Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
ACS Chem Neurosci ; 15(8): 1669-1683, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38575140

RESUMEN

The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.


Asunto(s)
Agonismo Inverso de Drogas , Piperidinas , Femenino , Ratones , Masculino , Animales , Rimonabant/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Ratones Noqueados , Encéfalo , Receptores de Cannabinoides , Receptor Cannabinoide CB1/genética , Dronabinol/farmacología
2.
Pharmacol Biochem Behav ; 236: 173707, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244864

RESUMEN

Synthetic cannabinoids are associated with higher risk of dependence and more intense withdrawal symptoms than plant-derived Δ9-tetrahydrocannabinol (THC). Avoidance of withdrawal symptoms, including anxiogenic effects, can contribute to continued cannabinoid use. Adult male and female Long-Evans rats were given escalating doses of WIN 55,212-2 (WIN) via twice daily intrajugular infusions. Precipitated withdrawal was elicited with SR 141716 (rimonabant) 4 h after the final infusion. Global withdrawal scores (GWS) were compiled by summing z-scores of observed somatic behaviors over a 30-min period with locomotor activity simultaneously collected via beam breaks. Rimonabant precipitated withdrawal in female and male rats at 3 or 10 mg/kg, respectively, but the individual behaviors contributing to GWS were not identical. 3 mg/kg rimonabant did not impact locomotor behavior in females, but 10 mg/kg decreased locomotion in male controls. Spontaneous withdrawal observed between 6 and 96 h after the final infusion was quantifiable up to 24 h following WIN administration. Individual behaviors contributing to GWS varied by sex and time point. Males undergoing spontaneous withdrawal engaged in more locomotion than females undergoing withdrawal. Separate groups of rats were subjected to a battery of anxiety-like behavioral tests (elevated plus maze, open field test, and marble burying test) one or two weeks after WIN or vehicle infusions. At one week abstinence, sex-related effects were noted in marble burying and the open field test but were unrelated to drug treatment. At two weeks abstinence, females undergoing withdrawal spent more time grooming during marble burying and performed more marble manipulations than their male counterparts. WIN infusions did not impact estrous cycling, and GWS scores were not correlated with estrous at withdrawal. Collectively, these results show qualitative sex differences in behaviors contributing to the behavioral experience of cannabinoid withdrawal supporting clinical findings from THC.


Asunto(s)
Benzoxazinas , Cannabinoides , Morfolinas , Naftalenos , Síndrome de Abstinencia a Sustancias , Ratas , Femenino , Animales , Masculino , Agonistas de Receptores de Cannabinoides/farmacología , Rimonabant/farmacología , Dronabinol/efectos adversos , Piperidinas/farmacología , Pirazoles , Ratas Long-Evans , Cannabinoides/farmacología , Ansiedad/inducido químicamente , Carbonato de Calcio
3.
Obesity (Silver Spring) ; 31(11): 2676-2688, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37840407

RESUMEN

OBJECTIVE: Incretin receptor agonists are now standard of care in treating obesity. Their efficacy and tolerability might be further improved by combining them with compounds that offer orthogonal mechanisms of action. The cannabinoid type 1 receptor (CB1R) is a clinically validated therapeutic target in obesity, and several experimental CB1R inverse agonists have been shown to induce weight loss. METHODS: This study characterizes a novel CB1R inverse agonist (CRB-913) with similar preclinical potency to rimonabant but markedly reduced brain penetration. CRB-913 was tested as monotherapy and in combination with tirzepatide, semaglutide, or liraglutide in the diet-induced obesity (DIO) mouse model for body weight reduction. RESULTS: CRB-913 demonstrated enhanced plasma exposure (3.8-fold larger area under the curvelast ) and reduced brain levels (9.5-fold lower area under the curvelast ) than rimonabant. CRB-913 monotherapy yielded a dose-dependent decrease in body weight in DIO mice reaching -22% within 18 days. In further DIO studies in combination with tirzepatide, semaglutide, or liraglutide, CRB-913 (2.5 mg/kg) resulted in -32.6%, -28.8%, and -16.8% decreases in body weight on Day 18, respectively, with concomitant improvements in body fat content, liver triglycerides, and liver fat deposits. CONCLUSIONS: CRB-913 in combination with incretin analogues could deliver meaningful improvements over current standards of care for obesity and related conditions.


