Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Curr Biol ; 34(15): 3537-3549.e5, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047734

RESUMEN

Decoding human speech requires the brain to segment the incoming acoustic signal into meaningful linguistic units, ranging from syllables and words to phrases. Integrating these linguistic constituents into a coherent percept sets the root of compositional meaning and hence understanding. One important cue for segmentation in natural speech is prosodic cues, such as pauses, but their interplay with higher-level linguistic processing is still unknown. Here, we dissociate the neural tracking of prosodic pauses from the segmentation of multi-word chunks using magnetoencephalography (MEG). We find that manipulating the regularity of pauses disrupts slow speech-brain tracking bilaterally in auditory areas (below 2 Hz) and in turn increases left-lateralized coherence of higher-frequency auditory activity at speech onsets (around 25-45 Hz). Critically, we also find that multi-word chunks-defined as short, coherent bundles of inter-word dependencies-are processed through the rhythmic fluctuations of low-frequency activity (below 2 Hz) bilaterally and independently of prosodic cues. Importantly, low-frequency alignment at chunk onsets increases the accuracy of an encoding model in bilateral auditory and frontal areas while controlling for the effect of acoustics. Our findings provide novel insights into the neural basis of speech perception, demonstrating that both acoustic features (prosodic cues) and abstract linguistic processing at the multi-word timescale are underpinned independently by low-frequency electrophysiological brain activity in the delta frequency range.


Asunto(s)
Comprensión , Magnetoencefalografía , Percepción del Habla , Humanos , Percepción del Habla/fisiología , Comprensión/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Habla/fisiología , Ritmo Delta/fisiología , Encéfalo/fisiología , Lingüística
2.
Neurorehabil Neural Repair ; 38(7): 506-517, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38842027

RESUMEN

BACKGROUND: The application of neuroimaging-based biomarkers in stroke has enriched our understanding of post-stroke recovery mechanisms, including alterations in functional connectivity based on synchronous oscillatory activity across various cortical regions. Phase-amplitude coupling, a type of cross-frequency coupling, may provide additional mechanistic insight. OBJECTIVE: To determine how the phase of prefrontal cortex delta (1-3 Hz) oscillatory activity mediates the amplitude of motor cortex beta (13-20 Hz) oscillations in individual's early post-stroke. METHODS: Participants admitted to an inpatient rehabilitation facility completed resting and task-based EEG recordings and motor assessments around the time of admission and discharge along with structural neuroimaging. Unimpaired controls completed EEG procedures during a single visit. Mixed-effects linear models were performed to assess within- and between-group differences in delta-beta prefrontomotor coupling. Associations between coupling and motor status and injury were also determined. RESULTS: Thirty individuals with stroke and 17 unimpaired controls participated. Coupling was greater during task versus rest conditions for all participants. Though coupling during affected extremity task performance decreased during hospitalization, coupling remained elevated at discharge compared to controls. Greater baseline coupling was associated with better motor status at admission and discharge and positively related to motor recovery. Coupling demonstrated both positive and negative associations with injury involving measures of lesion volume and overlap injury to anterior thalamic radiation, respectively. CONCLUSIONS: This work highlights the utility of prefrontomotor cross-frequency coupling as a potential motor status and recovery biomarker in stroke. The frequency- and region-specific neurocircuitry featured in this work may also facilitate novel treatment strategies in stroke.


Asunto(s)
Corteza Motora , Recuperación de la Función , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/diagnóstico por imagen , Recuperación de la Función/fisiología , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiopatología , Ritmo beta/fisiología , Ritmo Delta/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiopatología , Rehabilitación de Accidente Cerebrovascular , Biomarcadores/metabolismo , Electroencefalografía , Adulto , Imagen por Resonancia Magnética
3.
Clin Neurophysiol ; 164: 149-160, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896932

