IRES-mediated translation by the C-terminal eIF4GI fragment.


Asunto(s)
Infecciones por Coxsackievirus/metabolismo , Enterovirus Humano B/genética , Factor 4G Eucariótico de Iniciación/metabolismo , ARN Viral/genética , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/virología , Enterovirus Humano B/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Regulación Viral de la Expresión Génica , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , ARN Viral/metabolismo , Ribosomas/metabolismo , Ribosomas/virología
9.
Cells ; 8(5)2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137833

RESUMEN

Ribosomal proteins (RPs), in conjunction with rRNA, are major components of ribosomes involved in the cellular process of protein biosynthesis, known as "translation". The viruses, as the small infectious pathogens with limited genomes, must recruit a variety of host factors to survive and propagate, including RPs. At present, more and more information is available on the functional relationship between RPs and virus infection. This review focuses on advancements in my own understanding of critical roles of RPs in the life cycle of viruses. Various RPs interact with viral mRNA and proteins to participate in viral protein biosynthesis and regulate the replication and infection of virus in host cells. Most interactions are essential for viral translation and replication, which promote viral infection and accumulation, whereas the minority represents the defense signaling of host cells by activating immune pathway against virus. RPs provide a new platform for antiviral therapy development, however, at present, antiviral therapeutics with RPs involving in virus infection as targets is limited, and exploring antiviral strategy based on RPs will be the guides for further study.


Asunto(s)
Antivirales/metabolismo , ARN Viral/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/virología , Virosis/metabolismo , Virus/metabolismo , Sistema de Lectura Ribosómico , Interacciones Huésped-Patógeno , Humanos , Fosforilación , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Replicación Viral
10.
Adv Virus Res ; 103: 135-166, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30635075

RESUMEN

The discovery of giant viruses revealed a new level of complexity in the virosphere, raising important questions about the diversity, ecology, and evolution of these viruses. The family Mimiviridae was the first group of amoebal giant viruses to be discovered (by Bernard La Scola and Didier Raoult team), containing viruses with structural and genetic features that challenged many concepts of classic virology. The tupanviruses are among the newest members of this family and exhibit structural, biological, and genetic features never previously observed in other giant viruses. The complexity of these viruses has put us one step forward toward the comprehension of giant virus biology and evolution, but also has raised important questions that still need to be addressed. In this chapter, we tell the history behind the discovery of one of the most complex viruses isolated to date, highlighting the unique features exhibited by tupanviruses, and discuss how these giant viruses have contributed to redefining limits for the virosphere.


Asunto(s)
Especificidad del Huésped , Mimiviridae/fisiología , Biosíntesis de Proteínas , Proteínas Virales/genética , Amoeba/virología , Genoma Viral , Virus Gigantes/fisiología , Interacciones Huésped-Patógeno , Mimiviridae/aislamiento & purificación , Ribosomas/genética , Ribosomas/virología , Proteínas Virales/metabolismo , Replicación Viral/fisiología
11.
Nucleic Acids Res ; 47(1): 432-449, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30395302

RESUMEN

The 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway is an innate immune system that protects hosts against pathogenic viruses and bacteria through cleavage of exogenous single-stranded RNA; however, this system's selective targeting mechanism remains unclear. Here, we identified an mRNA quality control factor Dom34 as a novel restriction factor for a positive-sense single-stranded RNA virus. Downregulation of Dom34 and RNase L increases viral replication, as well as half-life of the viral RNA. Dom34 directly binds RNase L to form a surveillance complex to recognize and eliminate the exogenous RNA in a manner dependent on translation. Interestingly, the feature detected by the surveillance complex is not the specific sequence of the viral RNA but the 'exogenous nature' of the RNA. We propose the following model for the selective targeting of exogenous RNA; OAS3 activated by the exogenous RNA releases 2'-5'-oligoadenylates (2-5A), which in turn converts latent RNase L to an active dimer. This accelerates formation of the Dom34-RNase L surveillance complex, and its selective localization to the ribosome on the exogenous RNA, thereby promoting degradation of the RNA. Our findings reveal that the selective targeting of exogenous RNA in antiviral defense occurs via a mechanism similar to that in the degradation of aberrant transcripts in RNA quality control.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , Endonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal/genética , Virosis/genética , Virus/genética , Nucleótidos de Adenina/genética , Nucleótidos de Adenina/metabolismo , Endonucleasas/genética , Endorribonucleasas/genética , Regulación Viral de la Expresión Génica , Humanos , Proteínas Nucleares/genética , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , Estabilidad del ARN/genética , ARN Bicatenario/genética , ARN Viral/genética , Ribosomas/genética , Ribosomas/virología , Virosis/virología , Replicación Viral/genética , Virus/patogenicidad
12.
IUBMB Life ; 70(1): 41-49, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29281185