Asunto(s)
Agonismo Inverso de Drogas , Liraglutida , Ratones , Animales , Rimonabant/farmacología , Rimonabant/uso terapéutico , Liraglutida/farmacología , Liraglutida/uso terapéutico , Incretinas/uso terapéutico , Obesidad/tratamiento farmacológico , Peso Corporal , Dieta , Pérdida de Peso , Receptores de Cannabinoides/uso terapéutico
4.
Front Endocrinol (Lausanne) ; 14: 1269334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900144

RESUMEN

Introduction: Male reproduction is under the control of the hypothalamus-pituitary-gonadal (HPG) axis. The endocannabinoid system (ECS) and the kisspeptin system (KS) are two major signaling systems in the central and peripheral control of reproduction, but their possible interaction has been poorly investigated in mammals. This manuscript analyzes their possible reciprocal modulation in the control of the HPG axis. Materials and methods: Adolescent male rats were treated with kisspeptin-10 (Kp10) and endocannabinoid anandamide (AEA), the latter alone or in combination with the type 1 cannabinoid receptor (CB1) antagonist rimonabant (SR141716A). The hypothalamic KS system and GnRH expression, circulating sex steroids and kisspeptin (Kiss1) levels, and intratesticular KS and ECS were evaluated by immunohistochemical and molecular methods. Non-coding RNAs (i.e., miR145-5p, miR-132-3p, let7a-5p, let7b-5p) were also considered. Results: Circulating hormonal values were not significantly affected by Kp10 or AEA; in the hypothalamus, Kp10 significantly increased GnRH mRNA and aromatase Cyp19, Kiss1, and Kiss1 receptor (Kiss1R) proteins. By contrast, AEA treatment affected the hypothalamic KS at the protein levels, with opposite effects on the ligand and receptor, and SR141716A was capable of attenuating the AEA effects. Among the considered non-coding RNA, only the expression of miR145-5p was positively affected by AEA but not by Kp10 treatment. Localization of Kiss1+/Kiss1R+ neurons in the arcuate nucleus revealed an increase of Kiss1R-expressing neurons in Kp10- and AEA-treated animals associated with enlargement of the lateral ventricles in Kp10-treated animals. In the brain and testis, the selected non-coding RNA was differently modulated by Kp10 or AEA. Lastly, in the testis, AEA treatment affected the KS at the protein levels, whereas Kp10 affected the intragonadal levels of CB1 and FAAH, the main modulator of the AEA tone. Changes in pubertal transition-related miRNAs and the intratesticular distribution of Kiss1, Kiss1R, CB1, and CB2 following KP and AEA treatment corroborate the KS-ECS crosstalk also showing that the CB1 receptor is involved in this interplay. Conclusion: For the first time in mammals, we report the modulation of the KS in both the hypothalamus and testis by AEA and revealed the KP-dependent modulation of CB1 and FAAH in the testis. KP involvement in the progression of spermatogenesis is also suggested.


Asunto(s)
Kisspeptinas , MicroARNs , Masculino , Ratas , Animales , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/genética , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Rimonabant/metabolismo , Rimonabant/farmacología , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Mamíferos/metabolismo , Reproducción , ARN no Traducido/metabolismo , MicroARNs/metabolismo
5.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686233

RESUMEN

The spread of breast cancer to distant sites is the major cause of death in breast cancer patients. Increasing evidence supports the role of the tumor microenvironment (TME) in breast cancers, and its pathologic assessment has become a diagnostic and therapeutic tool. In the TME, a bidirectional interplay between tumor and stromal cells occurs, both at the primary and metastatic site. Hundreds of molecules, including cytokines, chemokines, and growth factors, contribute to this fine interaction to promote tumor spreading. Here, we investigated the effects of Rimonabant and Cannabidiol, known for their antitumor activity, on reprogramming the breast TME. Both compounds directly affect the activity of several pathways involved in breast cancer progression. To mimic tumor-stroma interactions during breast-to-lung metastasis, we investigated the effect of the compounds on growth factor secretion from metastatic breast cancer cells and normal and activated lung fibroblasts. In this setting, we demonstrated the anti-metastatic potential of the two compounds, and the membrane array analyses highlighted their ability to alter the release of factors involved in the autocrine and paracrine regulation of tumor proliferation, angiogenesis, and immune reprogramming. The results enforce the antitumor potential of Rimonabant and Cannabidiol, providing a novel potential tool for breast cancer TME management.