RESUMEN

OBJECTIVE: We aimed to determine whether quantitative electroencephalography (QEEG) measures have predictive value for cerebral edema (CED) and clinical outcomes in acute ischemic stroke (AIS) patients with anterior circulation large vessel occlusion who underwent mechanical thrombectomy (MT). METHODS: A total of 105 patients with AIS in the anterior circulation were enrolled in this prospective study. The occurrence and severity of CED were assessed through computed tomography conducted 24 h after MT. Clinical outcomes were evaluated based on early neurological deterioration (END) and 3-month functional status, as measured by the modified Rankin scale (mRS). Electroencephalography (EEG) recordings were performed 24 h after MT, and QEEG indices were calculated from the standard 16 electrodes and 2 frontal channels (F3-C3, F4-C4). The delta/alpha ratio (DAR), the (delta + theta) / (alpha + beta) ratio (DTABR), and relative delta power were averaged over all electrodes (global) and the F3-C3 and F4-C4 channels (frontal). The predictive effect and value of QEEG indices for CED and clinical outcomes were assessed using ordinal and logistic regression models, as well as receiver operating characteristic (ROC) curves. RESULTS: Significantly, both global and frontal DAR were found to be associated with the severity of CED, END, and poor functional outcomes at 90 days, while global and frontal DTABR and relative delta power were not associated with outcomes. In ROC analysis, the best predictive effect was observed in frontal DAR, with an area under the curve of approximately 0.80. It exhibited approximately 75% sensitivity and 71% specificity for radiological and clinical outcomes when a threshold of 3.3 was used. CONCLUSIONS: QEEG techniques may be considered an efficient bedside monitoring method for assessing treatment efficacy, identifying patients at higher risk of severe CED and END, and predicting long-term functional outcomes. SIGNIFICANCE: QEEG can help identify patients at risk of severe neurological complications that can impact long-term functional recovery in AIS patients who underwent MT.


Asunto(s)
Edema Encefálico , Electroencefalografía , Trombectomía , Humanos , Masculino , Femenino , Anciano , Edema Encefálico/fisiopatología , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/etiología , Persona de Mediana Edad , Trombectomía/métodos , Electroencefalografía/métodos , Estudios Prospectivos , Ritmo Delta/fisiología , Resultado del Tratamiento , Ritmo alfa/fisiología , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/cirugía , Anciano de 80 o más Años , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/cirugía , Valor Predictivo de las Pruebas
4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38879757

RESUMEN

The reactions to novelty manifesting in mismatch negativity in the rat brain were studied. During dissociative anesthesia, mismatch negativity-like waves were recorded from the somatosensory cortex using an epidural 32-electrode array. Experimental animals: 7 wild-type Wistar rats and 3 transgenic rats. During high-dose anesthesia, deviant 1,500 Hz tones were presented randomly among many standard 1,000 Hz tones in the oddball paradigm. "Deviant minus standard_before_deviant" difference waves were calculated using both the classical method of Naatanen and method of cross-correlation of sub-averages. Both methods gave consistent results: an early phasic component of the N40 and later N100 to 200 (mismatch negativity itself) tonic component. The gamma and delta rhythms power and the frequency of down-states (suppressed activity periods) were assessed. In all rats, the amplitude of tonic component grew with increasing sedation depth. At the same time, a decrease in gamma power with a simultaneous increase in delta power and the frequency of down-states. The earlier phasic frontocentral component is associated with deviance detection, while the later tonic one over the auditory cortex reflects the orienting reaction. Under anesthesia, this slow mismatch negativity-like wave most likely reflects the tendency of the system to respond to any influences with delta waves, K-complexes and down-states, or produce them spontaneously.


Asunto(s)
Ratas Wistar , Animales , Masculino , Estimulación Acústica/métodos , Electroencefalografía/métodos , Ratas , Ratas Transgénicas , Anestésicos Disociativos/administración & dosificación , Anestésicos Disociativos/farmacología , Potenciales Evocados Auditivos/fisiología , Corteza Somatosensorial/fisiología , Ritmo Gamma/fisiología , Ritmo Delta/fisiología , Ritmo Delta/efectos de los fármacos
5.
Exp Neurol ; 379: 114860, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876195

