Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.077
Filtrar
1.
Ann Agric Environ Med ; 31(2): 311-314, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38940119

RESUMEN

Listeria monocytogenes is a Gram-positive facultative anaerobic bacterium that is ubiquitous in the environment and can cause severe infections in immunocompromised individuals, pregnant women, and newborns. Listeriosis can manifest as meningitis, encephalitis, or sepsis, and its diagnosis requires a high index of suspicion. The case is reported of a rare presentation of rhombencephalitis by listeriosis in a 61-year-old male who initially suffered from subacute gastric disturbances and fever. Neurological consultation showed abnormal functions of cranial nerves and meningeal signs were observed. MRI revealed a poorly demarcated focus of approximately 45 × 16 × 15mm, indicating possible inflammatory processes, necessitating a lumbar puncture. Assessment of the CSF indicated infection with the bacterium- Listeria Monocytogenes, with the final diagnosis of Listeriosis encephalitis. Despite antibiotic therapy of Ceftazidine and Ampicillin, the patient's condition deteriorated, followed by death.


Asunto(s)
Encefalitis , Listeria monocytogenes , Listeriosis , Humanos , Masculino , Listeriosis/diagnóstico , Listeriosis/tratamiento farmacológico , Listeriosis/microbiología , Persona de Mediana Edad , Resultado Fatal , Listeria monocytogenes/aislamiento & purificación , Encefalitis/microbiología , Encefalitis/tratamiento farmacológico , Encefalitis/diagnóstico , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Rombencéfalo/microbiología
2.
Elife ; 122024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819436

RESUMEN

The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.


Asunto(s)
Neuronas , Pez Cebra , Animales , Neuronas/fisiología , Neuronas/metabolismo , Relaxina/metabolismo , Relaxina/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Sistemas CRISPR-Cas , Rombencéfalo/fisiología , Rombencéfalo/metabolismo
3.
Br J Hosp Med (Lond) ; 85(5): 1-4, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815971

RESUMEN

We present an unusual case of Listeria monocytogenes rhomboencephalitis in a young, healthy patient. Although L. monocytogenes meningitis is usually associated with immunodeficiency, rhomboencephalitis is more commonly seen in immunocompetent patients. The wide differential for rhomboencephalitis can create a diagnostic challenge. Without prompt pathogen identification and appropriate antibiotic regimen, L. monocytogenes central nervous system infections can be fatal. Cerebro-Spinal Fluid (CSF) Polymerase Chain Reaction (PCR) aided a prompt diagnosis and adjustment of therapy to achieve a good patient outcome.


Asunto(s)
Inmunocompetencia , Listeria monocytogenes , Listeriosis , Humanos , Listeria monocytogenes/aislamiento & purificación , Listeriosis/diagnóstico , Listeriosis/tratamiento farmacológico , Antibacterianos/uso terapéutico , Masculino , Rombencéfalo/microbiología , Imagen por Resonancia Magnética , Meningitis por Listeria/diagnóstico , Meningitis por Listeria/tratamiento farmacológico , Adulto , Encefalitis/microbiología , Encefalitis/diagnóstico , Reacción en Cadena de la Polimerasa
4.
Curr Biol ; 34(4): R155-R157, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412828

RESUMEN

Satiety-promoting neurons of the hindbrain have long been known for their role in meal termination. An innovative new study now reveals how different hindbrain cell types mediate appetite on distinct timescales.


Asunto(s)
Apetito , Ingestión de Alimentos , Apetito/fisiología , Saciedad , Rombencéfalo , Neuronas
5.
Clin Radiol ; 79(5): e759-e766, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38388254

