Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 526, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758750

RESUMEN

BACKGROUND: Wall-associated kinase (WAK)/WAK-like (WAKL) is one of the subfamily of receptor like kinases (RLK). Although previous studies reported that WAK/WAKL played an important role in plant cell elongation, response to biotic and abiotic stresses, there are no systematic studies on RcWAK/RcWAKL in rose. RESULTS: In this study, we identified a total of 68 RcWAK/RcWAKL gene family members within rose (Rosa chinensis) genome. The RcWAKs contained the extracellular galacturonan-binding domain and calcium-binding epidermal growth factor (EGF)-like domain, as well as an intracellular kinase domains. The RcWAKLs are missing either calcium-binding EGF-like domain or the galacturonan-binding domain in their extracellular region. The phylogenetic analysis showed the RcWAK/RcWAKL gene family has been divided into five groups, and these RcWAK/RcWAKL genes were unevenly distributed on the 7 chromosomes of rose. 12 of RcWAK/RcWAKL genes were significantly up-regulated by Botrytis cinerea-inoculated rose petals, where RcWAK4 was the most strongly expressed. Virus induced gene silencing of RcWAK4 increased the rose petal sensitivity to B. cinerea. The results indicated RcWAK4 is involved in the resistance of rose petal against B. cinerea. CONCLUSION: Our study provides useful information to further investigate the function of the RcWAK/RcWAKL gene family and breeding research for resistance to B. cinerea in rose.


Asunto(s)
Botrytis/fisiología , Proteínas de Plantas/fisiología , Proteínas Quinasas/fisiología , Rosa/enzimología , Rosa/microbiología , Mapeo Cromosómico , Cromosomas de las Plantas , Resistencia a la Enfermedad/genética , Genoma de Planta , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Rosa/genética , Transcriptoma
2.
Plant Physiol ; 186(2): 910-928, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33711160

RESUMEN

Rosebush (Rosa "Radrazz") plants are an excellent model to study light control of bud outgrowth since bud outgrowth only arises in the presence of light and never occurs in darkness. Recently, we demonstrated high levels of hydrogen peroxide (H2O2) present in the quiescent axillary buds strongly repress the outgrowth process. In light, the outgrowing process occurred after H2O2 scavenging through the promotion of Ascorbic acid-Glutathione (AsA-GSH)-dependent pathways and the continuous decrease in H2O2 production. Here we showed Respiratory Burst Oxidase Homologs expression decreased in buds during the outgrowth process in light. In continuous darkness, the same decrease was observed although H2O2 remained at high levels in axillary buds, as a consequence of the strong inhibition of AsA-GSH cycle and GSH synthesis preventing the outgrowth process. Cytokinin (CK) application can evoke bud outgrowth in light as well as in continuous darkness. Furthermore, CKs are the initial targets of light in the photocontrol process. We showed CK application to cultured buds in darkness decreases bud H2O2 to a level that is similar to that observed in light. Furthermore, this treatment restores GSH levels and engages bud burst. We treated plants with buthionine sulfoximine, an inhibitor of GSH synthesis, to solve the sequence of events involving H2O2/GSH metabolisms in the photocontrol process. This treatment prevented bud burst, even in the presence of CK, suggesting the sequence of actions starts with the positive CK effect on GSH that in turn stimulates H2O2 scavenging, resulting in initiation of bud outgrowth.


Asunto(s)
Ácido Ascórbico/metabolismo , Citocininas/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Rosa/genética , Oscuridad , Homeostasis , Luz , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Rosa/enzimología , Rosa/crecimiento & desarrollo , Rosa/efectos de la radiación
3.
Plant Physiol Biochem ; 148: 53-61, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31927272

RESUMEN

In order to evaluate the genes involved in polyamines synthesis pathway and the role of nitric oxide synthase (NOS) and H2O2 in stomatal closure under drought stress, a research conducted with three irrigation levels (100, 50 and 25% field capacity) at 1, 3, 6 and 12 days on Rosa damascena Mill. HPLC and qPCR results showed that putrescine (Put) accumulation occurred at first day in both 50 and 25% of field capacity and then decreased the other days. Furthermore, Put accumulation in the indirect pathway (ADC, AIH and CPA) was more effective related to the direct pathway (ODC) under severe stress. Increased expression of genes involved in production of spermidine (Spd) and spermine (Spm) i.e., SAMDC, SPDS and SPMS correlated with the highest accumulation of Spd and Spm under 50% FC at 6 d and 25% FC at 12 d, respectively. Moreover, results showed that Put reduction simultaneously accumulated H2O2, which subsequently increased NOS expression suggesting a key signal for stomatal closure.