RESUMEN

Interictal epileptiform discharges refer to aberrant brain electrographic signals between seizures and feature intermittent interictal spikes (ISs), sharp waves, and/or abnormal rhythms. Recognition of these epileptiform activities by electroencephalographic (EEG) examinations greatly aids epilepsy diagnosis and localization of the seizure onset zone. ISs are a major form of interictal epileptiform discharges recognized in animal models of epilepsy. Progressive changes in IS waveforms, IS rates, and/or associated fast ripple oscillations have been shown to precede the development of spontaneous recurrent seizures (SRS) in various animal models. IS expressions in the kindling model of epilepsy have been demonstrated but IS changes during the course of SRS development in extended kindled animals remain to be detailed. We hence addressed this issue using a mouse model of kindling-induced SRS. Adult C57 black mice received twice daily hippocampal stimulations until SRS occurrence, with 24-h EEG monitoring performed following 50, 80, and ≥ 100 stimulations and after observation of SRS. In the stimulated hippocampus, increases in spontaneous ISs rates, but not in IS waveforms nor IS-associated fast ripples, along with decreased frequencies of hippocampal delta and theta rhythms, were observed before SRS onset. Comparable increases in IS rates were further observed in the unstimulated hippocampus, piriform cortex, and entorhinal cortex, but not in the unstimulated parietal cortex and dorsomedial thalamus. These data provide original evidence suggesting that increases in hippocampal IS rates, together with reductions in hippocampal delta and theta rhythms are closely associated with development of SRS in a rodent kindling model.


Asunto(s)
Ritmo Delta , Electroencefalografía , Hipocampo , Excitación Neurológica , Ratones Endogámicos C57BL , Convulsiones , Ritmo Teta , Animales , Excitación Neurológica/fisiología , Ratones , Hipocampo/fisiopatología , Convulsiones/fisiopatología , Ritmo Teta/fisiología , Ritmo Delta/fisiología , Masculino , Recurrencia
6.
Sleep Med ; 119: 438-450, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781667

RESUMEN

BACKGROUND: During preadolescence the sleep electroencephalography undergoes massive qualitative and quantitative modifications. Despite these relevant age-related peculiarities, the specific EEG pattern of the wake-sleep transition in preadolescence has not been exhaustively described. METHODS: The aim of the present study is to characterize regional and temporal electrophysiological features of the sleep onset (SO) process in a group of 23 preadolescents (9-14 years) and to compare the topographical pattern of slow wave activity and delta/beta ratio of preadolescents with the EEG pattern of young adults. RESULTS: Results showed in preadolescence the same dynamics known for adults, but with peculiarities in the delta and beta activity, likely associated with developmental cerebral modifications: the delta power showed a widespread increase during the SO with central maxima, and the lower bins of the beta activity showed a power increase after SO. Compared to adults, preadolescents during the SO exhibited higher delta power only in the slowest bins of the band: before SO slow delta activity was higher in prefrontal, frontal and occipital areas in preadolescents, and, after SO the younger group had higher slow delta activity in occipital areas. In preadolescents delta/beta ratio was higher in more posterior areas both before and after the wake-sleep transition and, after SO, preadolescents showed also a lower delta/beta ratio in frontal areas, compared to adults. CONCLUSION: Results point to a general higher homeostatic drive for the developing areas, consistently with plastic-related maturational modifications, that physiologically occur during preadolescence.


Asunto(s)
Ritmo Delta , Electroencefalografía , Humanos , Niño , Masculino , Femenino , Adolescente , Ritmo Delta/fisiología , Adulto Joven , Fases del Sueño/fisiología , Adulto , Sueño/fisiología , Ritmo beta/fisiología , Polisomnografía , Factores de Edad , Encéfalo/fisiología , Vigilia/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-38717876

RESUMEN

Neurovascular coupling (NVC) provides important insights into the intricate activity of brain functioning and may aid in the early diagnosis of brain diseases. Emerging evidences have shown that NVC could be assessed by the coupling between electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, this endeavor presents significant challenges due to the absence of standardized methodologies and reliable techniques for coupling analysis of these two modalities. In this study, we introduced a novel method, i.e., the collaborative multi-output variational Gaussian process convergent cross-mapping (CMVGP-CCM) approach to advance coupling analysis of EEG and fNIRS. To validate the robustness and reliability of the CMVGP-CCM method, we conducted extensive experiments using chaotic time series models with varying noise levels, sequence lengths, and causal driving strengths. In addition, we employed the CMVGP-CCM method to explore the NVC between EEG and fNIRS signals collected from 26 healthy participants using a working memory (WM) task. Results revealed a significant causal effect of EEG signals, particularly the delta, theta, and alpha frequency bands, on the fNIRS signals during WM. This influence was notably observed in the frontal lobe, and its strength exhibited a decline as cognitive demands increased. This study illuminates the complex connections between brain electrical activity and cerebral blood flow, offering new insights into the underlying NVC mechanisms of WM.


