Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 215(2): 107960, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028467

RESUMEN

Spotted fever group Rickettsia undergo actin-based motility inside infected eukaryotic cells using Sca2 (surface cell antigen 2): an âˆ¼ 1800 amino-acid monomeric autotransporter protein that is surface-attached to the bacterium and responsible for the assembly of long unbranched actin tails. Sca2 is the only known functional mimic of eukaryotic formins, yet it shares no sequence similarities to the latter. Using structural and biochemical approaches we have previously shown that Sca2 uses a novel actin assembly mechanism. The first âˆ¼ 400 amino acids fold into helix-loop-helix repeats that form a crescent shape reminiscent of a formin FH2 monomer. Additionally, the N- and C- terminal halves of Sca2 display intramolecular interaction in an end-to-end manner and cooperate for actin assembly, mimicking a formin FH2 dimer. Towards a better structural understanding of this mechanism, we performed single-particle cryo-electron microscopy analysis of Sca2. While high-resolution structural details remain elusive, our model confirms the presence of a formin-like core: Sca2 indeed forms a doughnut shape, similar in diameter to a formin FH2 dimer and can accommodate two actin subunits. Extra electron density, thought to be contributed by the C-terminal repeat domain (CRD), covering one side is also observed. This structural analysis allows us to propose an updated model where nucleation proceeds by encircling two actin subunits, and elongation proceeds either by a formin-like mechanism that necessitates conformational changes in the observed Sca2 model, or via an insertional mechanism akin to that observed in the ParMRC system.


Asunto(s)
Actinas , Rickettsia conorii , Actinas/metabolismo , Forminas/metabolismo , Rickettsia conorii/metabolismo , Microscopía por Crioelectrón , Estructura Terciaria de Proteína , Citoesqueleto de Actina/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835430

RESUMEN

Small regulatory RNAs (sRNAs) are now widely recognized for their role in the post-transcriptional regulation of bacterial virulence and growth. We have previously demonstrated the biogenesis and differential expression of several sRNAs in Rickettsia conorii during interactions with the human host and arthropod vector, as well as the in vitro binding of Rickettsia conorii sRNA Rc_sR42 to bicistronic cytochrome bd ubiquinol oxidase subunits I and II (cydAB) mRNA. However, the mechanism of regulation and the effect of sRNA binding on the stability of the cydAB bicistronic transcript and the expression of the cydA and cydB genes are still unknown. In this study, we determined the expression dynamics of Rc_sR42 and its cognate target genes, cydA and cydB, in mouse lung and brain tissues during R. conorii infection in vivo and employed fluorescent and reporter assays to decode the role of sRNA in regulating cognate gene transcripts. Quantitative RT-PCR revealed significant changes in the expression of sRNA and its cognate target gene transcripts during R. conorii infection in vivo, and a greater abundance of these transcripts was observed in the lungs compared to brain tissue. Interestingly, while Rc_sR42 and cydA exhibited similar patterns of change in their expression, indicating the influence of sRNA on the mRNA target, the expression of cydB was independent of sRNA expression. Further, we constructed reporter plasmids of sRNA and cydAB bicistronic mRNA to decipher the role of sRNA on CydA and CydB expression. We observed increased expression of CydA in the presence of sRNA but detected no change in CydB expression in the presence or absence of sRNA. In sum, our results demonstrate that the binding of Rc_sR42 is required for the regulation of cydA but not cydB. Further studies on understanding the influence of this interaction on the mammalian host and tick vector during R. conorii infection are in progress.


Asunto(s)
ARN Pequeño no Traducido , Rickettsia conorii , Animales , Ratones , Humanos , Rickettsia conorii/genética , Rickettsia conorii/metabolismo , Regulación Bacteriana de la Expresión Génica , Citocromos/genética , ARN Mensajero , ARN Pequeño no Traducido/genética , Mamíferos/metabolismo
3.
Cell Microbiol ; 16(6): 849-61, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24286496