Asunto(s)
Sequías , Óxido Nítrico Sintasa , Estomas de Plantas , Poliaminas , Rosa , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Poliaminas/metabolismo , Rosa/enzimología , Rosa/genética , Espermidina/metabolismo , Espermina/metabolismo , Estrés Fisiológico/genética
4.
Plant Mol Biol ; 102(3): 271-285, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31838617

RESUMEN

KEY MESSAGE: H2 prolonged the vase life and improved the vase quality of cut roses through repressing endogenous ethylene production and alleviating ethylene signal transduction during the entire senescing period. Recently, the application of hydrogen gas (H2) was shown to improve postharvest quality and longevity in perishable horticultural products, but the specific regulation mechanism remains obscure. Here, endogenous ethylene production and the expression of genes in ethylene biosynthesis and signalling pathway were investigated to explore the crosstalk between H2 and ethylene during the senescence of cut roses. Our results revealed that addition of exogenous ethylene by ethephon accelerated the senescence of cut roses, in which 100 mg L-1 ethephon displayed the most obvious senescent phenotype. While the applied different concentrations (1%, 10%, 50% and 100%) of hydrogen-rich water (HRW) conducted different affects in alleviating the senescence of cut roses, and 1% HRW displayed the best ornamental quality and the longest vase life by reducing ethylene production, supported by the decrease of 1-aminocyclopropene-1-carboxylate (ACC) accumulation, ACC synthase (ACS) and ACC oxidase (ACO) activities, and Rh-ACS3 and Rh-ACO1 expressions in ethylene biosynthesis. In addition, HRW increased the transcripts of ethylene receptor genes Rh-ETR1 at blooming period from day 4 to day 6 and suppressed Rh-ETR3 at senescence phase at day 8 after harvest. Furthermore, the relevant affection of HRW on Rh-ETR1 and Rh-ETR3 expressions still existed when the ethylene production was compromised by adequate addition of exogenous ethylene in HRW-treated cut rose petals, and HRW directly repressed the protein level of Rh-ETR3 in a transient expression assay. Overall, the results suggested that H2 is involved in neutralizing ethylene-mediated postharvest in cut flowers.


Asunto(s)
Etilenos/antagonistas & inhibidores , Etilenos/biosíntesis , Flores/efectos de los fármacos , Hidrógeno/farmacología , Rosa/efectos de los fármacos , Rosa/metabolismo , Aminoácidos Cíclicos/metabolismo , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hidrógeno/metabolismo , Liasas/genética , Liasas/metabolismo , Compuestos Organofosforados , Fenotipo , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Rosa/enzimología , Rosa/genética , Transducción de Señal
5.
Plant J ; 99(6): 1159-1171, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31111587

RESUMEN

The timing of plant organ abscission is modulated by the balance of two hormones, ethylene and auxin, while the mechanism of organ shedding depends on the loss of middle lamella pectin in the abscission zone (AZ). However, the mechanisms involved in sensing the balance of auxin and ethylene and that affect pectin degradation during abscission are not well understood. In this study, we identified two members of the APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor family in rose (Rosa hybrida), RhERF1 and RhERF4 which play a role in petal abscission. The expression of RhERF1 and RhERF4 was influenced by ethylene and auxin, respectively. Reduced expression of RhERF1 or RhERF4 was observed to accelerate petal abscission. Global expression analysis and real-time PCR assays revealed that RhERF1 and RhERF4 modulate the expression of genes encoding pectin-metabolizing enzymes. A reduction in the abundance of pectin epitopes was detected in the AZs of RhERF1 and RhERF4-silenced plants by immunofluorescence microscopy analysis. In addition, RhERF1 and RhERF4 were shown to bind to the promoter of the pectin-metabolizing gene ß-GALACTOSIDASE 1 (RhBGLA1), and reduced expression of RhBGLA1 delayed petal abscission. We conclude that during petal abscission, RhERF1 and RhERF4 integrate and coordinate ethylene and auxin signals to modulate pectin metabolism, in part by regulating the expression of RhBGLA1.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Etilenos/metabolismo , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Rosa/enzimología , Células Cultivadas , Proteínas de Unión al ADN/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Unión Proteica , Rosa/genética , Rosa/metabolismo , beta-Galactosidasa/metabolismo
6.
J Food Sci ; 84(4): 746-753, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30861132