Asunto(s)
Algoritmos , Electroencefalografía , Memoria a Corto Plazo , Acoplamiento Neurovascular , Espectroscopía Infrarroja Corta , Humanos , Electroencefalografía/métodos , Masculino , Femenino , Espectroscopía Infrarroja Corta/métodos , Adulto , Distribución Normal , Acoplamiento Neurovascular/fisiología , Adulto Joven , Memoria a Corto Plazo/fisiología , Voluntarios Sanos , Reproducibilidad de los Resultados , Análisis Multivariante , Lóbulo Frontal/fisiología , Lóbulo Frontal/diagnóstico por imagen , Mapeo Encefálico/métodos , Ritmo Teta/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Dinámicas no Lineales , Ritmo Delta/fisiología , Ritmo alfa/fisiología
8.
J Psychiatr Res ; 174: 332-339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697012

RESUMEN

Electroencephalographic (EEG) deficits in slow wave activity or Delta power (0.5-4 Hz) indicate disturbed sleep homeostasis and are hallmarks of depression. Sleep homeostasis is linked to restorative sleep and potential antidepressant response via non-rapid eye movement (NREM) slow wave sleep (SWS) during which neurons undergo essential repair and rejuvenation. Decreased Low Delta power (0.5-2 Hz) was previously reported in individuals with depression. This study investigated power levels in the Low Delta (0.5-<2 Hz), High Delta (2-4 Hz), and Total Delta (0.5-4 Hz) bands and their association with age, sex, and disrupted sleep in treatment-resistant depression (TRD). Mann-Whitney U tests were used to compare the nightly progressions of Total Delta, Low Delta, and High Delta in 100 individuals with TRD and 24 healthy volunteers (HVs). Polysomnographic parameters were also examined, including Total Sleep Time (TST), Sleep Efficiency (SE), and Wake after Sleep Onset (WASO). Individuals with TRD had lower Delta power during the first NREM episode (NREM1) than HVs. The deficiency was observed in the Low Delta band versus High Delta. Females with TRD had higher Delta power than males during the first NREM1 episode, with the most noticeable sex difference observed in Low Delta. In individuals with TRD, Low Delta power correlated with WASO and SE, and High Delta correlated with WASO. Low Delta power deficits in NREM1 were observed in older males with TRD, but not females. These results provide compelling evidence for a link between age, sex, Low Delta power, sleep homeostasis, and non-restorative sleep in TRD.


Asunto(s)
Ritmo Delta , Trastorno Depresivo Resistente al Tratamiento , Electroencefalografía , Polisomnografía , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Trastorno Depresivo Resistente al Tratamiento/fisiopatología , Ritmo Delta/fisiología , Anciano , Caracteres Sexuales , Adulto Joven , Trastornos del Sueño-Vigilia/fisiopatología , Sueño/fisiología
9.
Chaos ; 34(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717398

RESUMEN

We use a multiscale symbolic approach to study the complex dynamics of temporal lobe refractory epilepsy employing high-resolution intracranial electroencephalogram (iEEG). We consider the basal and preictal phases and meticulously analyze the dynamics across frequency bands, focusing on high-frequency oscillations up to 240 Hz. Our results reveal significant periodicities and critical time scales within neural dynamics across frequency bands. By bandpass filtering neural signals into delta, theta, alpha, beta, gamma, and ripple high-frequency bands (HFO), each associated with specific neural processes, we examine the distinct nonlinear dynamics. Our method introduces a reliable approach to pinpoint intrinsic time lag scales τ within frequency bands of the basal and preictal signals, which are crucial for the study of refractory epilepsy. Using metrics such as permutation entropy (H), Fisher information (F), and complexity (C), we explore nonlinear patterns within iEEG signals. We reveal the intrinsic τmax that maximize complexity within each frequency band, unveiling the nonlinear subtle patterns of the temporal structures within the basal and preictal signal. Examining the H×F and C×F values allows us to identify differences in the delta band and a band between 200 and 220 Hz (HFO 6) when comparing basal and preictal signals. Differences in Fisher information in the delta and HFO 6 bands before seizures highlight their role in capturing important system dynamics. This offers new perspectives on the intricate relationship between delta oscillations and HFO waves in patients with focal epilepsy, highlighting the importance of these patterns and their potential as biomarkers.