RESUMEN

Bacteria of the genus Rickettsia are transmitted from arthropod vectors and primarily infect cells of the mammalian endothelial system. Throughout this infectious cycle, the bacteria are exposed to the deleterious effects of serum complement. Using Rickettsia conorii, the etiologic agent of Mediterranean spotted fever (MSF), as a model rickettsial species, we have previously demonstrated that this class of pathogen interacts with human factor H to mediate partial survival in human serum. Herein, we demonstrate that R. conorii also interacts with the terminal complement complex inhibitor vitronectin (Vn). We further demonstrate that an evolutionarily conserved rickettsial antigen, Adr1/RC1281, interacts with human vitronectin and is sufficient to mediate resistance to serum killing when expressed at the outer-membrane of serum sensitive Escherichia coli. Adr1 is an integral outer-membrane protein whose structure is predicted to contain eight membrane-embedded ß-strands and four 'loop' regions that are exposed to extracellular milieu. Site-directed mutagenesis of Adr1 revealed that at least two predicted 'loop' regions are required to mediate resistance to complement-mediatedkilling and vitronectin acquisition. These results demonstrate that rickettsial species have evolved multiple mechanisms to evade complement deposition and that evasion of killing in serum is an evolutionarily conserved virulence attribute for this genus of obligate intracellular pathogens.


Asunto(s)
Antígenos Bacterianos/metabolismo , Actividad Bactericida de la Sangre , Proteínas del Sistema Complemento/inmunología , Rickettsia conorii/inmunología , Rickettsia conorii/fisiología , Vitronectina/metabolismo , Antígenos Bacterianos/genética , Proteínas del Sistema Complemento/metabolismo , Escherichia coli/genética , Expresión Génica , Humanos , Mutagénesis Sitio-Dirigida , Mapeo de Interacción de Proteínas , Rickettsia conorii/genética , Rickettsia conorii/metabolismo
4.
J Med Microbiol ; 62(Pt 7): 968-979, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23558133

RESUMEN

Rickettsia conorii, the causative agent of Mediterranean spotted fever, preferentially infects human microvascular endothelium and activates pro-inflammatory innate immune responses as evidenced by enhanced expression and secretion of cytokines and chemokines. Our recent studies reveal that human microvascular endothelial cells (HMECs) infected with R. conorii also launch 'antiviral' host defence mechanisms typically governed by type I interferons. To summarize, infected HMECs secrete IFN-ß to activate STAT1 in an autocrine/paracrine manner and display increased expression of IFN-stimulated genes, for example ISG15, which in turn activate innate responses to interfere with intracellular replication of rickettsiae. We now present evidence that UBP43 and SOCS1, known negative regulators of JAK/STAT signalling, are also induced in R. conorii-infected HMECs, of which UBP43 but not SOCS1 functions to negatively regulate STAT1 activation. Interestingly, UBP43 induction is almost completely abolished in the presence of IFN-ß-neutralizing antibody, implicating an important role for UBP43 as a feedback inhibitor for IFN-ß-mediated STAT1 activation. In contrast, SOCS1 expression is only partially affected by IFN-ß neutralization, implicating potential involvement of as-yet-unidentified IFN-independent mechanism(s) in SOCS1 induction during R. conorii infection. A number of IFN-stimulated genes, including ISG15, OAS1, MX1, IRF1, IRF9 and TAP1 are also induced in an IFN-ß-dependent manner, whereas GBP1 remains unaffected by IFN-ß neutralization. Increased STAT1 phosphorylation in HMECs subjected to UBP43 knockdown led to transcriptional activation of OAS1, MX1 and GBP1, confirming the negative regulatory role of UBP43. Although IRF1, IRF9 and TAP1 were induced by IFN-ß, siRNA-mediated silencing of UBP43 or SOCS1 did not significantly affect their transcriptional activation. Expression of ISG15 was, however, increased in HMECs transfected with siRNA for UBP43 and SOCS1. Thus, unique regulatory patterns of induced expression of UBP43, SOCS1 and IFN-stimulated genes represent pathogen-specific responses underlying IFN-ß-mediated host endothelial signalling during the pathogenesis of spotted fever group rickettsiosis.


Asunto(s)
Endopeptidasas/metabolismo , Endotelio Vascular/microbiología , Interferón Tipo I/metabolismo , Rickettsia conorii/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Endopeptidasas/genética , Endopeptidasas/inmunología , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Regulación de la Expresión Génica/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Rickettsia conorii/genética , Rickettsia conorii/inmunología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/clasificación , Proteínas Supresoras de la Señalización de Citocinas/genética , Ubiquitina Tiolesterasa , Células Vero
5.
PLoS One ; 7(9): e43638, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028464