RESUMEN

Hepatitis C virus (HCV) has infected over 170 million people world-wide. This infection causes severe liver damage that can progress to hepatocellular carcinoma leading to death of the infected patients. Development of a cell culture model system for the study of HCV infection in the recent past has helped the researchers world-wide to understand the biology of this virus. Studies over the past decade have revealed the tricks played by the virus to sustain itself, for as long as 40 years, in the host setup without being eliminated by the immune system. Today we understand that the host organelles and different cellular proteins are affected during HCV infection. This cytoplasmic virus has all the cellular organelles at its disposal to successfully replicate, from ribosomes and intracellular membranous structures to the nucleus. It modulates these organelles at both the structural and the functional levels. The vast knowledge about the viral genome and viral proteins has also helped in the development of drugs against the virus. Despite the achieved success rate to cure the infected patients, we struggle to eliminate the cases of recurrence and the non-responders. Such cases might emerge owing to the property of the viral genome to accumulate mutations during its succeeding replication cycles which favours its survival. The current situation calls an urgent need for alternate therapeutic strategies to counter this major problem of human health. © 2017 IUBMB Life, 70(1):41-49, 2018.


Asunto(s)
Carcinoma Hepatocelular/virología , Hepacivirus/patogenicidad , Hepatitis C Crónica/virología , Hepatocitos/virología , Evasión Inmune , Neoplasias Hepáticas/virología , Antivirales/uso terapéutico , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/prevención & control , Núcleo Celular/inmunología , Núcleo Celular/virología , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/virología , Regulación de la Expresión Génica , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/inmunología , Hepatocitos/inmunología , Humanos , Gotas Lipídicas/inmunología , Gotas Lipídicas/virología , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/inmunología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/prevención & control , ARN Viral/biosíntesis , ARN Viral/genética , Ribosomas/inmunología , Ribosomas/virología , Transducción de Señal , Proteínas Virales/genética , Proteínas Virales/inmunología , Replicación Viral/efectos de los fármacos
13.
J Virol ; 90(12): 5538-5540, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27053555

RESUMEN

To replicate, all viruses depend entirely on the enslavement of host cell ribosomes for their own advantage. To this end, viruses have evolved a multitude of translational strategies to usurp the ribosome. RNA-based structures known as internal ribosome entry sites (IRESs) are among the most notable mechanisms employed by viruses to seize host ribosomes. In this article, we spotlight the intergenic region IRES from the Dicistroviridae family of viruses and its importance as a model for IRES-dependent translation and in understanding fundamental properties of translation.


Asunto(s)
Dicistroviridae/genética , Dicistroviridae/fisiología , Genoma Viral , Sitios Internos de Entrada al Ribosoma , Ribosomas/genética , Animales , Interacciones Huésped-Patógeno , Modelos Moleculares , Biosíntesis de Proteínas , ARN Viral/genética , Ribosomas/metabolismo , Ribosomas/virología
14.
Assay Drug Dev Technol ; 11(6): 355-66, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23906347

RESUMEN

The use of small molecules to modulate cellular processes is a powerful approach to investigate gene function as a complement to genetic approaches. The discovery and characterization of compounds that modulate translation initiation, the rate-limiting step of protein synthesis, is important both to provide tool compounds to explore this fundamental biological process and to further evaluate protein synthesis as a therapeutic target. While most messenger ribonucleic acids (mRNAs) recruit ribosomes via their 5' cap, some viral and cellular mRNAs initiate protein synthesis via an alternative "cap-independent" mechanism utilizing internal ribosome entry sites (IRES) elements, which are complex mRNA secondary structures, localized within the 5' nontranslated region of the mRNA upstream of the AUG start codon. This report describes the design of a functional, high throughput screen of small molecules miniaturized into a 1,536-well format and performed using the luciferase reporter gene under control of the viral Cardiovirus encephalomyocarditis virus (EMCV) IRES element to identify nontoxic compounds modulating translation initiated from the EMCV IRES. One activating compound, validated in a dose response manner, has previously been shown to bind the glucocorticoid receptor (GR). Subsequent testing of additional GR modulators further supported this as the possible mechanism of action. Detailed characterization of this compound activity supported the notion that this was due to an effect at the level of translation.