Asunto(s)
Biomarcadores , Ritmo Delta , Humanos , Biomarcadores/metabolismo , Ritmo Delta/fisiología , Electroencefalografía/métodos , Epilepsia/fisiopatología , Procesamiento de Señales Asistido por Computador , Masculino , Dinámicas no Lineales , Femenino , Adulto , Epilepsia del Lóbulo Temporal/fisiopatología
10.
Curr Biol ; 34(12): 2570-2579.e5, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38772363

RESUMEN

In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12). We sought to explain the emergence of the cortical delta by assessing developmental changes in the activity of the parafacial zone (PZ), a medullary structure thought to regulate quiet sleep in adults. We recorded from the PZ in P10 and P12 rats and predicted an age-related increase in neural activity during increasing periods of delta-rich cortical activity. Instead, during quiet sleep, we discovered sleep-dependent rhythmic spiking activity-with intervening periods of total silence-phase locked to a local delta rhythm. Moreover, PZ and cortical delta were coherent at P12 but not at P10. PZ delta was also phase locked to respiration, suggesting sleep-dependent modulation of PZ activity by respiratory pacemakers in the ventral medulla. Disconnecting the main olfactory bulbs from the cortex did not diminish cortical delta, indicating that the influence of respiration on delta at this age is not mediated indirectly through nasal breathing. Finally, we observed an increase in parvalbumin-expressing terminals in the PZ across these ages, supporting a role for local GABAergic inhibition in the PZ's rhythmicity. The unexpected discovery of delta-rhythmic neural activity in the medulla-when cortical delta is also emerging-provides a new perspective on the brainstem's role in regulating sleep and promoting long-range functional connectivity in early development.


Asunto(s)
Corteza Cerebral , Ritmo Delta , Bulbo Raquídeo , Sueño , Animales , Sueño/fisiología , Ratas , Ritmo Delta/fisiología , Bulbo Raquídeo/fisiología , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo , Masculino , Ratas Sprague-Dawley
11.
J Cogn Neurosci ; 36(7): 1472-1492, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652108

RESUMEN

Human language offers a variety of ways to create meaning, one of which is referring to entities, objects, or events in the world. One such meaning maker is understanding to whom or to what a pronoun in a discourse refers to. To understand a pronoun, the brain must access matching entities or concepts that have been encoded in memory from previous linguistic context. Models of language processing propose that internally stored linguistic concepts, accessed via exogenous cues such as phonological input of a word, are represented as (a)synchronous activities across a population of neurons active at specific frequency bands. Converging evidence suggests that delta band activity (1-3 Hz) is involved in temporal and representational integration during sentence processing. Moreover, recent advances in the neurobiology of memory suggest that recollection engages neural dynamics similar to those which occurred during memory encoding. Integrating from these two research lines, we here tested the hypothesis that neural dynamic patterns, especially in delta frequency range, underlying referential meaning representation, would be reinstated during pronoun resolution. By leveraging neural decoding techniques (i.e., representational similarity analysis) on a magnetoencephalogram data set acquired during a naturalistic story-listening task, we provide evidence that delta-band activity underlies referential meaning representation. Our findings suggest that, during spoken language comprehension, endogenous linguistic representations such as referential concepts may be proactively retrieved and represented via activation of their underlying dynamic neural patterns.