RESUMEN

The pathophysiological hallmark of spotted fever group rickettsioses comprises vascular inflammation. Based on the emerging importance of the wingless (Wnt) pathways in inflammation and vascular biology, we hypothesized that Dickkopf-1 (DKK-1), as a major modulator of Wnt signaling, could be involved in the pathogenesis in rickettsial infections. Our major findings were: (i) While baseline concentration of DKK-1 in patients with R. conorii infection (n = 32) were not different from levels in controls (n = 24), DKK-1 rose significantly from presentation to first follow-up sample (median 7 days after baseline). (ii) In vitro experiments in human umbilical vein endothelial cells (HUVECs) showed that while heat-inactivated R. conorii enhanced the release of interleukin-6 (IL-6) and IL-8, it down-regulated the release of endothelial-derived DKK-1 in a time- and dose-dependent manner. (iii) Silencing of DKK-1 attenuated the release of IL-6, IL-8 and growth-related oncogene (GRO)α in R. conorii-exposed HUVECs, suggesting inflammatory effects of DKK-1. (iv) Silencing of DKK-1 attenuated the expression of tissue factor and enhanced the expression of thrombomodulin in R. conorii-exposed HUVECs suggesting pro-thrombotic effects of DKK-1. The capacity of R. conorii to down-regulate endothelial-derived DKK-1 and the ability of silencing DKK-1 to attenuate R. conorii-induced inflammation in endothelial cells could potentially reflect a novel mechanism by which R. conorii escapes the immune response at the site of infection.


Asunto(s)
Fiebre Botonosa/inmunología , Fiebre Botonosa/metabolismo , Células Endoteliales/microbiología , Evasión Inmune , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Rickettsia conorii/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Fiebre Botonosa/genética , Estudios de Casos y Controles , Línea Celular , Citocinas/inmunología , Citocinas/metabolismo , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Femenino , Silenciador del Gen , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/microbiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Interleucina-6/metabolismo , Masculino , Persona de Mediana Edad , Rickettsia conorii/inmunología , Transducción de Señal , Trombosis/genética , Trombosis/metabolismo , Proteínas Wnt/metabolismo , Adulto Joven
6.
Infect Immun ; 79(9): 3733-43, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21690236

RESUMEN

Infection of the endothelial cell lining of blood vessels with Rickettsia conorii, the causative agent of Mediterranean spotted fever, results in endothelial activation. We investigated the effects of R. conorii infection on the status of the Janus kinase (JAK)-signal transducer and activator of transcription protein (STAT) signaling pathway in human microvascular endothelial cells (HMECs), the most relevant host cell type, in light of rickettsial tropism for microvascular endothelium in vivo. R. conorii infection induced phosphorylation of STAT1 on tyrosine 701 and serine 727 at 24, 48, and 72 h postinfection in HMECs. Employing transcription profile analysis and neutralizing antibodies, we further determined that beta interferon (IFN-ß) production and secretion are critical for STAT1 activation. Secreted IFN-ß further amplified its own expression via a positive-feedback mechanism, while expression of transcription factors interferon regulatory factor 7 (IRF7) and IRF9, implicated in the IFN-ß-STAT1 feedback loop, was also induced. Metabolic activity of rickettsiae was essential for the IFN-ß-mediated response(s) because tetracycline treatment inhibited R. conorii replication, IFN-ß expression, and STAT1 phosphorylation. Inclusion of IFN-ß-neutralizing antibody during infection resulted in significantly enhanced R. conorii replication, whereas addition of exogenous IFN-ß had the opposite inhibitory effect. Finally, small interfering RNA-mediated knockdown further confirmed a protective role for STAT1 against intracellular R. conorii replication. In concert, these findings implicate an important role for IFN-ß-mediated STAT1 activation in innate immune responses of vascular endothelium to R. conorii infection.


Asunto(s)
Vasos Sanguíneos/microbiología , Células Endoteliales/microbiología , Interferón beta/metabolismo , Microvasos/microbiología , Rickettsia conorii/crecimiento & desarrollo , Rickettsia conorii/metabolismo , Factor de Transcripción STAT1/metabolismo , Anticuerpos Monoclonales , Línea Celular , Humanos , Factor 7 Regulador del Interferón/biosíntesis , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/biosíntesis , Interferón beta/biosíntesis , Interferón beta/inmunología , Quinasas Janus/metabolismo , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño , Factor de Transcripción STAT1/biosíntesis , Transducción de Señal , Tetraciclina/farmacología
7.
New Microbiol ; 34(2): 209-18, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21617834