RESUMEN

AIM: To characterise the corticoreticular pathway (CRP) in a case-control cohort of adolescent idiopathic scoliosis (AIS) patients using high-resolution slice-accelerated readout-segmented echo-planar diffusion tensor imaging (DTI) to enhance the discrimination of small brainstem nuclei in comparison to automated whole-brain volumetry and tractography and their clinical correlates. MATERIALS AND METHODS: Thirty-four participants (16 AIS patients, 18 healthy controls) underwent clinical and orthopaedic assessments and brain magnetic resonance imaging (MRI) on a 3 T MRI machine. Automated whole-brain volume-based morphometry, tract-based spatial statistics analysis, and manual CRP tractography by two independent raters were performed. Intra-rater and inter-rater agreement of DTI metrics from CRP tractography were assessed by intraclass correlation coefficient. Normalised structural brain volumes and DTI metrics were compared between groups using Student's t-tests. Linear correlation analysis between imaging parameters and clinical scores was also performed. RESULTS: AIS patients demonstrated a significantly larger pons volume compared to controls (p=0.006). Significant inter-side CRP differences in mean (p=0.02) and axial diffusivity (p=0.01) were found in patients only. Asymmetry in CRP fractional anisotropy significantly correlated with the Cobb angle (p=0.03). CONCLUSION: Relative pontine hypertrophy and asymmetry in CRP DTI metrics suggest central supranuclear inter-hemispheric imbalance in AIS, and support the role of the CRP in axial muscle tone. Longitudinal evaluation of CRP DTI metrics in the prediction of AIS progression may be clinically relevant.


Asunto(s)
Imagen de Difusión Tensora , Escoliosis , Humanos , Adolescente , Imagen de Difusión Tensora/métodos , Escoliosis/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Anisotropía , Rombencéfalo
6.
Nat Commun ; 15(1): 1538, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378737

RESUMEN

Retinoic acid (RA) is involved in antero-posterior patterning of the chordate body axis and, in jawed vertebrates, has been shown to play a major role at multiple levels of the gene regulatory network (GRN) regulating hindbrain segmentation. Knowing when and how RA became coupled to the core hindbrain GRN is important for understanding how ancient signaling pathways and patterning genes can evolve and generate diversity. Hence, we investigated the link between RA signaling and hindbrain segmentation in the sea lamprey Petromyzon marinus, an important jawless vertebrate model providing clues to decipher ancestral vertebrate features. Combining genomics, gene expression, and functional analyses of major components involved in RA synthesis (Aldh1as) and degradation (Cyp26s), we demonstrate that RA signaling is coupled to hindbrain segmentation in lamprey. Thus, the link between RA signaling and hindbrain segmentation is a pan vertebrate feature of the hindbrain and likely evolved at the base of vertebrates.


Asunto(s)
Cordados , Petromyzon , Animales , Petromyzon/genética , Tretinoina/metabolismo , Vertebrados/genética , Rombencéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica
7.
Mol Metab ; 80: 101886, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246589

RESUMEN

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Asunto(s)
Hipotálamo , Melanocortinas , Ratones , Animales , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Ratones Transgénicos , Melanocortinas/metabolismo , Rombencéfalo/metabolismo , Mamíferos/metabolismo
8.
Fluids Barriers CNS ; 21(1): 9, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38268040

RESUMEN

The Hindbrain Choroid Plexus is a complex, cerebrospinal fluid-secreting tissue that projects into the 4th vertebrate brain ventricle. Despite its irreplaceability in the development and homeostasis of the entire central nervous system, the research of Hindbrain Choroid Plexus and other Choroid Plexuses has been neglected by neuroscientists for decades. One of the obstacles is the lack of tools that describe the complex shape of the Hindbrain Choroid Plexus in the context of brain ventricles. Here we introduce an effective tool, termed ChOP-CT, for the noninvasive, X-ray micro-computed tomography-based, three-dimensional visualization and subsequent quantitative spatial morphological analysis of developing mouse Hindbrain Choroid Plexus. ChOP-CT can reliably quantify Hindbrain Choroid Plexus volume, surface area, length, outgrowth angle, the proportion of the ventricular space occupied, asymmetries and general shape alterations in mouse embryos from embryonic day 13.5 onwards. We provide evidence that ChOP-CT is suitable for the unbiased evaluation and detection of the Hindbrain Choroid Plexus alterations within various mutant embryos. We believe, that thanks to its versatility, quantitative nature and the possibility of automation, ChOP-CT will facilitate the analysis of the Hindbrain Choroid Plexus in the mouse models. This will ultimately accelerate the screening of the candidate genes and mechanisms involved in the onset of various Hindbrain Choroid Plexus-related diseases.