Asunto(s)
Neoplasias de la Mama , Cannabidiol , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Cannabidiol/farmacología , Rimonabant/farmacología , Microambiente Tumoral , Melanoma Cutáneo Maligno
6.
J Neurosci Res ; 101(12): 1884-1899, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37772463

RESUMEN

Eclampsia, new-onset seizures in pregnancy, can complicate preeclampsia, a hypertensive pregnancy disorder. The mechanisms contributing to increased risk of seizures in preeclampsia are not fully known. One mechanism could be abnormal endocannabinoid system (ECS) activity and impaired neuromodulation. Indeed, increased placental cannabinoid receptor 1 (CB1R) expression and reduced serum anandamide, a CB1R ligand, have been reported in preeclampsia patients. We hypothesized that reduced uterine perfusion pressure (RUPP), used to mimic preeclampsia, leads to changes in hippocampal CB1R expression, and that manipulating CB1R activity will change seizure severity in RUPP mice. Pregnant mice underwent sham or RUPP surgery on gestational day (GD)13.5. On GD18.5, mice received: no drug treatment, pentylenetetrazol (PTZ, 40 mg/kg), Rimonabant (10 mg/kg) + PTZ, or 2-AG (1 mg/kg) + PTZ. Behaviors were video recorded (15 min for Rimonabant and 2-AG, followed by 30 min for PTZ), and the hippocampus was harvested. The expression of CB1R and ECS proteins was measured in hippocampal homogenates, synaptosomes, and cytosol. Hippocampal CB1R increased in homogenates and cytosolic fraction, and was unchanged in synaptosomes of RUPP mice. Increased CB1R colocalization on glutamate-releasing neurons within hippocampal CA1 was observed in RUPP mice. Rimonabant modestly increased seizure scores over time in RUPP mice. PTZ after rimonabant pretreatment increased seizure scores and duration, while reducing latency in sham mice, with little to no change in RUPP mice. Furthermore, RUPP mice had lower seizure scores over time than sham following CB1R blockade and activation. These data suggest that RUPP modifies CB1R activity prior to seizure induction, which protects mice from worse seizure outcomes.


Asunto(s)
Cannabinoides , Hipertensión , Preeclampsia , Humanos , Ratas , Ratones , Embarazo , Animales , Femenino , Placenta , Ratas Sprague-Dawley , Rimonabant/farmacología , Receptores de Cannabinoides , Modelos Animales de Enfermedad , Convulsiones/inducido químicamente , Presión Sanguínea/fisiología , Perfusión , Isquemia
7.
Virology ; 587: 109867, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633192

RESUMEN

Lujo virus (LUJV), which belongs to Mammarenavirus, family Arenaviridae, has emerged as a pathogen causing severe hemorrhagic fever with high mortality. Currently, there are no effective treatments for arenaviruses, including LUJV. Here, we screened chemical compound libraries of Food and Drug Administration (FDA)-approved drugs and G protein-coupled receptor-associated drugs to identify effective antivirals against LUJV targeting cell entry using a vesicular stomatitis virus-based pseudotyped virus bearing the LUJV envelope glycoprotein (GP). Cannabinoid receptor 1 (CB1) antagonists, such as rimonabant, AM251 and AM281, have been identified as robust inhibitors of LUJV entry. The IC50 of rimonabant was 0.26 and 0.53 µM in Vero and Huh7 cells, respectively. Analysis of the cell fusion activity of the LUJV GP in the presence of CB1 inhibitors revealed that these inhibitors suppressed the fusion activity of the LUJV GP. Moreover, rimonabant, AM251 and AM281 reduced the infectivity of authentic LUJV in vitro, suggesting that the antiviral activity of CB1 antagonists against LUJV is mediated, at least in part, by inhibition of the viral entry, especially, membrane fusion. These findings suggest promising candidates for developing new therapies against LUJV infections.