RESUMEN

Rickettsia conorii, the etiologic agent of Mediterranean spotted fever, belongs to the spotted fever group of Rickettsia. It is an obligate intracellular bacterium that grows within the cytoplasm of its eukaryotic host cells. It is motile in the cytoplasm of infected cells and RickA is reported as critical protein in this aspect. However, the subcellular localization of RickA remains uncertain. We describe a simple method allowing RickA protein to be localized by immunofluorescence assay (IFA) and transmission electron microscopy (TEM). By using IFA we showed the global expression of surface protein RickA in R. conorii organisms. The TEM results showed that RickA is widely expressed over the entire bacterial surface of R. conorii.


Asunto(s)
Proteínas Bacterianas/metabolismo , Rickettsia conorii/metabolismo , Rickettsia conorii/ultraestructura , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Fiebre Botonosa/microbiología , Línea Celular , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Microscopía Electrónica de Transmisión , Transporte de Proteínas , Rickettsia conorii/genética
8.
Cell Microbiol ; 11(4): 629-44, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19134120

RESUMEN

Rickettsia conorii, an obligate intracellular tick-borne pathogen and the causative agent of Mediterranean spotted fever, binds to and invades non-phagocytic mammalian cells. Previous work identified Ku70 as a mammalian receptor involved in the invasion process and identified the rickettsial autotransporter protein, rOmpB, as a ligand; however, little is known about the role of Ku70-rOmpB interactions in the bacterial invasion process. Using an Escherichia coli heterologous expression system, we show here that rOmpB mediates attachment to mammalian cells and entry in a Ku70-dependent process. A purified recombinant peptide corresponding to the rOmpB passenger domain interacts with Ku70 and serves as a competitive inhibitor of adherence. We observe that rOmpB-mediated infection culminates in actin recruitment at the bacterial foci, and that this entry process relies in part on actin polymerization likely imparted through protein tyrosine kinase and phosphoinositide 3-kinase-dependent activities and microtubule stability. Small-interfering RNA studies targeting components of the endocytic pathway reveal that entry by rOmpB is dependent on c-Cbl, clathrin and caveolin-2. Together, these results illustrate that rOmpB is sufficient to mediate Ku70-dependent invasion of mammalian cells and that clathrin- and caveolin-dependent endocytic events likely contribute to the internalization process.


Asunto(s)
Antígenos Nucleares/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/microbiología , Interacciones Huésped-Patógeno , Rickettsia conorii/patogenicidad , Actinas/metabolismo , Animales , Caveolina 2/metabolismo , Chlorocebus aethiops , Clatrina/metabolismo , Células HeLa/microbiología , Humanos , Autoantígeno Ku , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Rickettsia conorii/metabolismo , Rickettsia conorii/fisiología , Células Vero/microbiología
9.
J Microbiol Methods ; 71(3): 292-7, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17964675

RESUMEN

The Rickettsia genus is composed of Gram-negative bacteria responsible for Typhus and spotted fevers. Because of the limitations imposed by their obligate intracellular location, the molecular mechanisms responsible for their pathogenicity remain poorly understood. Several rickettsial genomes are now available, thus providing the foundation for a new era of post-genomic research. Here, using Rickettsia conorii as model, we developed a suitable method for microarray-based transcriptome analysis of rickettsiae. Total RNA was extracted from infected Vero cells using a protocol preserving its integrity, as observed by Bioanalyzer (Agilent) profiles. By a subtractive hybridization method, the samples were subsequently depleted of eukaryotic RNA that represents up to 90% of the whole extract and that hampers fluorochrome labeling of rickettsial nucleic acids. To obtain the amount of material required for microarray hybridization, the bacterial RNA was then amplified using random primers. Hybridizations were carried out on microarrays specific for R. conorii but containing a limited number of selected targets. Our results show that this method yielded reproducible signals. Transcriptional changes observed following exposure of R. conorii to a nutrient stress were verified by real-time quantitative PCR and by quantitative reverse transcription PCR starting from amplified cDNA and total RNA as templates, respectively. We conclude that this approach has great potential for the study of mechanisms behind the virulence and intracellular survival of members of the genus Rickettsia.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica , ARN Mensajero/análisis , Rickettsia conorii/metabolismo , Animales , Chlorocebus aethiops , Cartilla de ADN/química , ARN Mensajero/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rickettsia conorii/genética , Rickettsia conorii/fisiología , Células Vero
11.
Cell ; 123(6): 1013-23, 2005 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-16360032