Asunto(s)
Virus de la Encefalomiocarditis/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Receptores de Glucocorticoides/efectos de los fármacos , Ribosomas/virología , Internalización del Virus/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Virus de la Encefalomiocarditis/fisiología , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Receptores de Glucocorticoides/fisiología
15.
Mol Cell Biol ; 33(5): 1016-26, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23275440

RESUMEN

During viral infection or cellular stress, cap-dependent translation is shut down. Proteins that are synthesized under these conditions use alternative mechanisms to initiate translation. This study demonstrates that at least two alternative translation initiation routes, internal ribosome entry site (IRES) initiation and ribosome shunting, rely on ribosomal protein S25 (RPS25). This suggests that they share a mechanism for initiation that is not employed by cap-dependent translation, since cap-dependent translation is not affected by the loss of RPS25. Furthermore, we demonstrate that viruses that utilize an IRES or a ribosome shunt, such as hepatitis C virus, poliovirus, or adenovirus, have impaired amplification in cells depleted of RPS25. In contrast, viral amplification of a virus that relies solely on cap-dependent translation, herpes simplex virus, is not hindered. We present a model that explains how RPS25 can be a nexus for multiple alternative translation initiation pathways.


Asunto(s)
Adenoviridae/fisiología , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Poliovirus/fisiología , Proteínas Ribosómicas/metabolismo , Ribosomas/virología , Infecciones por Adenoviridae/genética , Infecciones por Adenoviridae/metabolismo , Infecciones por Adenoviridae/virología , Línea Celular , Técnicas de Silenciamiento del Gen , Células HeLa , Hepatitis C/genética , Hepatitis C/metabolismo , Hepatitis C/virología , Humanos , Poliomielitis/genética , Poliomielitis/metabolismo , Poliomielitis/virología , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Replicación Viral
16.
Methods ; 59(2): 167-79, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23009811

RESUMEN

Internal ribosome entry sites are RNA elements that mediate translation in a cap-independent manner. A subset of positive strand RNA viruses utilize an IRES mechanism as a viral strategy to ensure efficient viral protein synthesis. IRES elements vary in sequence, structure, and factor requirements between virus families. Here, we describe methods to determine IRES activity and approaches to study the regulation and function of IRES-mediated translation both in vitro and in vivo. Finally, we describe a new IRES-directed reporter system which exploits the 2A 'self-cleavage' or 'stop-go' peptide for optimal detection of IRES activity.


Asunto(s)
Técnicas Genéticas , Biosíntesis de Proteínas/genética , Virus ARN/genética , Ribosomas/genética , Ribosomas/virología , Animales , Secuencia de Bases , Humanos , Datos de Secuencia Molecular
17.
Biol Chem ; 393(10): 1079-88, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23091275

RESUMEN

ATP binding cassette proteins are a large and diverse family of molecular machines and include transmembrane transporter, chromosome maintenance and DNA repair proteins, and translation factors. However, the function of the ABCE1, the only member of subfamily E of ABC proteins, remained mysterious for over a decade, even though it is perhaps the most conserved ABC protein in eukaryotes and archaea. Recent results have now identified ABCE1 as the ribosome-recycling factor of eukaryotes and archaea. Thus, two iron-sulfur clusters - the hallmark feature of ABCE1 - help catalyze an integral step of the translational cycle at the core of the protein synthesis machinery.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Biosíntesis de Proteínas , Transportadoras de Casetes de Unión a ATP/química , Regulación Alostérica , Animales , Inmunidad Innata , Ribosomas/genética , Ribosomas/inmunología , Ribosomas/metabolismo , Ribosomas/virología , Especificidad de la Especie
18.
Arterioscler Thromb Vasc Biol ; 32(4): 997-1004, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22328780