Asunto(s)
Infecciones por Arenaviridae , Arenaviridae , Lujo virus , Humanos , Chlorocebus aethiops , Animales , Lujo virus/metabolismo , Rimonabant/farmacología , Rimonabant/metabolismo , Infecciones por Arenaviridae/metabolismo , Internalización del Virus , Receptores de Cannabinoides/metabolismo , Células Vero
8.
Brain Res ; 1814: 148436, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37268248

RESUMEN

Physical exercise benefits Parkinson's disease (PD) patients but the mechanism is unclear. Cannabinoid receptor type 1 (CB1R) is known to be reduced in PD patients and animal models. We test the hypothesis that binding of the CB1R inverse agonist, [3H]SR141716A, is normalized by treadmill exercise in the toxin-induced 6-hydroxydopamine (6-OHDA) model of PD. Male rats had unilateral striatal injections of 6-OHDA or saline. After 15 days, half were submitted to treadmill exercise and half remained sedentary. [3H]SR141716A autoradiography was performed in postmortem tissue from striatum, substantia nigra (SN) and hippocampus. There was a 41% decrease of [3H]SR141716A specific binding in the ipsilateral SN of 6-OHDA-injected sedentary animals which was attenuated to 15% by exercise, when compared to saline-injected animals. No striatal differences were observed. A 30% bilateral hippocampal increase was observed in both healthy and 6-OHDA exercised groups. In addition, a positive correlation between nigral [3H]SR141716A binding and nociceptive threshold was observed in PD-exercised animals (p = 0.0008), suggesting a beneficial effect of exercise in the pain associated with the model. Chronic exercise can reduce the detrimental effects of PD on nigral [3H]SR141716A binding, similar to the reported reduction after dopamine replacement therapy, so should be considered as an adjunct therapy for PD.


Asunto(s)
Enfermedad de Parkinson , Ratas , Masculino , Animales , Enfermedad de Parkinson/metabolismo , Oxidopamina/farmacología , Ratas Wistar , Agonismo Inverso de Drogas , Rimonabant/metabolismo , Rimonabant/farmacología , Sustancia Negra/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Receptores de Cannabinoides/metabolismo , Modelos Animales de Enfermedad
9.
Life Sci ; 327: 121825, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37270168

RESUMEN

AIMS: Acute and chronic Δ9-THC exposure paradigms affect the body differently. More must be known about the impact of chronic Δ9-THC on cannabinoid-1 (CB1R) and mu-opioid (MOR) receptor levels in the brain. The present study examined chronic Δ9-THC's effects on CB1R and MOR levels and locomotor activity. MAIN METHODS: Adolescent Sprague-Dawley rats were given daily intraperitoneal injections of Δ9-THC [0.75mg/kg (low dose or LD) or 2.0 mg/kg (high dose or HD)] or vehicle for 24 days, and locomotion in the open field was tested after the first and fourth weeks of chronic Δ9-THC exposure. Brains were harvested at the end of treatment. [3H] SR141716A and [3H] DAMGO autoradiography assessed CB1R and MOR levels, respectively. KEY FINDINGS: Relative to each other, chronic HD rats showed reduced vertical plane (VP) entries and time, while LD rats had increased VP entries and time for locomotion, as assessed by open-field testing; no effects were found relative to the control. Autoradiography analyses showed that HD Δ9-THC significantly decreased CB1R binding relative to LD Δ9-THC in the cingulate (33%), primary motor (42%), secondary motor (33%) somatosensory (38%), rhinal (38%), and auditory (50%) cortices; LD Δ9-THC rats displayed elevated binding in the primary motor (33% increase) and hypothalamic (33% increase) regions compared with controls. No significant differences were observed in MOR binding for the LD or HD compared to the control. SIGNIFICANCE: These results demonstrate that chronic Δ9-THC dose-dependently altered CB1R levels throughout the brain and locomotor activity in the open field.


Asunto(s)
Cannabinoides , Dronabinol , Ratas , Animales , Dronabinol/farmacología , Rimonabant/metabolismo , Rimonabant/farmacología , Ratas Sprague-Dawley , Conducta Exploratoria , Cannabinoides/farmacología , Encéfalo/metabolismo
10.
Pan Afr Med J ; 45: 6, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346921

RESUMEN

Introduction: treatment of HIV infection with Protease Inhibitors (PIs) and Nucleoside Reverse Transcriptase Inhibitors (NRTIs) can lead to insulin resistance and changes in body fat distribution. Overactivity of the endogenous cannabinoid system produces similar disturbances in metabolic syndrome within the general population. However, Cannabinoid receptor type 1 antagonism, in both human and animal studies, reverses many of these biochemical and physical derangements observed in the metabolic syndrome. Methods: using an experimental study design, fifteen adult male Sprague-Dawley rats housed under standard conditions were randomized into three groups; Control, combined Anti-Retroviral Therapy (cART) only and cART + rimonabant. Drugs were administered daily by oral gavage for four weeks. After four weeks, insulin tolerance tests were conducted, the rats were euthanised and fat depots were excised and weighed. Experimental data were analysed using STATA 16.0 with the significance level set at p<0.05. The Shapiro-Wilk test determined normalcy. In cases of significance, post hoc analysis was performed by either the Dunn test or the Tukey HSD test. Results: Sprague Dawley rats treated with cART + rimonabant demonstrated better insulin sensitivity (p = 0.0239) and lower body weight (p = 0.044) than rats treated with cART alone. They had leaner body composition with 58% less adiposity than cART-only rats. Conclusion: the study results suggest a role for the endogenous cannabinoid system in cART induced metabolic derangements and physical changes. Future studies can directly assay ECS activity in cART associated metabolic syndrome.


Asunto(s)
Fármacos Anti-VIH , Cannabinoides , Intolerancia a la Glucosa , Infecciones por VIH , Síndrome Metabólico , Adulto , Humanos , Masculino , Ratas , Animales , Zidovudina/uso terapéutico , Lopinavir/uso terapéutico , Ritonavir/farmacología , Ritonavir/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Ratas Sprague-Dawley , Rimonabant/farmacología , Rimonabant/uso terapéutico , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/prevención & control , Cannabinoides/uso terapéutico
11.
J Neurosci ; 43(25): 4684-4696, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37208179

RESUMEN

Sign-tracking (ST) rats show enhanced cue sensitivity before drug experience that predicts greater discrete cue-induced drug seeking compared with goal-tracking or intermediate rats. Cue-evoked dopamine in the nucleus accumbens (NAc) is a neurobiological signature of sign-tracking behaviors. Here, we examine a critical regulator of the dopamine system, endocannabinoids, which bind the cannabinoid receptor-1 (CB1R) in the ventral tegmental area (VTA) to control cue-evoked striatal dopamine levels. We use cell type-specific optogenetics, intra-VTA pharmacology, and fiber photometry to test the hypothesis that VTA CB1R receptor signaling regulates NAc dopamine levels to control sign tracking. We trained male and female rats in a Pavlovian lever autoshaping (PLA) task to determine their tracking groups before testing the effect of VTA → NAc dopamine inhibition. We found that this circuit is critical for mediating the vigor of the ST response. Upstream of this circuit, intra-VTA infusions of rimonabant, a CB1R inverse agonist, during PLA decrease lever and increase food cup approach in sign-trackers. Using fiber photometry to measure fluorescent signals from a dopamine sensor, GRABDA (AAV9-hSyn-DA2m), we tested the effects of intra-VTA rimonabant on NAc dopamine dynamics during autoshaping in female rats. We found that intra-VTA rimonabant decreased sign-tracking behaviors, which was associated with increases in NAc shell, but not core, dopamine levels during reward delivery [unconditioned stimulus (US)]. Our results suggest that CB1R signaling in the VTA influences the balance between the conditioned stimulus-evoked and US-evoked dopamine responses in the NAc shell and biases behavioral responding to cues in sign-tracking rats.SIGNIFICANCE STATEMENT Substance use disorder (SUD) is a chronically relapsing psychological disorder that affects a subset of individuals who engage in drug use. Recent research suggests that there are individual behavioral and neurobiological differences before drug experience that predict SUD and relapse vulnerabilities. Here, we investigate how midbrain endocannabinoids regulate a brain pathway that is exclusively involved in driving cue-motivated behaviors of sign-tracking rats. This work contributes to our mechanistic understanding of individual vulnerabilities to cue-triggered natural reward seeking that have relevance for drug-motivated behaviors.


Asunto(s)
Núcleo Accumbens , Área Tegmental Ventral , Femenino , Ratas , Masculino , Animales , Núcleo Accumbens/fisiología , Área Tegmental Ventral/fisiología , Señales (Psicología) , Dopamina/metabolismo , Endocannabinoides/farmacología , Rimonabant/farmacología , Agonismo Inverso de Drogas , Recompensa , Poliésteres/metabolismo , Poliésteres/farmacología
12.
Chin Med Sci J ; 38(1): 29-37, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36851888

RESUMEN

Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor (CB1R) could affect novel object recognition (NOR) memory in chronically rapid eye movement sleep-deprived (RSD) rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique. The CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) was administered either at one hour prior to the sample phase for acquisition, or immediately after the sample phase for consolidation, or at one hour before the test phase for retrieval of NOR memory. For the reconsolidation task, rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition, consolidation, and retrieval, but it did not affect the reconsolidation of NOR memory. Rimonabant administration did not affect acquisition, consolidation, and reconsolidation; however, it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings, along with our previous report, would seem to suggest that RSD may affect different phases of recognition memory based on its duration. Importantly, it seems that the CB1R may, at least in part, be involved in the adverse effects of chronic RSD on the retrieval, but not in the acquisition, consolidation, and reconsolidation, of NOR memory.