Asunto(s)
Ventrículos Cerebrales , Plexo Coroideo , Animales , Ratones , Plexo Coroideo/diagnóstico por imagen , Microtomografía por Rayos X , Rombencéfalo/diagnóstico por imagen , Encéfalo
9.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251863

RESUMEN

The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.


Asunto(s)
Células-Madre Neurales , Proteoglicanos , Ratones , Animales , Proteoglicanos/metabolismo , Sulfatos de Condroitina , Proteoglicanos Tipo Condroitín Sulfato , Matriz Extracelular/metabolismo , Rombencéfalo/metabolismo , Células-Madre Neurales/metabolismo
10.
Methods Mol Biol ; 2746: 73-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38070081

RESUMEN

Whole-mount in situ hybridization is cable to harness the inherent advantages of zebrafish as a model organism for developmental biology, particularly when visualizing the formation of the neural tube, specifically at the level of the midbrain-hindbrain boundary. The size and transparency of developing zebrafish embryos allow for the visualization of neural markers in vivo along the length of the developing zebrafish central nervous system. In practice, this technique is useful for examining defects in neurulation and midbrain-hindbrain boundary formation that may arise following gene manipulation, for example, CRISPR mutagenesis. This method describes the process of embryo collection and preparation, RNA probe transcription, probe hybridization in vivo, as well as the process of probe detection and visualization.


Asunto(s)
Neurulación , Pez Cebra , Animales , Pez Cebra/genética , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo , Rombencéfalo , Hibridación in Situ
11.
Mol Metab ; 79: 101861, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142970

RESUMEN

OBJECTIVE: The dorsal vagal complex (DVC) of the hindbrain is a major point of integration for central and peripheral signals that regulate a wide variety of metabolic functions to maintain energy balance. The REV-ERB nuclear receptors are important modulators of molecular metabolism, but their role in the DVC has yet to be established. METHODS: Male REV-ERBα/ß floxed mice received stereotaxic injections of a Cre expressing virus to the DVC to create the DVC REV-ERBα/ß double knockout (DVC RDKO). Control littermates received stereotaxic injections to the DVC of a green fluorescent protein expressing virus. Animals were maintained on a normal chow diet or a 60% high-fat diet to observe the metabolic phenotype arising from DVC RDKO under healthy and metabolically stressed conditions. RESULTS: DVC RDKO animals on high-fat diet exhibited increased weight gain compared to control animals maintained on the same diet. Increased weight gain in DVC RDKO animals was associated with decreased basal metabolic rate and dampened signature of brown adipose tissue activity. RDKO decreased gene expression of calcitonin receptor in the DVC and tyrosine hydroxylase in the brown adipose tissue. CONCLUSIONS: These results suggest a previously unappreciated role of REV-ERB nuclear receptors in the DVC for maintaining energy balance and metabolic rate potentially through indirect sympathetic outflow to the brown adipose tissue.


Asunto(s)
Tejido Adiposo Pardo , Rombencéfalo , Animales , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Rombencéfalo/metabolismo , Aumento de Peso
12.
Nature ; 624(7991): 333-342, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092915

RESUMEN

The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types and their positions within individual anatomical structures remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signalling, elucidated region-specific specializations in activity-regulated gene expression and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource ( www.BrainCellData.org ), should find diverse applications across neuroscience, including the construction of new genetic tools and the prioritization of specific cell types and circuits in the study of brain diseases.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Animales , Ratones , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Hipotálamo/citología , Hipotálamo/metabolismo , Mesencéfalo/citología , Mesencéfalo/metabolismo , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Fenotipo , Rombencéfalo/citología , Rombencéfalo/metabolismo , Análisis de Expresión Génica de una Sola Célula , Transcriptoma/genética
13.
Nature ; 624(7991): 355-365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092919

RESUMEN

Single-cell analyses parse the brain's billions of neurons into thousands of 'cell-type' clusters residing in different brain structures1. Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.