RESUMEN

OBJECTIVE: Translation initiation of eukaryotic mRNAs typically occurs by cap-dependent ribosome scanning mechanism. However, certain mRNAs are translated by ribosome assembly at internal ribosome entry sites (IRESs). Whether IRES-mediated translation occurs in stressed primary human endothelial cells (ECs) is unknown. METHODS AND RESULTS: We performed microarray analysis of polyribosomal mRNA from ECs to identify IRES-containing mRNAs. Cap-dependent translation was disabled by poliovirus (PV) infection and confirmed by loss of polysome peaks, detection of eukaryotic initiation factor (eIF) 4G cleavage, and decreased protein synthesis. We found that 87.4% of mRNAs were dissociated from polysomes in virus-infected ECs. Twelve percent of mRNAs remained associated with polysomes, and 0.6% were enriched ≥2-fold in polysome fractions from infected ECs. Quantitative reverse transcription-polymerase chain reaction confirmed the microarray findings for 31 selected mRNAs. We found that enriched polysome associations of programmed cell death 8 (PDCD8) and JunB mRNA resulted in increased protein expression in PV-infected ECs. The presence of IRESs in the 5' untranslated region of PDCD8 mRNA, but not of JunB mRNA, was confirmed by dicistronic analysis. CONCLUSIONS: We show that microarray profiling of polyribosomal mRNA transcripts from PV-infected ECs successfully identifies mRNAs whose translation is preserved in the face of stress-induced, near complete cessation of cap-dependent initiation. Nevertheless, internal ribosome entry is not the only mechanism responsible for this privileged translation.


Asunto(s)
Factor Inductor de la Apoptosis/biosíntesis , Células Endoteliales/virología , Poliovirus/patogenicidad , Proteínas Proto-Oncogénicas c-jun/biosíntesis , ARN Mensajero/metabolismo , Ribosomas/virología , Regiones no Traducidas 5' , Factor Inductor de la Apoptosis/genética , Línea Celular , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Genes Reporteros , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/virología , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas c-jun/genética , Caperuzas de ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribosomas/metabolismo , Transfección
19.
Gene Ther ; 19(9): 947-55, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22278412

RESUMEN

The treatment of axonal disorders, such as diseases associated with axonal injury and degeneration, is limited by the inability to directly target therapeutic protein expression to injured axons. Current gene therapy approaches rely on infection and transcription of viral genes in the cell body. Here, we describe an approach to target gene expression selectively to axons. Using a genetically engineered mouse containing epitope-labeled ribosomes, we find that neurons in adult animals contain ribosomes in distal axons. To use axonal ribosomes to alter local protein expression, we utilized a Sindbis virus containing an RNA genome that has been modified so that it can be directly used as a template for translation. Selective application of this virus to axons leads to local translation of heterologous proteins. Furthermore, we demonstrate that selective axonal protein expression can be used to modify axonal signaling in cultured neurons, enabling axons to grow over inhibitory substrates typically encountered following axonal injury. We also show that this viral approach also can be used to achieve heterologous expression in axons of living animals, indicating that this approach can be used to alter the axonal proteome in vivo. Together, these data identify a novel strategy to manipulate protein expression in axons, and provides a novel approach for using gene therapies for disorders of axonal function.


Asunto(s)
Axones/fisiología , Marcación de Gen/métodos , Vectores Genéticos , Virus Sindbis/genética , Adenilil Ciclasas/genética , Animales , Axones/metabolismo , Ratones , Regeneración Nerviosa , Ribosomas/virología , Médula Espinal
20.
Virology ; 425(1): 40-52, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22280896

RESUMEN

Picornavirus infection can lead to disruption of nuclear pore traffic, shut-off of cell translation machinery, and cleavage of proteins involved in cellular signal transduction and the innate response to infection. Here, we demonstrated that the FMDV 3C(pro) induced the cleavage of nuclear RNA-binding protein Sam68 C-terminus containing the nuclear localization sequence (NLS). Consequently, it stimulated the redistribution of Sam68 to the cytoplasm. The siRNA knockdown of Sam68 resulted in a 1000-fold reduction in viral titers, which prompted us to study the effect of Sam68 on FMDV post-entry events. Interestingly, Sam68 interacts with the internal ribosomal entry site within the 5' non-translated region of the FMDV genome, and Sam68 knockdown decreased FMDV IRES-driven activity in vitro suggesting that it could modulate translation of the viral genome. The results uncover a novel role for Sam68 in the context of picornaviruses and the proteolysis of a new cellular target of the FMDV 3C(pro).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cisteína Endopeptidasas/metabolismo , Citoplasma/metabolismo , Virus de la Fiebre Aftosa/patogenicidad , Riñón/virología , Proteínas de Unión al ARN/metabolismo , Proteínas Virales/metabolismo , Proteasas Virales 3C , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Cricetinae , Virus de la Fiebre Aftosa/enzimología , Riñón/citología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribosomas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...