Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
Eur J Med Chem ; 268: 116207, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364715

RESUMEN

The inhibition of P-glycoprotein (P-gp) has emerged as an intriguing strategy for circumventing multidrug resistance (MDR) in anticancer chemotherapy. In this study, we have designed and synthesized 30 indole-selenides as a new class of P-gp inhibitors based on the scaffold hopping strategy. Among them, the preferred compound H27 showed slightly stronger reversal activity (reversal fold: 271.7 vs 261.6) but weaker cytotoxicity (inhibition ratio: 33.7% vs 45.1%) than the third-generation P-gp inhibitor tariquidar on the tested MCF-7/ADR cells. Rh123 accumulation experiments and Western blot analysis demonstrated that H27 displayed excellent MDR reversal activity by dose-dependently inhibiting the efflux function of P-gp rather than its expression. Besides, UIC-2 reactivity shift assay revealed that H27 could bind to P-gp directly and induced a conformation change of P-gp. Moreover, docking study revealed that H27 matched well in the active pockets of P-gp by forming some key H-bonding interactions, arene-H interactions and hydrophobic contacts. These results suggested that H27 is worth to be a starting point for the development of novel Se-containing P-gp inhibitors for clinic use.


Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Doxorrubicina/farmacología , Células MCF-7 , Rodamina 123/química , Rodamina 123/metabolismo , Rodamina 123/farmacología
2.
Arch Toxicol ; 98(1): 223-231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37833491

RESUMEN

Physiology-based pharmacokinetic modeling suggests that rifabutin can out-balance P-glycoprotein (P-gp) induction by concurrent P-gp inhibition. However, clinical or experimental evidence for this Janus-faced rifabutin effect is missing. Consequently, LS180 cells were exposed to a moderately (2 µM) and strongly (10 µM) P-gp-inducing concentration of rifampicin or rifabutin for 6 days. Cellular accumulation of the fluorescent P-gp substrate rhodamine 123 was evaluated using flow cytometry, either without (induction only) or with adding rifamycin drug to the cells during the rhodamine 123 efflux phase (induction + potential inhibition). Rhodamine 123 accumulation was decreased similarly by both drugs after 6-day exposure (2 µM: 55% residual fluorescence compared to non-induced cells, P < 0.01; 10 µM: 30% residual fluorescence compared to non-induced cells, P < 0.001), indicating P-gp induction. Rhodamine 123 influx transporters mRNA expressions were not affected, excluding off-target effects. Acute re-exposure to rifabutin, however, considerably re-increased rhodamine 123 accumulation (2 µM induction: re-increase by 55%, P < 0.01; 10 µM induction: 49% re-increase, P < 0.001), suggesting P-gp inhibition. In contrast, rifampicin only had weak effects (2 µM induction: no re-increase; 10 µM induction: 16% re-increase; P < 0.05). Molecular docking analysis eventually revealed that rifabutin has a higher binding affinity to the inhibitor binding site of P-gp than rifampicin (ΔG (kcal/mol) = -11.5 vs -5.3). Together, this study demonstrates that rifabutin can at least partly mask P-gp induction by P-gp inhibition, mediated by high affinity binding to the inhibitory site of P-gp.


Asunto(s)
Rifabutina , Rifampin , Rifampin/farmacología , Rifabutina/farmacología , Rodamina 123/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Simulación del Acoplamiento Molecular
3.
Int Heart J ; 63(5): 904-914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184550