RESUMEN

Superoxide dismutases (SODs) were purified from sea buckthorn and chestnut rose by ammonium sulfate precipitation and anion-exchange chromatography, and the detection methods of water-soluble tetrazolium-1 (WST-1), nitrobluetetrazolium (NBT) and pyrogallol autoxidation (PA) for SOD activity were compared. WST-1 method was selected due to its coefficient of variation (CV) <6% in this study. Two SODs exhibited similar characteristics. Their molecular mass and isoelectric point were about 30 kDa and 4.8 to 5.0 estimated by electrophoresis, and the Km was 0.05 to 0.08 mmol/L, respectively. Dynamic light scattering analysis suggested their hydrodynamic radius distributes from 60 to 1500 nm. The activity of two SODs was unchanged at <80 °C or pH 2 to 9 or in simulated human gastric fluid. Their circular dichroism spectra suggested a main ß-sheet structure, the fluorescence spectra reflected that the tryptophan residues of two SODs is partially exposed, these structures were rather stable at pH 2 to 9 or 50 to 90 °C. PRACTICAL APPLICATION: Superoxide dismutase (SOD) is an important antioxidant enzyme. SODs from sea buckthorn and chestnut rose were stable at high temperature or low pH or simulated gastric fluid. This result can provide a new approach for the potential application of SOD in the food and pharmaceutical fields.


Asunto(s)
Hippophae/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Rosa/enzimología , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Dicroismo Circular , Estabilidad de Enzimas , Hippophae/química , Proteínas de Plantas/aislamiento & purificación , Rosa/química , Superóxido Dismutasa/aislamiento & purificación
7.
ACS Synth Biol ; 8(8): 1698-1704, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30216051

RESUMEN

Rose has been entwined with human culture and history. "Blue rose" in English signifies unattainable hope or an impossible mission as it does not exist naturally and is not breedable regardless of centuries of effort by gardeners. With the knowledge of genes and enzymes involved in flower pigmentation and modern genetic technologies, synthetic biologists have undertaken the challenge of producing blue rose by engineering the complicated vacuolar flavonoid pigmentation pathway and resulted in a mauve-colored rose. A completely different strategy presented in this study employs a dual expression plasmid containing bacterial idgS and sfp genes. The holo-IdgS, activated by Sfp from its apo-form, is a functional nonribosomal peptide synthetase that converts l-glutamine into the blue pigment indigoidine. Expression of these genes upon petal injection with agro-infiltration solution generates blue-hued rose flowers. We envision that implementing this proof-of-concept with obligatory modifications may have tremendous impact in floriculture to achieve a historic milestone in rose breeding.


Asunto(s)
Color , Péptido Sintasas/metabolismo , Piperidonas/metabolismo , Rosa/enzimología , Rosa/metabolismo , Agrobacterium/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flores/enzimología , Flores/genética , Flores/metabolismo , Espectrometría de Masas , Péptido Sintasas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Rosa/genética
8.
Plant Physiol Biochem ; 129: 21-26, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29787935