Asunto(s)
Encéfalo , Epigenómica , Vías Nerviosas , Neuronas , Animales , Ratones , Amígdala del Cerebelo , Encéfalo/citología , Encéfalo/metabolismo , Secuencia de Consenso , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Hipotálamo/citología , Mesencéfalo/citología , Vías Nerviosas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Rombencéfalo/citología , Análisis de la Célula Individual , Tálamo/citología , Factores de Transcripción/metabolismo
14.
BMJ Case Rep ; 16(12)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38087482

RESUMEN

Chiari malformation (CM) is a group of complex deformities of the posterior fossa and hindbrain, of which CMIII is the rarest. We report a term neonate, with an antenatal diagnosis of occipital encephalocele, who underwent resection of the encephalocele and ligation of vessels, with repair of a large scalp defect and dural reconstruction on day 4 of life. The parents of the child had been counselled for a guarded and poor prognosis on initial diagnosis. The child has had a good postoperative course without complications but suffers from cortical visual impairment and global developmental delay.


Asunto(s)
Malformación de Arnold-Chiari , Imagen por Resonancia Magnética , Humanos , Recién Nacido , Malformación de Arnold-Chiari/diagnóstico , Malformación de Arnold-Chiari/diagnóstico por imagen , Cerebelo/anomalías , Encefalocele/cirugía , Rombencéfalo
16.
Elife ; 122023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947350

RESUMEN

Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form has not been fully established. Here, we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the embryonic hindbrain transiently contains alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even molecular characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium that represent prospective rhombomere r2/r3 (possibly including r1), r4, and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual rhombomeres requires the resolution of mixed transcription and chromatin states.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Estudios Prospectivos , Proteínas de Pez Cebra/metabolismo , Rombencéfalo , Cromatina/metabolismo
17.
Endocrinology ; 165(1)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38015813

RESUMEN

Hindbrain adrenergic/noradrenergic nuclei facilitate endocrine and autonomic responses to physical and psychological challenges. Neurons that synthesize adrenaline and noradrenaline target hypothalamic structures to modulate endocrine responses while descending spinal projections regulate sympathetic function. Furthermore, these neurons respond to diverse stress-related metabolic, autonomic, and psychosocial challenges. Accordingly, adrenergic and noradrenergic nuclei are integrative hubs that promote physiological adaptation to maintain homeostasis. However, the precise mechanisms through which adrenaline- and noradrenaline-synthesizing neurons sense interoceptive and exteroceptive cues to coordinate physiological responses have yet to be fully elucidated. Additionally, the regulatory role of these cells in the context of chronic stress has received limited attention. This mini-review consolidates reports from preclinical rodent studies on the organization and function of brainstem adrenaline and noradrenaline cells to provide a framework for how these nuclei coordinate endocrine and autonomic physiology. This includes identification of hindbrain adrenaline- and noradrenaline-producing cell groups and their role in stress responding through neurosecretory and autonomic engagement. Although temporally and mechanistically distinct, the endocrine and autonomic stress axes are complementary and interconnected. Therefore, the interplay between brainstem adrenergic/noradrenergic nuclei and peripheral physiological systems is necessary for integrated stress responses and organismal survival.


Asunto(s)
Adrenérgicos , Norepinefrina , Norepinefrina/metabolismo , Epinefrina , Tronco Encefálico/metabolismo , Rombencéfalo/metabolismo
18.
Biol Open ; 12(10)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37815090