RESUMEN

Forsythiaside, one of the main bioactive components of Chinese medicine Lian Qiao, exerts antioxidant, anti-bacterial, and anti-inflammatory effects. To date, the mechanism of Forsythiaside in cardiomyocyte injury remains unclear. However, the antioxidant effects of Forsythiaside on cardiac cells are currently unknown. This study investigated the effect and mechanism of Forsythiaside on oxidative stress in H9c2 cardiomyocytes. H9c2 cells were treated with H2O2 and Forsythiaside and then transfected with small-interfering RNA against nuclear factor erythroid 2-related factor 2 (siNrf2). Cell viability, apoptosis, accumulation of reactive oxygen species (ROS), and mitochondrial membrane potential were measured using methyl thiazolyl tetrazolium (MTT), terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) assay, fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and rhodamine 123, respectively. The levels of oxidative stress-related markers were determined using their respective detection kits. Furthermore, the levels of apoptosis- and Nrf2 pathway-related molecules were determined via Western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Forsythiaside had no obvious toxicity on H9c2 cells. H2O2 suppressed the viability, and reduced the levels of mitochondrial membrane potential, B-cell lymphoma-2 (Bcl-2), glutathione peroxidase (GSH-Px) and catalase (CAT) and superoxide dismutase (SOD), while promoted apoptosis, ROS accumulation, and elevated the levels of cleaved caspase 3, BCL2-Associated X (Bax) and malondialdehyde (MDA) in H9c2 cells. Contrarily, Forsythiaside reversed the aforementioned effects. H2O2 advanced the levels of cytoplasm Nrf2, heme oxygenase-1 (HO-1), and nucleus Nrf2 in H9c2 cells, whereas Forsythiaside enhanced these effects. SiNrf2 reversed the functions of H2O2 or Forsythiaside in cell viability, MDA, SOD, GSH-Px, CAT, Nrf2, and HO-1 in H9c2 cells, whereas Forsythiaside reversed the aforementioned effects of siNrf2. In sum, Forsythiaside protected H9c2 cells from oxidative stress and apoptosis induced by H2O2 by activating the Nrf2/HO-1 pathway.


Asunto(s)
Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Caspasa 3/metabolismo , Catalasa/metabolismo , Catalasa/farmacología , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/farmacología , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/farmacología , Glutatión Peroxidasa/metabolismo , Glicósidos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Malondialdehído/metabolismo , Miocitos Cardíacos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rodamina 123/metabolismo , Rodamina 123/farmacología , Transducción de Señal , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1864(10): 184005, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863425

RESUMEN

A mechanistic understanding of how P-glycoprotein (Pgp) is able to bind and transport its astonishing range of substrates remains elusive. Pharmacological data demonstrated the presence of at least four distinct binding sites, but their locations have not been fully elucidated. The combination of biochemical and structural data suggests that initial binding may occur in the central cavity or at the lipid-protein interface. Our objective was to define the binding sites for two transported substrates of Pgp; the anticancer drug vinblastine and the fluorescent probe rhodamine 123. A series of mutations was generated in positions proximal to previously defined drug-interacting residues on Pgp. The protein was purified and reconstituted into styrene-maleic acid lipid particles (SMALPs) to measure the apparent drug binding constant or into liposomes for assessment of drug-stimulated ATP hydrolysis. The biochemical data were reconciled with structural models of Pgp using molecular docking. The data indicated that the binding of rhodamine 123 occurred predominantly within the central cavity of Pgp. In contrast, the significantly more hydrophobic vinblastine bound to both the lipid-protein interface and within the central cavity. The data suggest that the initial interaction of vinca alkaloids with Pgp occurs at the lipid interface followed by internalisation into the central cavity, which also provides the transport conduit. This model is supported by recent structural observations with Pgp and early biophysical and cross-linking approaches. Moreover, the proposed model illustrates that the broad substrate profile for Pgp is underpinned by a combination of multiple initial interaction sites and an accommodating transport conduit.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Antineoplásicos , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Lípidos , Simulación del Acoplamiento Molecular , Rodamina 123/metabolismo , Vinblastina/farmacología
5.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008907

RESUMEN

The mitochondrial membrane potential (∆Ψ) is the driving force providing the electrical component of the total transmembrane potential of hydrogen ions generated by proton pumps, which is utilized by the ATP synthase. The role of ∆Ψ is not limited to its role in bioenergetics since it takes part in other important intracellular processes, which leads to the mandatory requirement of the homeostasis of ∆Ψ. Conventionally, ∆Ψ in living cells is estimated by the fluorescence of probes such as rhodamine 123, tetramethylrodamine, etc. However, when assessing the fluorescence, the possibility of the intracellular/intramitochondrial modification of the rhodamine molecule is not taken into account. Such changes were revealed in this work, in which a comparison of normal (astrocytic) and tumor (glioma) cells was conducted. Fluorescent microscopy, flow cytometry, and mass spectrometry revealed significant modifications of rhodamine molecules developing over time, which were prevented by amiodarone apparently due to blocking the release of xenobiotics from the cell and their transformation with the participation of cytochrome P450. Obviously, an important role in these processes is played by the increased retention of rhodamines in tumor cells. Our data require careful evaluation of mitochondrial ∆Ψ potential based on the assessment of the fluorescence of the mitochondrial probe.