RESUMEN

The floral volatile compound eugenol is an important constituent in many aromatic plants, being a floral attractant for pollinators as well as having antimicrobial activity. Rose flowers emit eugenol and its derivatives. We recently reported a eugenol synthase gene (RcEGS1) (JQ522949) that was present in petals of R. chinensis cv. Old Blush. RcEGS1 has its highest expression levels in the petals compared to other tissues; it has higher transcript levels at the developmental blooming stage and lower levels at budding and senescence stages. Here, we overexpressed the RcEGS1 protein in Escherichia coli, and showed by Western-blot analysis that its expression was mainly detected in stamens and petals at the flower opening stage. RcEGS1 was principally localized in the upper and lower epidermal layers, which are the major sites of scent emission in roses. Furthermore, we demonstrated that down-regulation of RcEGS1 expression in flowers by virus-induced gene silencing led to a reduction of the relative content of eugenol. We suggested that RcEGS1 was responsible for eugenol biosynthesis in roses.


Asunto(s)
Eugenol/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/genética , Rosa/genética , Western Blotting , Regulación hacia Abajo , Escherichia coli , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Microorganismos Modificados Genéticamente , Proteínas de Plantas/fisiología , Rosa/enzimología
9.
N Biotechnol ; 42: 62-70, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29477599

RESUMEN

Stilbenes are naturally scarce high-added-value plant compounds with chemopreventive, pharmacological and cosmetic properties. Bioproduction strategies include engineering the metabolisms of bacterial, fungal and plant cell systems. Strikingly, one of the most effective strategies consists in the elicitation of wild grapevine cell cultures, which leads to vast stilbene resveratrol accumulation in the extracellular medium. The combination of both cell culture elicitation and metabolic engineering strategies to produce resveratrol analogs proved more efficient for the hydroxylated derivative piceatannol than for the dimethylated derivative pterostilbene, for which human hydroxylase HsCYP1B1- and grapevine O-methyltransferase VvROMT-transformed cell cultures were respectively used. Rose orcinol O-methyltransferase (OOMT) displays enzymatic properties, which makes it an appealing candidate to substitute VvROMT in the combined strategy to enhance the pterostilbene production level by engineered grapevine cells upon elicitation. Here we cloned a Rosa hybrida OOMT gene, and created a genetic construction suitable for Agrobacterium-mediated plant transformation. OOMT's ability to catalyze the conversion of resveratrol into pterostilbene was first assessed in vitro using protein extracts of agroinfiltrated N. benthamiana leaves and transformed grapevine callus. The grapevine cell cultures transformed with RhOOMT produced about 16 mg/L culture of pterostilbene and reached an extracellular distribution of up to 34% of total production at the best, which is by far the highest production reported to date in a plant system. A bonus large resveratrol production of ca. 1500-3000 mg/L was simultaneously obtained. Our results demonstrate a viable successful metabolic engineering strategy to produce pterostilbene, a resveratrol analog with enhanced pharmacological properties.


Asunto(s)
Ingeniería Metabólica , Metiltransferasas , Células Vegetales/enzimología , Proteínas de Plantas , Rosa/genética , Estilbenos/metabolismo , Vitis/citología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/enzimología , Vitis/enzimología , Vitis/genética
10.
BMC Plant Biol ; 17(1): 51, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28231772

RESUMEN

BACKGROUND: Flower opening is an important process in the life cycle of flowering plants and is influenced by various endogenous and environmental factors. Our previous work demonstrated that rose (Rosa hybrida) flowers are highly sensitive to dehydration during flower opening and the water recovery process after dehydration induced ethylene production rapidly in flower gynoecia. In addition, this temporal- and spatial-specific ethylene production is attributed to a transient but robust activation of the rose MAP KINASE6-ACC SYNTHASE1 (RhMPK6-RhACS1) cascade in gynoecia. However, the upstream component of RhMPK6-RhACS1 is unknown, although RhMKK9 (MAP KINASE KINASE9), a rose homologue of Arabidopsis MKK9, could activate RhMPK6 in vitro. In this study, we monitored RhMKK2/4/5/9 expression, the potential upstream kinase to RhMPK6, in rose gynoecia during dehydration and rehydration. RESULTS: We found only RhMKK9 was rapidly and strongly induced by rehydration. Silencing of RhMKK9 significantly decreased rehydration-triggered ethylene production. Consistently, the expression of several ethylene-responsive genes was down regulated in the petals of RhMKK9-silenced flowers. Moreover, we detected the DNA methylation level in the promoter and gene body of RhMKK9 by Chop-PCR. The results showed that rehydration specifically elevated the DNA methylation level on the RhMKK9 gene body, whereas it resulted in hypomethylation in its promoter. CONCLUSIONS: Our results showed that RhMKK9 possibly acts as the upstream component of the RhMKK9-RhMPK6-RhACS1 cascade and is responsible for water recovery-triggered ethylene production in rose gynoecia, and epigenetic DNA methylation is involved in the regulation of RhMKK9 expression by rehydration.