Asunto(s)
Ritmo Delta , Magnetoencefalografía , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Ritmo Delta/fisiología , Comprensión/fisiología , Encéfalo/fisiología , Percepción del Habla/fisiología , Psicolingüística
12.
Eur Arch Otorhinolaryngol ; 281(7): 3821-3828, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38641736

RESUMEN

OBJECTIVE: The current study aimed to evaluate the efficacy of delta frequency binaural beats stimulation in treatment of individuals with tinnitus having normal hearing sensitivity. METHOD: Twenty-four individuals who reported bothersome tinnitus in the presence of clinically normal hearing were grouped into two (I and II). The group was provided with delta frequency binaural beats and II was provided with white noise stimulation (both of 20 min duration) for 30 days. Post 30 days, the re-assessment of tinnitus handicap, depression, anxiety, and quality of life parameters were performed and compared with that of pre-treatment scores. RESULTS: A considerable reduction of tinnitus handicap scores, depression and anxiety levels were observed for both the groups, except for the quality-of-life parameters. However, few of the participants showed limited or negligible improvement post-treatment. On comparison of reduction of scores observed across the groups, there was a higher reduction of scores observed for group I when compared to group II. CONCLUSION: The current study was an initial attempt to study the efficacy of binaural beats in treatment of individuals with tinnitus having normal hearing. Apart from a few individuals, the delta wave stimulation acted as a helpful tool in improving tinnitus borne distress symptoms in such patients with normal hearing. The results of the present study put forward the scope of adapting binaural beats stimulation for the treatment of individuals presenting with tinnitus having normal hearing sensitivity. This technique could be adopted into clinical practice after extensive research involving an extended treatment duration on a larger population.


Asunto(s)
Calidad de Vida , Acúfeno , Humanos , Acúfeno/terapia , Acúfeno/fisiopatología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Estimulación Acústica/métodos , Ritmo Delta/fisiología , Resultado del Tratamiento , Adulto Joven , Ansiedad/terapia , Depresión/terapia
14.
Brain Res Bull ; 211: 110945, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608544

RESUMEN

Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.


Asunto(s)
Región CA1 Hipocampal , Ritmo Delta , Complicaciones Cognitivas Postoperatorias , Privación de Sueño , Ritmo Teta , Animales , Privación de Sueño/fisiopatología , Privación de Sueño/complicaciones , Ratones , Ritmo Teta/fisiología , Masculino , Ritmo Delta/fisiología , Región CA1 Hipocampal/fisiopatología , Ratones Endogámicos C57BL , Electroencefalografía/métodos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Sueño/fisiología , Envejecimiento/fisiología
15.
J Am Coll Cardiol ; 83(17): 1671-1684, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38573282

RESUMEN

BACKGROUND: Delta wave activity is a prominent feature of deep sleep, which is significantly associated with sleep quality. OBJECTIVES: The authors hypothesized that delta wave activity disruption during sleep could predict long-term cardiovascular disease (CVD) and CVD mortality risk. METHODS: The authors used a comprehensive power spectral entropy-based method to assess delta wave activity during sleep based on overnight polysomnograms in 4,058 participants in the SHHS (Sleep Heart Health Study) and 2,193 participants in the MrOS (Osteoporotic Fractures in Men Study) Sleep study. RESULTS: During 11.0 ± 2.8 years of follow-up in SHHS, 729 participants had incident CVD and 192 participants died due to CVD. During 15.5 ± 4.4 years of follow-up in MrOS, 547 participants had incident CVD, and 391 died due to CVD. In multivariable Cox regression models, lower delta wave entropy during sleep was associated with higher risk of coronary heart disease (SHHS: HR: 1.46; 95% CI: 1.02-2.06; P = 0.03; MrOS: HR: 1.79; 95% CI: 1.17-2.73; P < 0.01), CVD (SHHS: HR: 1.60; 95% CI: 1.21-2.11; P < 0.01; MrOS: HR: 1.43; 95% CI: 1.00-2.05; P = 0.05), and CVD mortality (SHHS: HR: 1.94; 95% CI: 1.18-3.18; P < 0.01; MrOS: HR: 1.66; 95% CI: 1.12-2.47; P = 0.01) after adjusting for covariates. The Shapley Additive Explanations method indicates that low delta wave entropy was more predictive of coronary heart disease, CVD, and CVD mortality risks than conventional sleep parameters. CONCLUSIONS: The results suggest that delta wave activity disruption during sleep may be a useful metric to identify those at increased risk for CVD and CVD mortality.