Asunto(s)
Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Sondas Moleculares/metabolismo , Rodamina 123/metabolismo , Animales , Astrocitos/metabolismo , Extractos Celulares , Línea Celular Tumoral , Fluorescencia , Glioma/metabolismo , Ratas , Factores de Tiempo
6.
Sci Rep ; 11(1): 16856, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413359

RESUMEN

P-gp-associated multidrug resistance is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure-activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone to the moiety bearing the pyrimidine favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4-7 and 12 is required for inhibition.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Pirimidinas/farmacología , Quinolonas/farmacología , Muerte Celular/efectos de los fármacos , Humanos , Células K562 , Simulación de Dinámica Molecular , Transporte de Proteínas/efectos de los fármacos , Pirimidinas/química , Pirimidinas/toxicidad , Quinolonas/química , Quinolonas/toxicidad , Rodamina 123/metabolismo , Relación Estructura-Actividad , Termodinámica
7.
J Pharm Pharmacol ; 73(12): 1609-1616, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34313784

RESUMEN

OBJECTIVES: Epithelial-mesenchymal transition (EMT) plays a role in cancer metastasis as well as in drug resistance through various mechanisms, including increased drug efflux mediated by P-glycoprotein (P-gp). In this study, we investigated the activation mechanism of P-gp, including its regulatory factors, during EMT in hepatoblastoma-derived HepG2 cells. METHODS: HepG2 cells were transfected with SNAI1 using human adenovirus serotype 5 vector. We quantified mRNA and protein expression levels using qRT-PCR and western blot analysis, respectively. P-gp activity was evaluated by uptake assay, and cell viability was assessed by an MTT assay. KEY FINDINGS: P-gp protein expression on plasma membrane was higher in SNAI1-transfected cells than in Mock cells, although there was no difference in P-gp protein level in whole cells. Among the scaffold proteins such as ezrin, radixin and moesin (ERM), only radixin was increased in SNAI1-transfected cells. Uptake of both Rho123 and paclitaxel was decreased in SNAI1-transfected cells, and this decrease was blocked by verapamil, a P-gp inhibitor. The reduced susceptibility of SNAI1-transfected cells to paclitaxel was reversed by elacridar, another P-gp inhibitor. CONCLUSIONS: Increased expression of radixin during SNAI1-induced EMT leads to increased P-gp membrane expression in HepG2 cells, enhancing P-gp function and thereby increasing drug resistance.


Asunto(s)
Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/uso terapéutico , Vectores Genéticos , Células Hep G2 , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Rodamina 123/metabolismo , Transfección
8.
Food Chem Toxicol ; 155: 112381, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34217736

RESUMEN

This study was aimed to investigate the inhibitory activity of flavonoids on P-glycoprotein (P-gp). Effects of 39 flavonoids on the cellular uptake (CU) of rhodamine123 (Rho) and daunomycin (DNR) were investigated in both parental KB and P-gp overexpressed KB/MDR cells. The inhibition mechanism of selected flavonoids was further investigated by measuring the ATPase activity and expression level of P-gp. Twelve flavonoids improved the uptake of Rho (↑RhoF) and nineteen flavonoids increased the uptake of DNR (↑DNRF) in KB/MDR cells with nine flavonoids overlapped. Structure-activity relationship (SAR) indicated that 8-OCH3, and 2'-OH have a negative effect on Rho and DNR transport. Whereas 5-OH, 5-OCH3, 6-OH, 7-OCH3, 3'-OH, and 4'-OH, are essential for inhibition of flavonoids on P-gp and reversing the resistance of Rho and DNR. Eleven selected flavonoids significantly induced the basal P-gp-ATPase activity but much lower than that induced by verapamil. Tangeretin, galangin, kaempferol, quercetin, and morin significantly reversed the ATPase activity stimulated by verapamil. Six of eleven flavonoids significantly decreased P-gp expression, whereas three flavonoids slightly increased P-gp expression. These results provide valuable information that flavonoids can effectively reverse multidrug resistance of P-gp-mediated transport of nutraceutical and drugs by co-administration.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Adenosina Trifosfatasas/antagonistas & inhibidores , Daunorrubicina/metabolismo , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Rodamina 123/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Transporte Biológico Activo/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/química , Flavonoides/química , Humanos , Células KB , Estructura Molecular , Relación Estructura-Actividad
9.
Phytomedicine ; 85: 153528, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33735724