RESUMEN

Rickettsia conorii, a strictly intracellular and category C priority bacterial pathogen (NIAID), invades different mammalian cells. Although some signaling events involved in bacterial entry have been documented, the bacterial and host proteins mediating entry were not known. We report the identification of the Ku70 subunit of DNA-dependent protein kinase (DNA-PK) as a receptor involved in R. conorii internalization. Ku70 is recruited to R. conorii entry sites, and inhibition of Ku70 expression impairs R. conorii internalization. Bacterial invasion is dependent on the presence of cholesterol-enriched microdomains containing Ku70. R. conorii infection stimulates the ubiquitination of Ku70. In addition, the ubiquitin ligase c-Cbl is recruited to R. conorii entry foci, and downregulation of endogenous c-Cbl blocks bacterial invasion and Ku70 ubiquitination. An affinity chromatography approach identified the rickettsial protein rOmpB as a ligand for Ku70. This is the first report of a receptor-ligand interaction involved in the internalization of any rickettsial species.


Asunto(s)
Antígenos Nucleares/metabolismo , Proteínas de Unión al ADN/metabolismo , Receptores de Superficie Celular/metabolismo , Rickettsia conorii/metabolismo , Actinas/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Antígenos Nucleares/genética , Antígenos Nucleares/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Caveolina 2/análisis , Línea Celular , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Colesterol/metabolismo , Colesterol/farmacología , Colágeno Tipo XI/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Endocitosis/efectos de los fármacos , Fibroblastos/microbiología , Células HeLa , Humanos , Autoantígeno Ku , Microdominios de Membrana/química , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Ratones , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , ARN Interferente Pequeño/genética , Receptores de Superficie Celular/genética , Ubiquitina/metabolismo , Células Vero , beta-Ciclodextrinas/farmacología
13.
Nature ; 427(6973): 457-61, 2004 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-14749835

RESUMEN

Actin polymerization, the main driving force for cell locomotion, is also used by the bacteria Listeria and Shigella and vaccinia virus for intracellular and intercellular movements. Seminal studies have shown the key function of the Arp2/3 complex in nucleating actin and generating a branched array of actin filaments during membrane extension and pathogen movement. Arp2/3 requires activation by proteins such as the WASP-family proteins or ActA of Listeria. We previously reported that actin tails of Rickettsia conorii, another intracellular bacterium, unlike those of Listeria, Shigella or vaccinia, are made of long unbranched actin filaments apparently devoid of Arp2/3 (ref. 4). Here we identify a R. conorii surface protein, RickA, that activates Arp2/3 in vitro, although less efficiently than ActA. In infected cells, Arp2/3 is detected on the rickettsial surface but not in actin tails. When expressed in mammalian cells and targeted to the membrane, RickA induces filopodia. Thus RickA-induced actin polymerization, by generating long actin filaments reminiscent of those present in filopodia, has potential as a tool for studying filopodia formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Rickettsia conorii/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Línea Celular Tumoral , Humanos , Sustancias Macromoleculares , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Rickettsia conorii/citología , Rickettsia conorii/genética , Transfección
14.
Int J Syst Evol Microbiol ; 50 Pt 5: 1775-1779, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11034486

RESUMEN

The genes for rickettsial outer-membrane protein A (rOmpA), a distinguishing feature of spotted fever group (SFG) rickettsiae, and rOmpB, a genus-specific protein, were identified and sequenced in Rickettsia australis. The amino acid sequences of domains I, III and IV of the R. australis rOmpA share close homology with those of rOmpA of other SFG rickettsiae, but the repeat region (domain II) is dramatically different from that of other known SFG rOmpA. R. australis rOmpB is more similar to rOmpB of other SFG rickettsiae than to that of typhus group rickettsiae.


Asunto(s)
Antígenos Bacterianos , Antígenos de Superficie/genética , Proteínas de la Membrana Bacteriana Externa/genética , Fiebre Botonosa/microbiología , Filogenia , Rickettsia/clasificación , Rickettsia/genética , Sustitución de Aminoácidos , Animales , Antígenos de Superficie/química , Proteínas de la Membrana Bacteriana Externa/química , Genes Bacterianos , Humanos , Datos de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos , Rickettsia conorii/genética , Rickettsia conorii/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...