Asunto(s)
Etilenos/biosíntesis , Flores/crecimiento & desarrollo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Plantas/metabolismo , Rosa/enzimología , Flores/enzimología , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Familia de Multigenes , Proteínas de Plantas/genética , Rosa/genética , Rosa/crecimiento & desarrollo , Rosa/metabolismo
11.
J Exp Bot ; 67(11): 3303-12, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27083698

RESUMEN

Invertases are a widespread group of enzymes that catalyse the conversion of sucrose into fructose and glucose. Plants invertases and their substrates are essential factors that play an active role in primary metabolism and in cellular differentiation and by these activities they sustain development and growth. Being naturally present in multiple isoforms, invertases are known to be highly differentiated and tissue specific in such a way that every isoform is characteristic of a specific part of the plant. In this work, we report the identification of the invertase RhVI1 that was found to be highly expressed in rose petals. A characterization of this protein revealed that RhVI1 is a glycosylated membrane-anchored protein associated with the cytosolic side of the vacuolar membrane which occurs in vivo in a monomeric form. Purification yields have shown that the levels of expression decreased during the passage of petals from buds to mature and pre-senescent flowers. Moreover, the activity assay indicates RhVI1 to be an acidic vacuolar invertase. The physiological implications of these findings are discussed, suggesting a possible role of this protein during anthesis.


Asunto(s)
Expresión Génica , Proteínas de Plantas/genética , Rosa/enzimología , Rosa/genética , Vacuolas/metabolismo , beta-Fructofuranosidasa/genética , Cromatografía en Gel , Flores/enzimología , Flores/genética , Flores/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rosa/metabolismo , beta-Fructofuranosidasa/aislamiento & purificación , beta-Fructofuranosidasa/metabolismo
12.
Plant Sci ; 245: 35-49, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26940490

RESUMEN

Anthocyanidin reductase (ANR) is a key enzyme involved in the biosynthesis of proanthocyanidins (PAs) and plays a role in the plant stress response. However, the mechanism by which ANR confers stress tolerance in plants is not understood. Here, we report the isolation of RrANR, the homologous gene from rose, and NtABF, an ABA-response related transcription factor gene from tobacco. These genes were characterized regarding their functions in stress responses through the use of transgenic, transcriptomic and physiological analyses. Over-expression of RrANR in tobacco resulted in an increased accumulation of both PAs and abscisic acid (ABA), and also enhanced stress tolerance. Transcriptomic analysis of these transgenic tobacco lines indicated that RrANR overexpression induced global transcriptomic changes, including these involved in oxidation/reduction, hormone response and secondary metabolism. Genes related to ABA biosynthesis and reactive oxygen species (ROS)-scavenging were up-regulated in RrANR transgenic lines, and these effects were phenocopied by the direct treatment of tobacco plants with PAs and ABA. Transcriptomic data from each of these treatments identified the upregulation of a putative NtABF. Furthermore, the up-regulation of NtABF in RrANR transformants or in PAs- and ABA-treated tobacco plants was associated with enhanced stress tolerance. Overexpression of NtABF in transgenic tobacco mimicked the effects of RrANR-transgenic plants with regard to the up-regulation of ROS-scavenging genes and an increase in oxidative tolerance. Taken together, our findings indicate that overexpression of RrANR results in an increase in plant tolerance to oxidative stress via increased scavenging of ROS and modulation of the ABA signaling pathway.