RESUMEN

BACKGROUND: P-glycoprotein (P-gp) over-expression plays a vital role in not only systemic drug bioavailability but also cancer multi-drug resistance (MDR). Develop functional inhibitors of P-gp can conquer both problems. PURPOSE AND STUDY DESIGN: The aim of the present study was to research the P-gp modulating effects and MDR reversing ability of a novel flavonoid from Fissistigma cupreonitens, the underlying inhibitory mechanisms were further elucidated as well. METHODS: Calcein-AM, rhodamine 123, and doxorubicin were fluorescent substrates for the evaluation of P-gp inhibitory function and detailed drug binding modes. Docking simulation was performed to reveal the in silico molecular bonding. ATPase assay and MDR1 shift assay were adopted to reveal the ATP consumption and conformational change of P-gp. The MDR reversing effects were demonstrated through cytotoxicity, cell cycle, and apoptosis analyses. RESULTS: 5­hydroxy­7,8­dimethoxyflavanone inhibited the efflux of rhodamine 123 and doxorubicin in a competitive manner, and increased the intracellular fluorescence of calcein at a concentration as low as 2.5 µg/ml. 5­hydroxy­7,8­dimethoxyflavanone slightly changed P-gp's conformation and only stimulated ATPase at very high concentration (100 µg/ml). The docking results showed that 5­hydroxy­7,8­dimethoxyflavanone and verapamil exhibited similar binding affinity to P-gp. The MDR reversing effects were prominent in the vincristine group, the reversal folds were 23.01 and 13.03 when combined with 10 µg/ml 5­hydroxy­7,8­dimethoxyflavanone in the P-gp over-expressing cell line (ABCB1/Flp-In™-293) and MDR cancer cell line (KB/VIN), respectively. CONCLUSION: The present study demonstrated that 5­hydroxy­7,8­dimethoxyflavanone was a novel effective flavonoid in the P-gp efflux inhibition and in vitro cancer MDR reversion.


Asunto(s)
Annonaceae/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Flavonoides/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/metabolismo , Fluoresceínas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Rodamina 123/metabolismo , Verapamilo/farmacología
10.
Food Chem Toxicol ; 147: 111922, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33321149

RESUMEN

Overexpression of P-glycoprotein (P-gp), which is linked to multidrug resistance (MDR), is one of the underlying obstacles to the success of chemotherapy as it reduces the efficacy of anticancer drugs and the side effects of these increase as a result of any increased dose to achieve the therapeutic effect. To identify agents with P-gp inhibitory properties, ethanol extracts from 80 plants were screened for their ability to increase intracellular doxorubicin-associated fluorescence, and the extract of Ligaria cuneifolia was found to be the most effective. Its bioassay-guided isolation yielded the pentacyclic triterpene betulin as active agent. This efficiently inhibited P-gp mediated efflux, as demonstrated by the enhancement of the intracellular accumulation of doxorubicin and rhodamine 123 from 1.56 µM in the P-gp overexpressing MDR leukemia cell, Lucena 1. Betulin was also able to render Lucena 1 sensitive to Dox from 0.39 µM. The docking studies revealed that betulin tightly binds to a key region of the TMDs, with a binding mode overlapping one main site of doxorubicin and, more interestingly, emulating the same contacts as tariquidar, as revealed by the per-residue energetic analysis from molecular dynamics simulations. MTT assay using peripheral blood mononuclear cells and hemolysis assay showed that betulin is devoid of toxicity. These findings provide important evidence that betulin may be a safe and promising entity to be further investigated to develop agents able to overcome P-gp-mediated MDR, resulting in a more effective and less toxic chemotherapy.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Leucemia/tratamiento farmacológico , Loranthaceae/química , Extractos Vegetales/farmacología , Triterpenos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Antibióticos Antineoplásicos/metabolismo , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Doxorrubicina/metabolismo , Resistencia a Antineoplásicos , Colorantes Fluorescentes/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estructura Molecular , Extractos Vegetales/química , Rodamina 123/metabolismo , Triterpenos/química
11.
Proc Natl Acad Sci U S A ; 117(47): 29609-29617, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168729