Asunto(s)
Enfermedades Cardiovasculares , Polisomnografía , Humanos , Masculino , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/fisiopatología , Persona de Mediana Edad , Femenino , Polisomnografía/métodos , Anciano , Ritmo Delta/fisiología , Estudios de Seguimiento , Sueño/fisiología
16.
Sci Rep ; 12(1): 2650, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173189

RESUMEN

Drowsiness is a leading cause of accidents on the road as it negatively affects the driver's ability to safely operate a vehicle. Neural activity recorded by EEG electrodes is a widely used physiological correlate of driver drowsiness. This paper presents a novel dynamical modeling solution to estimate the instantaneous level of the driver drowsiness using EEG signals, where the PERcentage of eyelid CLOSure (PERCLOS) is employed as the ground truth of driver drowsiness. Applying our proposed modeling framework, we find neural features present in EEG data that encode PERCLOS. In the decoding phase, we use a Bayesian filtering solution to estimate the PERCLOS level over time. A data set that comprises 18 driving tests, conducted by 13 drivers, has been used to investigate the performance of the proposed framework. The modeling performance in estimation of PERCLOS provides robust and repeatable results in tests with manual and automated driving modes by an average RMSE of 0.117 (at a PERCLOS range of 0 to 1) and average High Probability Density percentage of 62.5%. We further hypothesized that there are biomarkers that encode the PERCLOS across different driving tests and participants. Using this solution, we identified possible biomarkers such as Theta and Delta powers. Results show that about 73% and 66% of the Theta and Delta powers which are selected as biomarkers are increasing as PERCLOS grows during the driving test. We argue that the proposed method is a robust and reliable solution to estimate drowsiness in real-time which opens the door in utilizing EEG-based measures in driver drowsiness detection systems.


Asunto(s)
Conducción de Automóvil , Electroencefalografía/métodos , Monitoreo Fisiológico/métodos , Somnolencia/fisiología , Teorema de Bayes , Biomarcadores , Ritmo Delta/fisiología , Párpados/fisiología , Femenino , Humanos , Masculino , Ritmo Teta/fisiología
17.
Cells ; 11(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053352

RESUMEN

For Alzheimer's disease (AD), aging is the main risk factor, but whether cognitive impairments due to aging resemble early AD deficits is not yet defined. When working with mouse models of AD, the situation is just as complicated, because only a few studies track the progression of the disease at different ages, and most ignore how the aging process affects control mice. In this work, we addressed this problem by comparing the aging process of PS2APP (AD) and wild-type (WT) mice at the level of spontaneous brain electrical activity under anesthesia. Using local field potential recordings, obtained with a linear probe that traverses the posterior parietal cortex and the entire hippocampus, we analyzed how multiple electrical parameters are modified by aging in AD and WT mice. With this approach, we highlighted AD specific features that appear in young AD mice prior to plaque deposition or that are delayed at 12 and 16 months of age. Furthermore, we identified aging characteristics present in WT mice but also occurring prematurely in young AD mice. In short, we found that reduction in the relative power of slow oscillations (SO) and Low/High power imbalance are linked to an AD phenotype at its onset. The loss of SO connectivity and cortico-hippocampal coupling between SO and higher frequencies as well as the increase in UP-state and burst durations are found in young AD and old WT mice. We show evidence that the aging process is accelerated by the mutant PS2 itself and discuss such changes in relation to amyloidosis and gliosis.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Potenciales de Acción/fisiología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/fisiopatología , Amiloidosis/complicaciones , Amiloidosis/patología , Amiloidosis/fisiopatología , Animales , Ritmo Delta/fisiología , Progresión de la Enfermedad , Gliosis/complicaciones , Gliosis/patología , Gliosis/fisiopatología , Hipocampo/patología , Ratones Endogámicos C57BL , Red Nerviosa/fisiopatología , Placa Amiloide/complicaciones , Placa Amiloide/patología , Placa Amiloide/fisiopatología
18.
Neuroimage ; 247: 118698, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798233