Asunto(s)
Ácido Abscísico/metabolismo , Adaptación Fisiológica , Depuradores de Radicales Libres/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Nicotiana/fisiología , Especies Reactivas de Oxígeno/metabolismo , Rosa/enzimología , Estrés Fisiológico , Ácido Abscísico/farmacología , Adaptación Fisiológica/efectos de los fármacos , Antioxidantes/metabolismo , Vías Biosintéticas/efectos de los fármacos , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Peróxido de Hidrógeno/metabolismo , Paraquat/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proantocianidinas/metabolismo , Rosa/efectos de los fármacos , Rosa/genética , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Superóxidos/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
14.
Science ; 349(6243): 81-3, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26138978

RESUMEN

The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta.


Asunto(s)
Monoterpenos/metabolismo , Odorantes , Plastidios/enzimología , Pirofosfatasas/biosíntesis , Rosa/enzimología , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Monoterpenos Acíclicos , Datos de Secuencia Molecular , Pirofosfatasas/genética , Rosa/genética , Transcriptoma , Hidrolasas Nudix
15.
Phytochemistry ; 117: 220-236, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26093490

RESUMEN

Small molecules (xenobiotics) that inhibit cell-wall-localised enzymes are valuable for elucidating the enzymes' biological roles. We applied a high-throughput fluorescent dot-blot screen to search for inhibitors of Petroselinum xyloglucan endotransglucosylase (XET) activity in vitro. Of 4216 xenobiotics tested, with cellulose-bound xyloglucan as donor-substrate, 18 inhibited XET activity and 18 promoted it (especially anthraquinones and flavonoids). No compounds promoted XET in quantitative assays with (cellulose-free) soluble xyloglucan as substrate, suggesting that promotion was dependent on enzyme-cellulose interactions. With cellulose-free xyloglucan as substrate, we found 22 XET-inhibitors - especially compounds that generate singlet oxygen ((1)O2) e.g., riboflavin (IC50 29 µM), retinoic acid, eosin (IC50 27 µM) and erythrosin (IC50 36 µM). The riboflavin effect was light-dependent, supporting (1)O2 involvement. Other inhibitors included tannins, sulphydryl reagents and triphenylmethanes. Some inhibitors (vulpinic acid and brilliant blue G) were relatively specific to XET, affecting only two or three, respectively, of nine other wall-enzyme activities tested; others [e.g. (-)-epigallocatechin gallate and riboflavin] were non-specific. In vivo, out of eight XET-inhibitors bioassayed, erythrosin (1 µM) inhibited cell expansion in Rosa and Zea cell-suspension cultures, and 40 µM mycophenolic acid and (-)-epigallocatechin gallate inhibited Zea culture growth. Our work showcases a general high-throughput strategy for discovering wall-enzyme inhibitors, some being plant growth inhibitors potentially valuable as physiological tools or herbicide leads.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicosiltransferasas/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Técnicas de Cultivo de Célula/métodos , Pared Celular/enzimología , Inhibidores Enzimáticos/química , Glucanos/metabolismo , Concentración 50 Inhibidora , Luz , Petroselinum/enzimología , Riboflavina/farmacología , Rosa/citología , Rosa/efectos de los fármacos , Rosa/enzimología , Bibliotecas de Moléculas Pequeñas/química , Taninos/química , Taninos/farmacología , Xenobióticos/química , Xenobióticos/farmacología , Xilanos/metabolismo , Zea mays/citología , Zea mays/efectos de los fármacos , Zea mays/enzimología
16.
Genet Mol Res ; 14(2): 5010-21, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25966276

RESUMEN

Dihydroflavonol 4-reductase (DFR) genes from Rosa chinensis (Asn type) and Calibrachoa hybrida (Asp type), driven by a CaMV 35S promoter, were integrated into the petunia (Petunia hybrida) cultivar 9702. Exogenous DFR gene expression characteristics were similar to flower-color changes, and effects on anthocyanin concentration were observed in both types of DFR gene transformants. Expression analysis showed that exogenous DFR genes were expressed in all of the tissues, but the expression levels were significantly different. However, both of them exhibited a high expression level in petals that were starting to open. The introgression of DFR genes may significantly change DFR enzyme activity. Anthocyanin ultra-performance liquid chromatography results showed that anthocyanin concentrations changed according to DFR enzyme activity. Therefore, the change in flower color was probably the result of a DFR enzyme change. Pelargonidin 3-O-glucoside was found in two different transgenic petunias, indicating that both CaDFR and RoDFR could catalyze dihydrokaempferol. Our results also suggest that transgenic petunias with DFR gene of Asp type could biosynthesize pelargonidin 3-O-glucoside.