Asunto(s)
Cannabinoides , Memoria , Ratas , Animales , Rimonabant/farmacología , Sueño REM , Receptores de Cannabinoides , Cannabinoides/farmacología
13.
Am J Physiol Endocrinol Metab ; 324(2): E176-E184, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629822

RESUMEN

Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and ß-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and ß-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.


Asunto(s)
Endocannabinoides , Obesidad , Masculino , Animales , Ratones , Endocannabinoides/metabolismo , Rimonabant/farmacología , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Dieta Alta en Grasa , Fenotipo , Sacarosa/farmacología , Ratones Endogámicos C57BL
14.
Toxicol Lett ; 374: 48-56, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36529297

RESUMEN

Cannabis use is a worldwide issue with the development of legalization. Prenatal exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, is related to affect fetal nervous system development. In our present study, we administered THC to pregnant mice from gestational day 5.5-12.5. Differences in neuronal cell composition and organization between the two groups were found by staining sections of the offspring hippocampus at PND21. In addition, RNA-seq of hippocampal tissue also suggested differences in gene expression due to THC treatment, especially significant enrichment to neurogenesis and neural differentiation. Subsequently, the effect of THC treatment on the proliferation and differentiation capacity of neural stem cells (NSCs) was confirmed. Based on the RNA-seq results, we selected the differentially expressed transcription factor MEF2C for validation. The effect of THC treatment on NSCs differentiation was found to be regulated by knocking down the expression of MEF2C in NSCs. Considering that THC is an agonist of cannabinoid receptor (CB1R), the differentiation outcome of NSC after THC treatment was significantly rescued, by pretreating with the CB1R inhibitor Rimonabant. Notably, pretreatment with Rimonabant restored the expression of MEF2C. Taken together, the present results suggested that THC regulated the MEF2C pathway through CB1R and had an impact on hippocampal neurodevelopment.


Asunto(s)
Alucinógenos , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Ratones , Embarazo , Agonistas de Receptores de Cannabinoides , Dronabinol/toxicidad , Alucinógenos/metabolismo , Hipocampo , Neurogénesis , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores de Cannabinoides/metabolismo , Rimonabant/metabolismo , Rimonabant/farmacología
15.
Bioorg Med Chem Lett ; 79: 129061, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371018

RESUMEN

A series of rimonabant analogues, where the N-aminopiperidine moiety was replaced by various amines and an additional carbonyl group, were synthesized and their inhibition of nitric oxide (NO) production was evaluated in lipopolysaccharide (LPS)-induced BV2 microglial cells. Among the synthesized compounds, the morpholine analogue 7y (IC50 = 4.71 ±â€¯0.11 µM) showed significantly higher inhibitory activity than rimonabant (IC50 = 16.17 ±â€¯0.56 µM), and suppressed NO production dose-dependently without cytotoxicity. In addition, 7y inhibited the expression of iNOS, COX-2 and pro-inflammatory cytokines and attenuated LPS-induced activation of nuclear factor-kappa B (NF-κB) and ERK MAPK phosphorylation in BV2 cells. These results demonstrated that 7y exerted anti-inflammatory effects by ERK pathway in BV2 cells, which can be used for the prevention and treatment of neuroinflammatory diseases.


Asunto(s)
Antiinflamatorios , Lipopolisacáridos , Rimonabant , Antiinflamatorios/farmacología , Ciclooxigenasa 2/metabolismo , Lipopolisacáridos/farmacología , Microglía , FN-kappa B/metabolismo , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Rimonabant/análogos & derivados , Rimonabant/química , Rimonabant/farmacología
16.
Cannabis Cannabinoid Res ; 8(5): 768-778, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36067014

RESUMEN

Introduction: The antidepressant properties of ketamine have been extensively demonstrated in experimental and clinical settings. However, the psychotomimetic side effects still limit its wider use as an antidepressant. It was recently observed that endocannabinoids are inolved in ketamine induced reward properties. As an increase in endocannabinoid signaling induces antidepressant effects, this study aimed to investigate the involvement of cannabinoid type 1 receptors (CB1R) in the antidepressant and psychostimulant effects induced by ketamine. Methods: We tested the effects of genetic and pharmacological inhibition of CB1R in the hyperlocomotion and antidepressant-like properties of ketamine. The effects of ketamine (10-20 mg/kg) were assessed in the open-field and the forced swim tests (FSTs) in CB1R knockout (KO) and wild-type (WT) mice (male and female), and mice pre-treated with rimonabant (CB1R antagonist, 3-10 mg/kg). Results: We found that the motor hyperactivity elicited by ketamine was impaired in CB1R male and female KO mice. A similar effect was observed upon pharmacological blockade of CB1R in WT mice. However, genetic CB1R deletion did not modify the antidepressant effect of ketamine in male mice submitted to the FST. Surprisingly, pharmacological blockade of CB1R induced an antidepressant-like effect in both male and female mice, which was not further potentiated by ketamine. Conclusions: Our results support the hypothesis that CB1R mediate the psychostimulant side effects induced by ketamine, but not its antidepressant properties.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Ketamina , Ratones , Masculino , Femenino , Animales , Ketamina/farmacología , Receptor Cannabinoide CB1/genética , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Rimonabant/farmacología
17.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-981590

RESUMEN

Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor (CB1R) could affect novel object recognition (NOR) memory in chronically rapid eye movement sleep-deprived (RSD) rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique. The CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) was administered either at one hour prior to the sample phase for acquisition, or immediately after the sample phase for consolidation, or at one hour before the test phase for retrieval of NOR memory. For the reconsolidation task, rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition, consolidation, and retrieval, but it did not affect the reconsolidation of NOR memory. Rimonabant administration did not affect acquisition, consolidation, and reconsolidation; however, it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings, along with our previous report, would seem to suggest that RSD may affect different phases of recognition memory based on its duration. Importantly, it seems that the CB1R may, at least in part, be involved in the adverse effects of chronic RSD on the retrieval, but not in the acquisition, consolidation, and reconsolidation, of NOR memory.


Asunto(s)
Ratas , Animales , Rimonabant/farmacología , Memoria , Sueño REM , Receptores de Cannabinoides , Cannabinoides/farmacología
18.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36232988

RESUMEN

In this work we strived to determine whether endocannabinoid system activity could account for the differences in acute inflammatory pain sensitivity in mouse lines selected for high (HA) and low (LA) swim-stress-induced analgesia (SSIA). Mice received intraplantar injections of 5% formalin and the intensity of nocifensive behaviours was scored. To assess the contribution of the endocannabinoid system, mice were intraperitoneally (i.p.) injected with rimonabant (0.3-3 mg/kg) prior to formalin. Minocycline (45 and 100 mg/kg, i.p.) was administered to investigate microglial activation. The possible involvement of the endogenous opioid system was investigated with naloxone (1 mg/kg, i.p.). Cannabinoid receptor types 1 and 2 (Cnr1, Cnr2) and opioid receptor subtype (Oprm1, Oprd1, Oprk1) mRNA levels were quantified by qPCR in the structures of the central nociceptive circuit. Levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by liquid chromatography coupled with the mass spectrometry method (LC-MS/MS). In the interphase, higher pain thresholds in the HA mice correlated with increased spinal anandamide and 2-AG release and higher Cnr1 transcription. Downregulation of Oprd1 and Oprm1 mRNA was noted in HA and LA mice, respectively, however no differences in naloxone sensitivity were observed in either line. As opposed to the LA mice, inflammatory pain sensitivity in the HA mice in the tonic phase was attributed to enhanced microglial activation, as evidenced by enhanced Aif1 and Il-1ß mRNA levels. To conclude, Cnr1 inhibitory signaling is one mechanism responsible for decreased pain sensitivity in HA mice in the interphase, while increased microglial activation corresponds to decreased pain thresholds in the tonic inflammatory phase.


Asunto(s)
Analgesia , Endocannabinoides , Analgésicos Opioides/farmacología , Animales , Ácidos Araquidónicos , Cromatografía Liquida , Endocannabinoides/farmacología , Formaldehído/farmacología , Ratones , Microglía , Minociclina/farmacología , Naloxona/farmacología , Dolor/genética , Umbral del Dolor , Alcamidas Poliinsaturadas , Receptores de Cannabinoides , Receptores Opioides/genética , Rimonabant/farmacología , Espectrometría de Masas en Tándem
19.
Cell Death Dis ; 13(9): 808, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130940

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer that displays highly aggressive with poor prognosis. Owing to the limited targets and drugs for TNBC clinical therapy, it is necessary to investigate the factors regulating cancer progression and develop novel therapies for cancer treatment. Ferroptosis, a nonapoptotic form of programmed cell death characterized by accumulation of iron-dependent peroxidation of phospholipids, is regulated by cellular metabolism, redox homeostasis, and various cancer-related signaling pathways. Recently, considerable progress has been made in demonstrating the critical role of lipid metabolism in regulating ferroptosis, indicating potential combinational therapeutic strategies for cancer treatment. In this study, by drug combination screen of lipid metabolism compounds with ferroptosis inducers in decreasing TNBC cell viability, we found potent synergy of the CB1 antagonist rimonabant with erastin/(1 S, 3 R)-RSL3 (RSL3) in inhibiting TNBC cell growth both in vitro and in vivo via promoting the levels of lipid peroxides, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) and cytosolic reactive oxygen species (ROS) production, enhancing intracellular glutathione (GSH) depletion and inducing G1 cell cycle arrest. We identified that inhibition of CB1 promoted the effect of erastin/RSL3 on inducing ferroptosis and enhanced their inhibitory effect on tumor growth. Using RNA-Seq, fatty acid analyses and functional assays, we found that CB1 regulated stearoyl-CoA desaturase 1 (SCD1)- and fatty acyl desaturase 2 (FADS2)-dependent fatty acid metabolism via phosphatidylinositol 3 kinase (PI3K)-AKT and mitogen-activated protein kinase (MAPK) signaling pathways to modulate ferroptosis sensitivity in TNBC cells. These data demonstrate that dual targeting of CB1 and ferroptosis could be a promising therapeutic strategy for TNBC.


Asunto(s)
Ferroptosis , Neoplasias de la Mama Triple Negativas , Muerte Celular , Ácidos Grasos/farmacología , Glutatión/metabolismo , Humanos , Hierro/metabolismo , Metabolismo de los Lípidos , Peróxidos Lipídicos , Malondialdehído , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolípidos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rimonabant/farmacología , Estearoil-CoA Desaturasa/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
20.
PLoS One ; 17(9): e0274352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36129937

RESUMEN

The dynamics of neuronal microtubules are essential for brain plasticity. Vesicular transport and synaptic transmission, additionally, requires acetylation of α-tubulin, and aberrant tubulin acetylation and neurobiological deficits are associated. Prolonged exposure to a stressor or consumption of drugs of abuse, like marihuana, lead to neurological changes and psychotic disorders. Here, we studied the effect of psychosocial stress and the administration of cannabinoid receptor type 1 drugs on α-tubulin acetylation in different brain regions of mice. We found significantly decreased tubulin acetylation in the prefrontal cortex in stressed mice. The impact of cannabinoid drugs on stress-induced microtubule disturbance was investigated by administration of the cannabinoid receptor agonist WIN55,212-2 and/or antagonist rimonabant. In both, control and stressed mice, the administration of WIN55,212-2 slightly increased the tubulin acetylation in the prefrontal cortex whereas administration of rimonabant acted antagonistically indicating a cannabinoid receptor type 1 mediated effect. The analysis of gene expression in the prefrontal cortex showed a consistent expression of ApoE attributable to either psychosocial stress or administration of the cannabinoid agonist. Additionally, ApoE expression inversely correlated with acetylated tubulin levels when comparing controls and stressed mice treated with WIN55,212-2 whereas rimonabant treatment showed the opposite.


Asunto(s)
Cannabinoides , Tubulina (Proteína) , Acetilación , Animales , Apolipoproteínas E/genética , Agonistas de Receptores de Cannabinoides/metabolismo , Cannabinoides/metabolismo , Cannabinoides/farmacología , Expresión Génica , Ratones , Microtúbulos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Cannabinoides/metabolismo , Rimonabant/farmacología , Estrés Psicológico , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...