RESUMEN

P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transporte Biológico/fisiología , Resistencia a Múltiples Medicamentos/fisiología , Preparaciones Farmacéuticas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Sustitución de Aminoácidos/fisiología , Animales , Sitios de Unión/fisiología , Línea Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Células HeLa , Humanos , Insectos , Simulación del Acoplamiento Molecular/métodos , Rodamina 123/metabolismo , Especificidad por Sustrato/fisiología
12.
Biol Pharm Bull ; 43(12): 1823-1830, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32963175

RESUMEN

Our previous study demonstrated that the total saponins from Paris forristii (PCT3) had obvious inhibitory effect on the proliferation of adriamycin-resistant human breast adenocarcinoma cells (MCF-7/ADM), and this effect was significantly stronger than that in parental cells (MCF-7). This study was designed to test the reversal effect of PCT3 on MCF-7/ADM cells and to understand its mechanism of action. Results demonstrated that low cytotoxic concentrations of PCT3 (0.3, 1 and 3 µg/mL) reversed resistance of MCF-7/ADM cells to ADM, cisplatin (DDP) and 5-fluorouracil (5-FU), with reversal fold of 16.4, 19.5 and 31.7 for ADM, 1.6, 1.4 and 1.4 for DDP, 1.7, 1.8 and 5.6 for 5-FU, respectively. Moreover, PCT3 significantly increased the accumulation of ADM and Rhodamine 123 (Rh123) in MCF-7/ADM cells, suggesting that PCT3 may act by affecting the function of drug efflux pump P-glycoprotein (P-gp), which is encoded by MDR1 gene. Both MDR1 gene and P-gp protein expression was downregulated by PCT3 treatment. Further results demonstrated that p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathway was remarkably activated in MCF-7/ADM cells, inhibition of p38 or ERK attenuated P-gp expression. While, only the phosphorylation level of ERK was downregulated by PCT3, indicating that PCT3 sensitized P-gp overexpressed MCF-7/ADM cells to ADM via inhibition of ERK signaling pathway.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Saponinas/farmacología , Butadienos/farmacología , Línea Celular Tumoral , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Femenino , Humanos , Imidazoles/farmacología , Células MCF-7 , Melanthiaceae , Nitrilos/farmacología , Piridinas/farmacología , Rodamina 123/metabolismo
13.
Nat Chem Biol ; 16(12): 1361-1367, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32958953

RESUMEN

Lipids play crucial roles as structural elements, signaling molecules and material transporters in cells. However, the functions and dynamics of lipids within cells remain unclear because of a lack of methods to selectively label lipids in specific organelles and trace their movement by live-cell imaging. We describe here a technology for the selective labeling and fluorescence imaging (microscopic or nanoscopic) of phosphatidylcholine in target organelles. This approach involves the metabolic incorporation of azido-choline, followed by a spatially limited bioorthogonal reaction that enables the visualization and quantitative analysis of interorganelle lipid transport in live cells. More importantly, with live-cell imaging, we obtained direct evidence that the autophagosomal membrane originates from the endoplasmic reticulum. This method is simple and robust and is thus powerful for real-time tracing of interorganelle lipid trafficking.


Asunto(s)
Autofagosomas/metabolismo , Azidas/química , Colina/análogos & derivados , Retículo Endoplásmico/metabolismo , Fosfatidilcolinas/metabolismo , Coloración y Etiquetado/métodos , Autofagosomas/ultraestructura , Transporte Biológico , Carbocianinas/metabolismo , Química Clic/métodos , Retículo Endoplásmico/ultraestructura , Colorantes Fluorescentes/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Imagen Molecular/métodos , Fosfatidilcolinas/química , Rodamina 123/metabolismo , Proteína Fluorescente Roja
14.
J Nat Prod ; 83(8): 2434-2446, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32790992