Asunto(s)
Oxidorreductasas de Alcohol/biosíntesis , Flores/genética , Regulación de la Expresión Génica de las Plantas , Petunia/genética , Proteínas de Plantas/biosíntesis , Plantas Modificadas Genéticamente , Oxidorreductasas de Alcohol/genética , Antocianinas/biosíntesis , Color , Flavonoides/metabolismo , Flores/anatomía & histología , Flores/enzimología , Petunia/anatomía & histología , Petunia/enzimología , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Rosa/química , Rosa/enzimología , Solanaceae/química , Solanaceae/enzimología , Transgenes
17.
Plant Cell Rep ; 34(5): 795-804, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25596927

RESUMEN

KEY MESSAGE: Promoter activities of RhACS1 and RhACS2 , two rose genes involved in ethylene biosynthesis, are highly sensitive to various abiotic stresses in an organ-specific manner. Our previous studies indicated that two rose (Rosa hybrida) 1-aminocyclopropane-1-carboxylic acid synthase genes, RhACS1 and RhACS2, play a role in dehydration-induced ethylene production and inhibition of cell expansion in rose petals. Here, both RhACS1 and RhACS2 promoters were analyzed using histochemical staining and glucuronidase synthase (GUS) gene reporter activity assays following their introduction into transgenic Arabidopsis thaliana plants. It was found that the promoter activities of both genes were strong throughout the course of development from young seedlings to mature flowering plants in various organs, including hypocotyls, cotyledons, leaves, roots and lateral roots. RhACS1 promoter activity was induced by drought in both rosette leaves and roots of transgenic A. thaliana lines, but was reduced following a re-hydration treatment. In contrast, RhACS2 promoter activity was decreased by drought in rosette leaves, while its response pattern was similar to that of RhACS1 in roots. A mannitol treatment induced the activity of both the RhACS1 and RhACS2 promoters, indicating that both genes are also regulated by osmotic stress. In addition, RhACS2 appeared to be abscisic acid (ABA)-inducible, while RhACS1 was less sensitive to ABA. Finally, four truncated sequences of the RhACS1 promoter were generated and GUS activity assays demonstrated that deleting a 327 bp region between bp 862 and -535 resulted in a substantial decrease of the promoter activity. Taken together, our results suggest that the RhACS1 and RhACS2 promoters respond to abiotic stresses in a developmentally regulated and spatially specific manner.


Asunto(s)
Arabidopsis/fisiología , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Rosa/enzimología , Ácido Abscísico , Arabidopsis/enzimología , Arabidopsis/genética , Sequías , Flores/enzimología , Flores/genética , Flores/fisiología , Genes Reporteros , Especificidad de Órganos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Rosa/genética , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Estrés Fisiológico
18.
Ann Bot ; 115(2): 275-91, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25550144