RESUMEN

Genetic variants affecting Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU) have been identified in several neurodevelopmental disorders (NDDs). HNRNPU is widely expressed in the human brain and shows the highest postnatal expression in the cerebellum. Recent studies have investigated the role of HNRNPU in cerebral cortical development, but the effects of HNRNPU deficiency on cerebellar development remain unknown. Here, we describe the molecular and cellular outcomes of HNRNPU locus deficiency during in vitro neural differentiation of patient-derived and isogenic neuroepithelial stem cells with a hindbrain profile. We demonstrate that HNRNPU deficiency leads to chromatin remodeling of A/B compartments, and transcriptional rewiring, partly by impacting exon inclusion during mRNA processing. Genomic regions affected by the chromatin restructuring and host genes of exon usage differences show a strong enrichment for genes implicated in epilepsies, intellectual disability, and autism. Lastly, we show that at the cellular level HNRNPU downregulation leads to an increased fraction of neural progenitors in the maturing neuronal population. We conclude that the HNRNPU locus is involved in delayed commitment of neural progenitors to differentiate in cell types with hindbrain profile.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo U , Trastornos del Neurodesarrollo , Humanos , Cromatina , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Trastornos del Neurodesarrollo/genética , Neurogénesis/genética , Rombencéfalo/metabolismo
19.
Curr Biol ; 33(18): 3911-3925.e6, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37689065

RESUMEN

In many brain areas, neuronal activity is associated with a variety of behavioral and environmental variables. In particular, neuronal responses in the zebrafish hindbrain relate to oculomotor and swimming variables as well as sensory information. However, the precise functional organization of the neurons has been difficult to unravel because neuronal responses are heterogeneous. Here, we used dimensionality reduction methods on neuronal population data to reveal the role of the hindbrain in visually driven oculomotor behavior and swimming. We imaged neuronal activity in zebrafish expressing GCaMP6s in the nucleus of almost all neurons while monitoring the behavioral response to gratings that rotated with different speeds. We then used reduced-rank regression, a method that condenses the sensory and motor variables into a smaller number of "features," to predict the fluorescence traces of all ROIs (regions of interest). Despite the potential complexity of the visuo-motor transformation, our analysis revealed that a large fraction of the population activity can be explained by only two features. Based on the contribution of these features to each ROI's activity, ROIs formed three clusters. One cluster was related to vergent movements and swimming, whereas the other two clusters related to leftward and rightward rotation. Voxels corresponding to these clusters were segregated anatomically, with leftward and rightward rotation clusters located selectively to the left and right hemispheres, respectively. Just as described in many cortical areas, our analysis revealed that single-neuron complexity co-exists with a simpler population-level description, thereby providing insights into the organization of visuo-motor transformations in the hindbrain.


Asunto(s)
Rombencéfalo , Pez Cebra , Animales , Pez Cebra/fisiología , Rotación , Rombencéfalo/fisiología , Encéfalo/fisiología , Natación
20.
J Chem Neuroanat ; 133: 102339, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689218

RESUMEN

Gamma-aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter within the central nervous system (CNS) of vertebrates. In this study, we examined the distribution pattern of GABA-immunoreactive (GABA-ir) cells and fibres in the CNS of the viviparous teleost Poecilia sphenops using immunofluorescence method. GABA immunoreactivity was seen in the glomerular, mitral, and granular layers of the olfactory bulbs, as well as in most parts of the dorsal and ventral telencephalon. The preoptic area consisted of a small cluster of GABA-ir cells, whereas extensively labelled GABA-ir neurons were observed in the hypothalamic areas, including the paraventricular organ, tuberal hypothalamus, nucleus recessus lateralis, nucleus recessus posterioris, and inferior lobes. In the thalamus, GABA-positive neurons were only found in the ventral thalamic and central posterior thalamic nuclei, whereas the dorsal part of the nucleus pretectalis periventricularis consisted of a few GABA-ir cells. GABA-immunoreactivity was extensively seen in the alar and basal subdivisions of the midbrain, whereas in the rhombencephalon, GABA-ir cells and fibres were found in the cerebellum, motor nucleus of glossopharyngeal and vagal nerves, nucleus commissuralis of Cajal, and reticular formation. In the spinal cord, GABA-ir cells and fibres were observed in the dorsal horn, ventral horn, and around the central canal. Overall, the extensive distribution of GABA-ir cells and fibres throughout the CNS suggests several roles for GABA, including the neuroendocrine, viscerosensory, and somatosensory functions, for the first time in a viviparous teleost.


Asunto(s)
Poecilia , Animales , Sistema Nervioso Central , Neuronas , Rombencéfalo , Ácido gamma-Aminobutírico , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...