RESUMEN

The expression of multidrug resistance P-glycoprotein (P-gp) by cancer cells represents one of the major drawbacks to successful cancer therapy. Accordingly, the development of drugs that inhibit the activity of this transporter remains a major challenge in cancer drug discovery. In this context, several new ecdysteroid derivatives have been synthesized and evaluated as P-gp inhibitors. Two of them (compounds 9 and 14) were able to resensitize CEMVbl100 and LoVoDoxo resistant cell lines to vinblastine and doxorubicin, respectively. Indeed, both compounds 9 and 14 increased the cellular accumulation of rhodamine 123 in cells expressing P-gp and stimulated basal P-glycoprotein-ATPase activity at a 1 µM concentration, demonstrating their interference with the transport of other substrates in a competitive mode. Moreover, in a medulloblastoma cell line (DAOY), compounds 9 and 14 reduced the side population representing cancer stem cells, which are characterized by a high expression of ABC drug transporters. Further, in DAOY cells, the same two compounds synergized with cisplatin and vincristine, two drugs used commonly in the therapy of medulloblastoma. Molecular docking studies on the homology-modeled structure of the human P-glycoprotein provided a rationale for the biological results, validating the binding mode within the receptor site, in accordance with lipophilicity data and observed structure-activity relationship information. Altogether, the present results endorse these derivatives as promising P-gp inhibitors, and they may serve as candidates to reverse drug resistance in cancer cells.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Resistencia a Antineoplásicos/efectos de los fármacos , Ecdisteroides/química , Ecdisteroides/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Humanos , Rodamina 123/metabolismo , Relación Estructura-Actividad
15.
Molecules ; 25(9)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403277

RESUMEN

Multidrug resistance (MDR) is a severe problem in the treatment of cancer with overexpression of glycoprotein P (Pgp, ABCB1) as a reason for chemotherapy failure. A series of 14 novel 5-arylideneimidazolone derivatives containing the morpholine moiety, with respect to two different topologies (groups A and B), were designed and obtained in a three- or four-step synthesis, involving the Dimroth rearrangement. The new compounds were tested for their inhibition of the ABCB1 efflux pump in both sensitive (parental (PAR)) and ABCB1-overexpressing (MDR) T-lymphoma cancer cells in a rhodamine 123 accumulation assay. Their cytotoxic and antiproliferative effects were investigated by a thiazolyl blue tetrazolium bromide (MTT) assay. For active compounds, an insight into the mechanisms of action using either the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp was performed. The safety profile in vitro was examined. Structure-activity relationship (SAR) analysis was discussed. The most active compounds, representing both 2-substituted- (11) and Dimroth-rearranged 3-substituted (18) imidazolone topologies, displayed 1.38-1.46 fold stronger efflux pump inhibiting effects than reference verapamil and were significantly safer than doxorubicin in cell-based toxicity assays in the HEK-293 cell line. Results of mechanistic studies indicate that active imidazolones are substrates with increasing Pgp ATPase activity, and their dye-efflux inhibition via competitive action on the Pgp verapamil binding site was predicted in silico.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Imidazoles/química , Imidazoles/farmacología , Linfoma de Células T/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/genética , Humanos , Imidazoles/síntesis química , Técnicas In Vitro , Concentración 50 Inhibidora , Linfoma de Células T/enzimología , Linfoma de Células T/genética , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Morfolinas/química , Rodamina 123/metabolismo , Relación Estructura-Actividad , Verapamilo/farmacología
16.
Pharmacol Res Perspect ; 8(2): e00572, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32232949

RESUMEN

Human P-glycoprotein (P-gp) is a multispecific drug-efflux transporter, which plays an important role in drug resistance and drug disposition. Recent cryo-electron microscopy structures confirmed its rotationally symmetric architecture, which allows dual interaction with ATP and substrates. We here report the existence of two distinct, symmetry-related outer gates. Experiments were aided by availability of the X-ray structure of a homodimeric eukaryotic homolog of P-gp from red alga (CmABCB1), which defined the role of an apical tyrosine residue (Y358) in outer gate formation. We mutated analogous tyrosine residues in each half of the human full-length transporter (Y310, Y953) to alanine. These mutants were introduced in engineered transporters which bind rhodamine 123 in one of two symmetry-related binding modes only. Outer gate dysfunction was detected by a loss of active transport characteristics, while these mutants retained the ability for outward downhill transport. Our data demonstrate that symmetric tyrosine residues Y310 and Y953 are involved in formation of two distinct symmetry-related outer gates, which operate contingent on the rhodamine 123 binding mode. Hence, the rotationally symmetric architecture of P-gp, which determines duality in ATP binding and rhodamine 123 interaction, also forms the basis for the existence of two independently operating outer gates.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Rodamina 123/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Transporte Biológico Activo , Células HEK293 , Humanos
17.
Pharm Biol ; 58(1): 276-285, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32251615

RESUMEN

Context: Shenmai Injection (SMI) is usually used to treat atherosclerotic coronary heart disease and viral myocarditis in China. However, the effect of SMI on multidrug resistance has not been reported.Objective: To investigate the reversal effect of SMI in adriamycin (ADR) resistant breast cancer cell line (MCF-7/ADR) and explore the related molecular mechanisms.Materials and methods: The effect of SMI (0.25, 0.5, 1 mg/mL) to reverse chemoresistance in MCF-7/ADR cells was elucidated by MTT, HPLC-FLD, DAPI staining, flow cytometric analysis, western blotting. At the same time, in vivo test was conducted to probe into the effect of SMI on reversing ADR resistance, and verapamil (10 µM) was used as a positive control.Results: The results showed that the toxicity of ADR to MCF-7/ADR cells was strengthened significantly after treated with SMI (0.25, 0.5, 1 mg/mL), the IC50 of ADR was decreased 54.4-fold. The intracellular concentrations of ADR were increased 2.2-fold (p < 0.05) and ADR accumulation was enhanced in the nuclei (p < 0.05). SMI could strongly enhance the ADR-induced apoptosis and increase intracellular rhodamine 123 accumulation in MCF-7/ADR cells. Additionally, a combination of ADR and SMI (5 mg/kg) could dramatically reduce the weight and volume of tumour (p < 0.05). Furthermore, the results revealed that SMI might reverse MDR via inhibiting ADR-induced activation of the mitogen-activated protein kinase/nuclear factor (NF)-κB pathway to down-regulated the expression of P-glycoprotein (P-gp).Discussion and conclusions: SMI could potentially be used to treat ADR-resistance. This suggests possibilities for future clinical research.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Medicamentos Herbarios Chinos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Doxorrubicina/metabolismo , Doxorrubicina/uso terapéutico , Combinación de Medicamentos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Rodamina 123/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Biomed Pharmacother ; 125: 110032, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32187961

RESUMEN

This study was devised to investigate if P-glycoprotein (P-gp) mediated the drug-drug interaction (DDI) between genistein and repaglinide. When genistein was added, the plasma concentrations of repaglinide in rats were increased. The maximum plasma concentration (Cmax) of repaglinide increased from 70.80 ± 7.98 ng/mL to 124.71 ± 9.02 ng/mL and the area under the plasma concentration-time curve (AUC) increased from 134.89 ± 13.65 µg·h/L to 245.95 ± 7.24 µg·h/L. Intestinal absorption of repaglinide was markedly enhanced by genistein or P-gp inhibitor verapamil (Ver), both in situ rat jejunal perfusion studies and in vitro transport assays using everted rat intestinal sac preparations. Furthermore, the accumulation of repaglinide in both Caco-2 cells and IEC-6 cells also increased significantly in the presence of genistein and Ver. The transepithelial transport rate of repaglinide from basolateral-to-apical in MDR1-MDCK cells was 3.6-fold higher than the apical-to-basolateral rate with a net efflux ratio of 1.92 compared with mock-MDCK cells, which was significantly decreased following co-administration with genistein or Ver. In an intracellular accumulation experiment using Rhodamine 123 as a P-gp substrate, genistein significantly increased the intracellular fluorescence of Rhodamine 123. These results indicated that genistein had an inhibitory effect on the efflux function of P-gp. Through molecular docking assays we further found that genistein could bind to the nucleotide-binding domains (NBD) in the cytoplasm of P-gp, thus affecting the functions of P-gp. In conclusion, genistein inhibited the efflux of repaglinide mediated by P-gp in rats and in vitro. The findings suggested that the DDI between genistein and repaglinide is mediated by P-gp, and a dosage adjustment may be needed when they are co-administered in a clinical setting.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Carbamatos/farmacocinética , Genisteína/farmacología , Absorción Intestinal , Piperidinas/farmacocinética , Animales , Área Bajo la Curva , Transporte Biológico , Células CACO-2 , Perros , Interacciones Farmacológicas , Humanos , Células de Riñón Canino Madin Darby , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Wistar , Rodamina 123/metabolismo
19.
Methods Cell Biol ; 155: 221-245, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32183960

RESUMEN

Assessment of the mitochondrial membrane potential (Δψ) in living cells, although not trivial, can be used to estimate mitochondrial bioenergetic state. For this purpose, fluorescent lipophilic cations are broadly applied. These cations enter cells and accumulate primarily in the mitochondrial matrix in a Δψ-dependent manner. Here, we describe the use of the cations tetramethylrhodamine methyl ester (TMRM) and rhodamine 123 (Rhod123) for semi-quantitative Δψ analysis in living mammalian cells. Two different strategies are presented: (1) steady-state measurements that are suited to compare Δψ between different conditions (i.e., for comparing disease states or treatments) and (2) dynamic measurements allowing temporal monitoring of Δψ changes (i.e., to assess the effect of acute perturbations). We discuss the rationale for the use of TMRM and Rhod123 in their non-quenching/redistribution and quenching mode, how these modes are associated with different fluorescence responses, and how data can be interpreted. Practically, three experimental protocols are provided describing the use of TMRM and/or Rhod123 to assess Δψ in primary human skin fibroblasts (PHSFs) and neuron/astrocyte co-cultures by live-cell fluorescence microscopy.


Asunto(s)
Técnicas Citológicas/métodos , Mamíferos/metabolismo , Potencial de la Membrana Mitocondrial , Animales , Células Cultivadas , Fibroblastos/metabolismo , Fluorescencia , Humanos , Rodamina 123/metabolismo , Rodaminas/metabolismo , Piel/citología
20.
Eur J Pharm Biopharm ; 150: 131-142, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32151727

RESUMEN

PLGA (poly(lactic-co-glycolic acid))-based nanoparticles (NPs) are promising drug carrier systems because of their excellent biocompatibility and ability for sustained drug release. However, it is not well understood how the kinetics of such drug delivery system perform in the retinal blood circulation as imaged in vivo and in real time. To answer this question, PLGA NPs were loaded either with lipophilic carbocyanine perchlorate (DiI) or hydrophilic Rhodamine 123 (Rho123) and coated with poloxamer 188 (P188): PLGA-DiI/P188 and PLGA-Rho123/P188. All particles had narrow size distributions around 130 nm, spherical shape and negative potential. Subsequently, we performed in vivo real-time imaging of retinal blood vessels, combined with ex vivo microscopy to monitor the kinetics and to detect location of those two fluorescent markers. We found that DiI signals were long lasting, detectable >90 min in blood vessels after intravenous injection as visible by homogeneous labelling of the vessel wall as well as by spots in the lumen of blood vessels. In contrast, Rho123 signals mostly disappeared after 15 min post intravenous injection in such compartment. To explore how PLGA NP-loaded cargoes are released in the retina in vivo, we thereafter monitored the Cyanine5.5 amine (Cy5.5) covalently linked PLGA polymer (Cy5.5-PLGA) in parallel to DiI and Rho123. The Cy5.5 signal from PLGA polymer was detectable in the retina vessels >90 min for both, the Cy5.5-PLGA-DiI/P188 and Cy5.5-PLGA-Rho123/P188 groups. Microscopy of the ex vivo retina tissue revealed partial level of colocalization of PLGA with DiI but no colocalization between PLGA and Rho123 at 2 h post injection. This indicates that at least a fraction of the lipophilic DiI was preserved within NPs, whereas no hydrophilic Rho123 was associated with NPs at that time point. In conclusion, the properties of PLGA carrier-cargo system in the blood circulation of the retina might be strongly influenced by the combination of factors, including the individual properties of loaded compounds and blood milieu. Thus, it is unlikely that a single nanoparticle formulation will be identified that is universally effective for the delivery of different compounds.


Asunto(s)
Carbocianinas/metabolismo , Portadores de Fármacos , Colorantes Fluorescentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Vasos Retinianos/metabolismo , Rodamina 123/metabolismo , Animales , Carbocianinas/química , Composición de Medicamentos , Colorantes Fluorescentes/química , Cinética , Masculino , Poloxámero/química , Ratas , Flujo Sanguíneo Regional , Rodamina 123/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...