RESUMEN

BACKGROUND AND AIMS: The genus Rosa (150-200 species) is widely distributed throughout temperate and sub-tropical habitats from the northern hemisphere to tropical Asia, with only one tropical African species. In order to better understand the evolution of roses, this study examines infrageneric relationships with respect to conventional taxonomy, considers the extent of allopolyploidization and infers macroevolutionary processes that have led to the current distribution of the genus. METHODS: Phylogenetic relationships among 101 species of the genus Rosa were reconstructed using sequences from the plastid psbA-trnH spacer, trnL intron, trnL-F spacer, trnS-G spacer and trnG intron, as well as from nuclear glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which was used to identify putative allopolyploids and infer their possible origins. Chloroplast phylogeny was used to estimate divergence times and reconstruct ancestral areas. KEY RESULTS: Most subgenera and sections defined by traditional taxonomy are not monophyletic. However, several clades are partly consistent with currently recognized sections. Allopolyploidy seems to have played an important role in stabilizing intersectional hybrids. Biogeographic analyses suggest that Asia played a central role as a genetic reservoir in the evolution of the genus Rosa. CONCLUSIONS: The ancestral area reconstruction suggests that despite an early presence on the American continent, most extant American species are the results of a later re-colonization from Asia, probably through the Bering Land Bridge. The results suggest more recent exchanges between Asia and western North America than with eastern North America. The current distribution of roses from the Synstylae lineage in Europe is probably the result of a migration from Asia approx. 30 million years ago, after the closure of the Turgai strait. Directions for a new sectional classification of the genus Rosa are proposed, and the analyses provide an evolutionary framework for future studies on this notoriously difficult genus.


Asunto(s)
Evolución Molecular , Filogenia , Poliploidía , Rosa/clasificación , Rosa/genética , Asia , Evolución Biológica , Cloroplastos/genética , ADN Intergénico/genética , ADN de Plantas/genética , Europa (Continente) , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Intrones , Datos de Secuencia Molecular , América del Norte , Filogeografía , Proteínas de Plantas/genética , Rosa/enzimología , Análisis de Secuencia de ADN
19.
Plant Cell Physiol ; 56(1): 28-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25015943

RESUMEN

Genetic engineering of roses and other plants of floricultural importance to give them a truly blue petal color is arguably one of the holy grails of plant biotechnology. Toward this goal, bluish carnations and roses were previously engineered by establishing an exclusive accumulation of delphinidin (Dp)-type anthocyanins in their petals via the heterologous expression of a flavonoid 3',5'-hydroxylase gene. Very recently, purple-blue varieties of chrysanthemums were also genetically engineered via a similar biochemical strategy. Although the floral colors of these transgenic plants still lack a true blue color, the basis for the future molecular breeding of truly blue flowers is via the engineering of anthocyanin pathways. Anthocyanins with multiple aromatic acyl groups (often referred to as polyacylated anthocyanins) in the 3'- or 7-position tend to display a more stable blue color than non-acylated anthocyanins. The 7-polyacylation process during the biosynthesis of purple-blue anthocyanins in delphinium (Delphinium grandiflorum) was found to occur in vacuoles using acyl-glucose as both the glucosyl and acyl donor. Glucosyltransferases and acyltransferases involved in anthocyanin 7-polyacylation in delphinium are vacuolar acyl-glucose-dependent enzymes belonging to the glycoside hydrolase family 1 and serine carboxypeptidae-like protein family, respectively. The 7-polyacylation proceeds through the alternate glucosylation and p-hydroxybenzoylation catalyzed by these enzymes. p-Hydroxybenzoyl-glucose serves as the p-hydroxybenzoyl and glucosyl donor to produce anthocyanins modified with a p-hydroxybenzoyl-glucose concatemer at the 7-position. This novel finding has provided a potential breakthrough for the genetic engineering of truly blue flowers, where polyacylated Dp-type anthocyanins are accumulated exclusively in the petals.


Asunto(s)
Antocianinas/química , Chrysanthemum/química , Flores/química , Rosa/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Antocianinas/metabolismo , Chrysanthemum/enzimología , Chrysanthemum/genética , Color , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Barajamiento de ADN , Delphinium/química , Delphinium/metabolismo , Flores/enzimología , Flores/genética , Ingeniería Genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Pigmentación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Rosa/enzimología , Rosa/genética
20.
Plant Cell Physiol ; 55(10): 1734-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25108242

RESUMEN

Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5' deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell's response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the -595 to -468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate ß-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between -595 and -468 bp is critical for light and sugar and light and gibberellins to act synergistically.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Giberelinas/metabolismo , Luz , Rosa/metabolismo , Vacuolas/enzimología , beta-Fructofuranosidasa/metabolismo , Secuencia de Bases , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Datos de Secuencia Molecular , Rosa/enzimología , Rosa/genética , Transcripción Genética/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...