RESUMEN

The amplitude envelope of speech carries crucial low-frequency acoustic information that assists linguistic decoding at multiple time scales. Neurophysiological signals are known to track the amplitude envelope of adult-directed speech (ADS), particularly in the theta-band. Acoustic analysis of infant-directed speech (IDS) has revealed significantly greater modulation energy than ADS in an amplitude-modulation (AM) band centred on ∼2 Hz. Accordingly, cortical tracking of IDS by delta-band neural signals may be key to language acquisition. Speech also contains acoustic information within its higher-frequency bands (beta, gamma). Adult EEG and MEG studies reveal an oscillatory hierarchy, whereby low-frequency (delta, theta) neural phase dynamics temporally organize the amplitude of high-frequency signals (phase amplitude coupling, PAC). Whilst consensus is growing around the role of PAC in the matured adult brain, its role in the development of speech processing is unexplored. Here, we examined the presence and maturation of low-frequency (<12 Hz) cortical speech tracking in infants by recording EEG longitudinally from 60 participants when aged 4-, 7- and 11- months as they listened to nursery rhymes. After establishing stimulus-related neural signals in delta and theta, cortical tracking at each age was assessed in the delta, theta and alpha [control] bands using a multivariate temporal response function (mTRF) method. Delta-beta, delta-gamma, theta-beta and theta-gamma phase-amplitude coupling (PAC) was also assessed. Significant delta and theta but not alpha tracking was found. Significant PAC was present at all ages, with both delta and theta -driven coupling observed.


Asunto(s)
Ritmo Delta/fisiología , Percepción del Habla/fisiología , Ritmo Teta/fisiología , Estimulación Acústica , Corteza Auditiva/fisiología , Encéfalo/fisiología , Electroencefalografía , Humanos , Lactante , Estudios Longitudinales , Reino Unido
19.
Int J Neurosci ; 132(1): 31-37, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32700609

RESUMEN

RESULTS: Young adults born at extremely low birth weight (prenatal adversity; N = 64, Mage = 23.14 years, SDage = 1.26 years) had a lower alpha/delta ratio score compared to normal birth weight controls (N = 76, Mage = 23.60 years, SDage = 1.09 years), while youth exposed to child maltreatment (postnatal adversity; N = 39, Mage = 16.18 years, SDage = 1.15) had a higher alpha/delta ratio compared to controls (N = 23, Mage = 16.00 years, SDage = 1.50 years). CONCLUSIONS: Our results suggest that being exposed to pre- and post-natal adversity may have different long-term consequences on brain development. We speculate that these differences might be associated with some of the different functional outcomes known to characterize each type of adverse experience.


Asunto(s)
Experiencias Adversas de la Infancia , Ritmo alfa/fisiología , Encéfalo/crecimiento & desarrollo , Maltrato a los Niños , Ritmo Delta/fisiología , Recien Nacido con Peso al Nacer Extremadamente Bajo/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Sobrevivientes , Adulto Joven
20.
Neuroimage ; 244: 118600, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562576

RESUMEN

The ability to generate new knowledge depends on integration of separate information. For example, in one episode an individual may learn that apple seeds are called pips. In a separate episode, the individual may then learn that pips contain cyanide. Integration of the related facts in memory may then support derivation of the new knowledge that apple seeds contain cyanide. Past studies show that adults form relational memories that represent the commonalities among discrete events, and that such integrated representation supports the ability to infer new knowledge. Although these integrated representations are thought to result from linking separate memories to the same neuronal ensemble, the neural mechanisms that underlie formation of such linkages are not well understood. Here we examined whether self-derivation of new, integrated knowledge was supported by oscillatory coherence, a means of linking discrete neuronal ensembles. Cortical alpha coherence was greater when adults encoded new facts that could be integrated with existing knowledge, relative to encoding unrelated facts, particularly in participants who showed better performance on the subsequent test of knowledge generation via fact integration. In high performers, posterior alpha amplitude was also modulated by delta phase, a form of cross-frequency coupling previously implicated in coordinating information stored widely throughout the cortex. Examination of the timing and topography of these respective signatures suggested that these oscillatory dynamics work in concert to encode and represent new knowledge with respect to prior knowledge that is reactivated, thus revealing fundamental mechanisms through which related memories are linked into integrated knowledge structures.


Asunto(s)
Ritmo alfa/fisiología , Corteza Cerebral/fisiología , Ritmo Delta/fisiología , Conocimiento , Aprendizaje/fisiología , Memoria/fisiología , Adolescente , Electroencefalografía , Femenino , Humanos , Masculino , Neuronas/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA