Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Food Microbiol ; 417: 110686, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593553

RESUMEN

Rosa roxburghii Tratt fruits (RRT) exhibit extremely high nutritional and medicinal properties due to its unique phytochemical composition. Probiotic fermentation is a common method of processing fruits. Variations in the non-volatile metabolites and bioactivities of RRT juice caused by different lactobacilli are not well understood. Therefore, we aimed to profile the non-volatile components and investigate the impact of L. plantarum fermentation (LP) and L. paracasei fermentation (LC) on RRT juice (the control, CG). There were both similarities and differences in the effects of LP and LC on RRT juice. Both of the two strains significantly increased the content of total phenolic, total flavonoid, and some bioactive compounds such as 2-hydroxyisocaproic acid, hydroxytyrosol and indole-3-lactic acid in RRT juice. Interestingly, compared with L. paracasei, L. plantarum showed better ability to increase the content of total phenolic and these valuable compounds, as well as certain bioactivities. The antioxidant capacity and α-glucosidase inhibitory activity of RRT juice were notably enhanced after the fermentations, whereas its cholesterol esterase inhibitory activity was reduced significantly. Moreover, a total of 1466 metabolites were identified in the unfermented and fermented RRT juices. There were 278, 251 and 134 differential metabolites in LP vs CG, LC vs CG, LC vs LP, respectively, most of which were upregulated. The key differential metabolites were classified into amino acids and their derivatives, organic acids, nucleotides and their analogues, phenolic acids and alkaloids, which can serve as potential markers for authentication and discrimination between the unfermented and lactobacilli fermented RRT juice samples. The KEGG enrichment analysis uncovered that metabolic pathways, purine metabolism, nucleotide metabolism and ABC transporters contributed mainly to the formation of unique composition of fermented RRT juice. These results provide good coverage of the metabolome of RRT juice in both unfermented and fermented forms and also provide a reference for future research on the processing of RRT or other fruits.


Asunto(s)
Fermentación , Jugos de Frutas y Vegetales , Lactobacillus plantarum , Metabolómica , Rosa , Lactobacillus plantarum/metabolismo , Rosa/química , Rosa/microbiología , Jugos de Frutas y Vegetales/microbiología , Jugos de Frutas y Vegetales/análisis , Metabolómica/métodos , Lacticaseibacillus paracasei/metabolismo , Frutas/microbiología , Frutas/química , Antioxidantes/metabolismo , Fenoles/metabolismo , Fenoles/análisis , Flavonoides/análisis , Flavonoides/metabolismo , Probióticos/metabolismo
2.
Plant Dis ; 107(12): 3718-3726, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37467134

RESUMEN

Potato (Solanum tuberosum L.) ranks fourth among the most important staple food in the world. Ralstonia solanacearum (phylotype [phy] IIB, sequevar [seq] 1 and 2), also known as R3B2, the causal agent of brown rot disease on potato, is extremely damaging, causing great economical losses to potato in temperate regions. It is thought that members of Ralstonia pseudosolanacearum (phy I) are not pathogenic at low temperatures and are usually found in warmer climates. R. pseudosolanacearum strain PD 7123 (seq 33) isolated from roses in the Netherlands, strain P824 (seq 13) isolated from blueberry, and strain P781 (seq 14) from mandevilla in Florida are phylogenetically closely related and could share the same host. The virulence and ability of these novel strains to multiply latently in potato in temperate regions is unknown. The objective of this work was to assess the virulence and presence of latent infections of the mentioned R. pseudosolanacearum strains on three commercial seed potato cultivars under warmer (28°C) and temperate (20°C) temperatures. At 28°C, all three R. pseudosolanacearum strains caused severe symptoms on all potato cultivars. Overall disease severity on potato was lower at 20°C than 28°C, but major differences in virulence of the three strains were observed at 42 days postinoculation (dpi) among potato cultivars. All asymptomatic potato plants and most of their daughter tubers had latent infections at 20°C. Altogether, these results show that the phy I strains from rose, blueberry, and mandevilla may pose a threat to potato production in temperate climates and the worldwide movement of seed potatoes.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Enfermedades de las Plantas , Ralstonia , Solanum tuberosum , Arándanos Azules (Planta)/microbiología , Rosa/microbiología , Solanum tuberosum/microbiología , Virulencia , Enfermedades de las Plantas/microbiología , Ralstonia/patogenicidad
3.
BMC Plant Biol ; 21(1): 526, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758750

RESUMEN

BACKGROUND: Wall-associated kinase (WAK)/WAK-like (WAKL) is one of the subfamily of receptor like kinases (RLK). Although previous studies reported that WAK/WAKL played an important role in plant cell elongation, response to biotic and abiotic stresses, there are no systematic studies on RcWAK/RcWAKL in rose. RESULTS: In this study, we identified a total of 68 RcWAK/RcWAKL gene family members within rose (Rosa chinensis) genome. The RcWAKs contained the extracellular galacturonan-binding domain and calcium-binding epidermal growth factor (EGF)-like domain, as well as an intracellular kinase domains. The RcWAKLs are missing either calcium-binding EGF-like domain or the galacturonan-binding domain in their extracellular region. The phylogenetic analysis showed the RcWAK/RcWAKL gene family has been divided into five groups, and these RcWAK/RcWAKL genes were unevenly distributed on the 7 chromosomes of rose. 12 of RcWAK/RcWAKL genes were significantly up-regulated by Botrytis cinerea-inoculated rose petals, where RcWAK4 was the most strongly expressed. Virus induced gene silencing of RcWAK4 increased the rose petal sensitivity to B. cinerea. The results indicated RcWAK4 is involved in the resistance of rose petal against B. cinerea. CONCLUSION: Our study provides useful information to further investigate the function of the RcWAK/RcWAKL gene family and breeding research for resistance to B. cinerea in rose.


Asunto(s)
Botrytis/fisiología , Proteínas de Plantas/fisiología , Proteínas Quinasas/fisiología , Rosa/enzimología , Rosa/microbiología , Mapeo Cromosómico , Cromosomas de las Plantas , Resistencia a la Enfermedad/genética , Genoma de Planta , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Rosa/genética , Transcriptoma
4.
Theor Appl Genet ; 134(8): 2495-2515, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33934211

RESUMEN

KEY MESSAGE: Rose has 19 MLO genes. Of these, RhMLO1 and RhMLO2 were shown to be required for powdery mildew infection, which suggests their potential as susceptibility targets towards disease resistance. Powdery mildew, caused by Podosphaera pannosa, is one of the most serious and widespread fungal diseases for roses, especially in greenhouse-grown cut roses. It has been shown that certain MLO genes are involved in powdery mildew susceptibility and that loss of function in these genes in various crops leads to broad-spectrum, long-lasting resistance against this fungal disease. For this reason, these MLO genes are called susceptibility genes. We carried out a genome-wide identification of the MLO gene family in the Rosa chinensis genome, and screened for allelic variants among 22 accessions from seven different Rosa species using re-sequencing and transcriptome data. We identified 19 MLO genes in rose, of which four are candidate genes for functional homologs in clade V, which is the clade containing all dicot MLO susceptibility genes. We detected a total of 198 different allelic variants in the set of Rosa species and accessions, corresponding to 5-15 different alleles for each of the genes. Some diploid Rosa species shared alleles with tetraploid rose cultivars, consistent with the notion that diploid species have contributed to the formation of tetraploid roses. Among the four RhMLO genes in clade V, we demonstrated using expression study, virus-induced gene silencing as well as transient RNAi silencing that two of them, RhMLO1 and RhMLO2, are required for infection by P. pannosa and suggest their potential as susceptibility targets for powdery mildew resistance breeding in rose.


Asunto(s)
Ascomicetos/fisiología , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Rosa/genética , Alelos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Rosa/crecimiento & desarrollo , Rosa/microbiología
5.
BMC Plant Biol ; 21(1): 223, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001006

RESUMEN

BACKGROUND: Rose is an important economic crop in horticulture. However, its field growth and postharvest quality are negatively affected by grey mould disease caused by Botrytis c. However, it is unclear how rose plants defend themselves against this fungal pathogen. Here, we used transcriptomic, metabolomic and VIGS analyses to explore the mechanism of resistance to Botrytis c. RESULT: In this study, a protein activity analysis revealed a significant increase in defence enzyme activities in infected plants. RNA-Seq of plants infected for 0 h, 36 h, 60 h and 72 h produced a total of 54 GB of clean reads. Among these reads, 3990, 5995 and 8683 differentially expressed genes (DEGs) were found in CK vs. T36, CK vs. T60 and CK vs. T72, respectively. Gene annotation and cluster analysis of the DEGs revealed a variety of defence responses to Botrytis c. infection, including resistance (R) proteins, MAPK cascade reactions, plant hormone signal transduction pathways, plant-pathogen interaction pathways, Ca2+ and disease resistance-related genes. qPCR verification showed the reliability of the transcriptome data. The PTRV2-RcTGA1-infected plant material showed improved susceptibility of rose to Botrytis c. A total of 635 metabolites were detected in all samples, which could be divided into 29 groups. Metabonomic data showed that a total of 59, 78 and 74 DEMs were obtained for T36, T60 and T72 (T36: Botrytis c. inoculated rose flowers at 36 h; T60: Botrytis c. inoculated rose flowers at 60 h; T72: Botrytis c. inoculated rose flowers at 72 h) compared to CK, respectively. A variety of secondary metabolites are related to biological disease resistance, including tannins, amino acids and derivatives, and alkaloids, among others; they were significantly increased and enriched in phenylpropanoid biosynthesis, glucosinolates and other disease resistance pathways. This study provides a theoretical basis for breeding new cultivars that are resistant to Botrytis c. CONCLUSION: Fifty-four GB of clean reads were generated through RNA-Seq. R proteins, ROS signalling, Ca2+ signalling, MAPK signalling, and SA signalling were activated in the Old Blush response to Botrytis c. RcTGA1 positively regulates rose resistance to Botrytis c. A total of 635 metabolites were detected in all samples. DEMs were enriched in phenylpropanoid biosynthesis, glucosinolates and other disease resistance pathways.


Asunto(s)
Botrytis/patogenicidad , Resistencia a la Enfermedad/genética , Glucosinolatos/biosíntesis , Glucosinolatos/genética , Inmunidad de la Planta/genética , Rosa/genética , Rosa/microbiología , China , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Horticultura , Interacciones Huésped-Patógeno/genética , Metaboloma , Reproducibilidad de los Resultados , Transcriptoma
6.
Arch Microbiol ; 203(4): 1743-1752, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33471134

RESUMEN

Beneficial rhizobacteria can inhibit soilborne pathogens by secreting an array of polyketides, lipopeptides and dipeptides, but the effect of polyketides on crown gall disease caused by Agrobacterium tumefaciens C58 is unclear. In this study, the antagonistic compounds of the plant growth-promoting rhizobacterium Bacillus velezensis CLA178 was sorted with different organic phases, purified by high-pressure liquid chromatography, and detected by a liquid chromatography ionization-mass spectrometry system. Macrolactins were found to be the compounds with antagonistic activity against A. tumefaciens C58. When the macrolactin synthesis pathway was disrupted, the mutant △mlnA only showed slight antagonistic activity against A. tumefaciens C58. Transmission electron microscopy showed that the inhibition of C58 cell division by cell-free culture from the mutant △mlnA was weaker than that by cell-free culture from CLA178. The mutant deficient in production of macrolactin showed a weaker transcription of genes involved in attachment of C58 to plant and lower biocontrol of crown gall disease in rose than the wild-type strain CLA178. The effect of macrolactins on pathogen C58 has been also confirmed by the purified macrolactins. These results reveal that macrolactins contribute to the biocontrol activity of C58 by inhibiting cell division and downregulating the transcription of chvB and chvE.


Asunto(s)
Agrobacterium tumefaciens/crecimiento & desarrollo , Antibiosis/fisiología , Bacillus/metabolismo , Tumores de Planta/microbiología , Agrobacterium tumefaciens/genética , División Celular/fisiología , Lipopéptidos/metabolismo , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Rosa/microbiología
7.
Gene ; 768: 145320, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33248199

RESUMEN

Phellinus linteus (mushroom) grown on Rosa multiflora (PL@RM), exposed beneficial effect and safety on Type 2 diabetes mellitus (T2DM) from Korean folk remedies. However, its active chemical constituents and mechanism(s) against T2DM have not been confirmed. Hence, we deciphered the active compounds and mechanism(s) of PL@RM against T2DM through network pharmacology. GC-MS of PL@RM manifested 54 compounds and drug-likeness properties of these compounds were confirmed by Lipinski's rule. The compound (40) related genes were composed of Similarity Ensemble Approach (SEA) and SwissTargetPrediction (STP). The overlapping genes (61) between the two databases were identified. Besides, the T2DM related genes (4,736) were extracted from DisGeNet and OMIM database. In parallel, a Venn diagram was constructed between the overlapping genes (61) and T2DM related genes (4,736), and finally, 48 genes were picked. The interactive networks between compounds and overlapping genes were plotted and visualized by RStudio. In addition, KEGG Pathway enrichment analysis was evaluated by String. String analysis showed that the mechanisms of PL@RM against T2DM were related to 16 pathways, where inhibition of gluconeogenesis by inactivating metabolic pathways was noted as the hub pathway of PL@RM against T2DM. Besides, bubble chart indicated that activation of the AMPK signaling pathway might enhance the insulin receptor (IR) phosphorylation, which is regarded the key signaling pathway of PL@RM against T2DM. Furthermore, the autodock vina revealed the promising binding affinity energy of the epicholesterol (the most drug-likeness compound) on HMGCR (hub gene). Overall, this work hints at the therapeutic evidence of PL@RM on T2DM, and this data expound the main chemical compounds and mechanisms of PL@RM against T2DM.


Asunto(s)
Factores Biológicos/farmacología , Diabetes Mellitus Tipo 2/genética , Phellinus/crecimiento & desarrollo , Rosa/microbiología , Proteínas Quinasas Activadas por AMP/genética , Factores Biológicos/química , Factores Biológicos/aislamiento & purificación , Simulación por Computador , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Phellinus/química , Transducción de Señal/efectos de los fármacos
8.
Sci Rep ; 10(1): 22410, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376252

RESUMEN

Replant disease is a worldwide phenomenon affecting various woody plant genera and species, especially within the Rosaceae. Compared to decades of intensive studies regarding replant disease of apple (ARD), the replant disease of roses (RRD) has hardly been investigated. The etiology of RRD is also still unclear and a remedy desperately needed. In greenhouse pot trials with seedlings of the RRD-sensitive rootstock Rosa corymbifera 'Laxa' cultured in replant disease affected soils from two different locations, early RRD symptom development was studied in fine roots. In microscopic analyses we found similarities to ARD symptoms with regards to structural damages, impairment in the root hair status, and necroses and blackening in the cortex tissue. Examinations of both whole mounts and thin sections of fine root segments revealed frequent conspicuous fungal infections in association with the cellular disorders. Particularly striking were fungal intracellular structures with pathogenic characteristics that are described for the first time. Isolated fungi from these tissue areas were identified by means of ITS primers, and many of them were members of the Nectriaceae. In a next step, 35 of these isolates were subjected to a multi-locus sequence analysis and the results revealed that several genera and species were involved in the development of RRD within a single rose plant. Inoculations with selected single isolates (Rugonectria rugulosa and Ilyonectria robusta) in a Perlite assay confirmed their pathogenic relationship to early necrotic host plant reactions, and symptoms were similar to those exhibited in ARD.


Asunto(s)
Hypocreales/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Raíces de Plantas , Rosa , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rosa/metabolismo , Rosa/microbiología
9.
Int J Syst Evol Microbiol ; 70(10): 5394-5400, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33275546

RESUMEN

Three yeast strains isolated from three flower samples were identified as representing two novel species of Teunia based on molecular phylogenetic analysis and phenotypic comparisons. Strains 12A8 and 21S4 with pink cream colonies and subglobose to globose cells had identical sequences in the ITS and LSU D1/D2 regions, which differed from strain X54 with cream colonies and ovoid to ellipsoidal cells by 6 nt substitutions (1 %) and 9 nt mismatches (1.5 %) in the D1/D2 domains and ITS region, respectively. They could also be distinguished from each other in assimilation of glucitol and salicin, growth at 28 °C and cell fibrillar appendages under scanning electron microscopy. The three strains differed from known species of Teunia by more than 8 nt (1.3 %) and 30 nt (5 %) in the D1/D2 domains and ITS region, respectively. Therefore, the names Teunia rudbeckiae sp. nov. (Holotype CGMCC 2.5840, Mycobank MB 835892) and Teunia rosae sp. nov. (Holotype CGMCC 2.5830, MycoBank MB 835891) are proposed to accommodate strain X54, and strains 12A8 and 21S4, respectively.


Asunto(s)
Basidiomycota/clasificación , Flores/microbiología , Filogenia , Basidiomycota/aislamiento & purificación , China , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , Rosa/microbiología , Rudbeckia/microbiología , Análisis de Secuencia de ADN
10.
BMC Plant Biol ; 20(1): 533, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228522

RESUMEN

BACKGROUND: The AP2/ERFs belong to a large family of transcription factors in plants. The AP2/ERF gene family has been identified as a key player involved in both biotic and abiotic stress responses in plants, however, no comprehensive study has yet been carried out on the AP2/ERF gene family in rose (Rosa sp.), the most important ornamental crop worldwide. RESULTS: The present study comprises a genome-wide analysis of the AP2/ERF family genes (RcERFs) in the rose, involving their identification, gene structure, phylogenetic relationship, chromosome localization, collinearity analysis, as well as their expression patterns. Throughout the phylogenetic analysis, a total of 131 AP2/ERF genes in the rose genome were divided into 5 subgroups. The RcERFs are distributed over all the seven chromosomes of the rose, and genome duplication may have played a key role in their duplication. Furthermore, Ka/Ks analysis indicated that the duplicated RcERF genes often undergo purification selection with limited functional differentiation. Gene expression analysis revealed that 23 RcERFs were induced by infection of the necrotrophic fungal pathogen Botrytis cinerea. Presumably, these RcERFs are candidate genes which can react to the rose's resistance against Botrytis cinerea infection. By using virus-induced gene silencing, we confirmed that RcERF099 is an important regulator involved in the B.cinerea resistance in the rose petal. CONCLUSION: Overall, our results conclude the necessity for further study of the AP2/ERF gene family in rose, and promote their potential application in improving the rose when subjected to biological stress.


Asunto(s)
Botrytis/fisiología , Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Enfermedades de las Plantas/inmunología , Rosa/genética , Factores de Transcripción/genética , Flores/genética , Flores/inmunología , Flores/microbiología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Interacciones Huésped-Patógeno , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/inmunología , Rosa/microbiología , Estrés Fisiológico , Factores de Transcripción/metabolismo
11.
Theor Appl Genet ; 133(12): 3299-3321, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32844252

RESUMEN

KEY MESSAGE: Two environmentally stable QTLs linked to black spot disease resistance in the Rosa wichurana genetic background were detected, in different connected populations, on linkage groups 3 and 5. Co-localization between R-genes and defense response genes was revealed via meta-analysis. The widespread rose black spot disease (BSD) caused by the hemibiotrophic fungus Diplocarpon rosae Wolf. is efficiently controlled with fungicides. However, in the actual context of reducing agrochemical use, the demand for rose bushes with higher levels of resistance has increased. Qualitative resistance conferred by major genes (Rdr genes) has been widely studied but quantitative resistance to BSD requires further investigation. In this study, segregating populations connected through the BSD resistant Rosa wichurana male parent were phenotyped for disease resistance over several years and locations. A pseudo-testcross approach was used, resulting in six parental maps across three populations. A total of 45 individual QTLs with significant effect on BSD resistance were mapped on the male maps (on linkage groups (LG) B3, B4, B5 and B6), and 12 on the female maps (on LG A1, A2, A3, A4 and A5). Two major regions linked to BSD resistance were identified on LG B3 and B5 of the male maps and were integrated into a consensus map built from all three of the male maps. A meta-analysis was used to narrow down the confidence intervals of individual QTLs from three populations by generating meta-QTLs. Two 'hot spots' or meta-QTLs were found per LG, enabling reduction of the confidence interval to 10.42 cM for B3 and 11.47 cM for B5. An expert annotation of NBS-LRR encoding genes of the genome assembly of Hibrand et al. was performed and used to explore potential co-localization with R-genes. Co-localization with defense response genes was also investigated.


Asunto(s)
Ascomicetos/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Rosa/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Ligamiento Genético , Inmunidad Innata/genética , Enfermedades de las Plantas/microbiología , Rosa/inmunología , Rosa/microbiología
12.
Plant J ; 103(5): 1839-1849, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32524706

RESUMEN

Jasmonates (JAs) are important for pathogen resistance in many plants, but the role of these phytohormones in fungal pathogen resistance in rose is unclear. Here, we determined that exogenous application of methyl jasmonate increased resistance to the important fungal pathogen Botrytis cinerea in Rosa chinensis 'Old blush', whereas silencing the JA biosynthetic pathway gene Allene Oxide Synthase (AOS) and JA co-receptor gene CORONATINE INSENSITIVE 1 (COI1) suppressed this response. Transcriptome profiling identified various MYB transcription factor genes that responded to both JA and B. cinerea treatment. Silencing Ri-RcMYB84/Ri-RcMYB123 increased the susceptibility of rose plants to B. cinerea and inhibited the protective effects of JA treatment, confirming the crucial roles of these genes in JA-induced responses to B. cinerea. JAZ1, a key repressor of JA signaling, directly interacts with RcMYB84 and RcMYB123 to deplete their free pools. The JAZ1-RcMYB84 complex binds to the RcMYB123 promoter via the CAACTG motifs to block its transcription. Upon JA treatment, the expression of RcMYB123 is de-repressed, and free forms of RcMYB84 and RcMYB123 are released due to JAZ1 degradation, thereby activating the defense responses of plants to B. cinerea. These findings shed light on the molecular mechanisms underlying JA-induced pathogen resistance in roses.


Asunto(s)
Botrytis , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/fisiología , Rosa/inmunología , Factores de Transcripción/fisiología , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Rosa/metabolismo , Rosa/microbiología , Transducción de Señal , Factores de Transcripción/metabolismo
13.
Mycologia ; 112(4): 742-752, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32469695

RESUMEN

Kuehneola japonica and K. warburgiana are the only species of genus Kuehneola that parasitize plants belonging to genus Rosa (Rosaceae). Systematic revision of the genus Phragmidium and related genera by molecular phylogenetic analyses using nuc rDNA internal transcribed spacer (5.8S-ITS2 = ITS2) and nuc rDNA 28S (28S) sequences indicated that K. japonica and K. warburgiana belong to a group of Phragmidium species that also occur on Rosa. Morphological and molecular phylogenetic analyses revealed that these Kuehneola species were transferred to Phragmidium and renamed as P. japonicum and P. warburgianum. Two new Phragmidium species were also discovered on Rosa from China that could be distinguished from other species in the genus based on aeciospore or urediniospore morphology and phylogenetic placement. The first species, P. jiangxiense, is characterized by a urediniospore surface structure with stout spines that are basally embedded in the wrinkled spore wall. The second species, P. leucoaecium, is characterized by an aeciospore surface structure with irregularly elongated verrucae. Taxonomic descriptions and illustrations are provided.


Asunto(s)
Basidiomycota/clasificación , Rosa/microbiología , Basidiomycota/citología , Basidiomycota/genética , China , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Filogenia , Enfermedades de las Plantas/microbiología , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADN , Esporas Fúngicas/clasificación , Esporas Fúngicas/citología , Esporas Fúngicas/genética
14.
PLoS One ; 15(4): e0230924, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32240208

RESUMEN

The endophytic bacterial diversity of rose was analyzed by high-throughput sequencing of 16S rDNA and functional prediction of the bacterial community. The number of bacterial sequence reads obtained from 18 rose samples ranged from 63,951 to 114,833, and reads were allocated to 1982 OTUs based on sequences of the V3-V4 region. The highest Shannon Index was found in Luogang rose (1.93), while the lowest was found in Grasse rose (0.35). The bacterial sequence reads were grouped into three different phyla: Firmicutes, Proteobacteria, and Actinobacteria. At the genus level, Bacillus and Staphylococcus had the highest abundance across all 18 samples; Bacillus was particularly abundant in Daguo rose (99.09%), Rosa damascena (99.65%), and Fenghua rose (99.58%). Unclassified OTUs were also found in all samples. PICRUSt gene prediction revealed that each endophyte sample contained multiple KEGG functional modules related to human metabolism and health. A high abundance of functional genes were involved in (1) Amino Acid Metabolism, (2) Carbohydrate Metabolism, (3) Cellular Processes and Signaling, (4) Energy Metabolism, and (5) Membrane Transport, indicating that the endophytic community comprised a wide variety of microorganisms and genes that could be used for further studies. The rose endophytic bacterial community is rich in diversity; community composition varies among roses and contains functional information related to human health.


Asunto(s)
Bacterias/genética , Endófitos/genética , Rosa/microbiología , Biodiversidad , China , Análisis por Conglomerados , ADN Bacteriano/genética , ADN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Ribosómico 16S/genética , Rosa/genética , Análisis de Secuencia de ADN
15.
Theor Appl Genet ; 133(6): 2011-2020, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32166372

RESUMEN

KEY MESSAGE: Rdr3 is a novel resistance gene of black spot in roses that maps to a chromosome 6 homolog. A new DNA test was developed and can be used to pyramid black spot resistance in roses. Diplocarpon rosae, the cause of rose black spot, is one of the most devastating foliar pathogens of cultivated roses (Rosa spp.). The primary method of disease control is fungicides, and they are viewed unfavorably by home gardeners due to potential environmental and health impacts. Planting rose cultivars with genetic resistance to black spot can reduce many of the fungicide applications needed in an integrated pest management system. To date, four resistance genes have been identified in roses (Rdr1, Rdr2, Rdr3, and Rdr4). Rdr3 was never mapped and is thought to be unique from Rdr1 and Rdr2. It is unknown whether it is an allele of Rdr4. To assess the novelty of Rdr3, a mapping population was created by crossing the Rdr3 containing cultivar George Vancouver with the susceptible cultivar Morden Blush. The mapping population was genotyped with the WagRhSNP 68 K Axiom array and mapped using the 'polymapR' package. Rdr3 was mapped to a chromosome 6 homolog confirming it is different from Rdr1 and Rdr2, found on chromosome 1, and from Rdr4, found on chromosome 5. The mapping information was used in conjunction with the Rosa chinensis genome assembly to develop new tightly linked SSRs for marker-assisted breeding. Three markers were able to predict the presence of Rdr3 in a 63-cultivar validation set. Additionally, 12 cultivars appear to have resistance genes other than Rdr3. The improved diagnostic markers will be a great asset to the rose-breeding community toward developing new black spot-resistant cultivars.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Rosa/genética , Rosa/microbiología , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Genes de Plantas , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología
16.
Theor Appl Genet ; 133(1): 103-117, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31563968

RESUMEN

KEY MESSAGE: A QTL for resistance to several races of black spot co-located with the known Rrd1 locus in Rosa. A polymorphism in muRdr1A linked to black spot resistance was identified and molecular markers were designed. Black spot, caused by Diplocarpon rosae, is one of the most serious foliar diseases of landscape roses that reduces the marketability and weakens the plants against winter survival. Genetic resistance to black spot (BS) exists and race-specific resistance is a good target to implement marker-assisted selection. High-density single nucleotide polymorphism-based genetic maps were created for the female parent of a tetraploid cross between 'CA60' and 'Singing in the Rain' using genotyping-by-sequencing following a two-way pseudo-testcross strategy. The female linkage map was generated based on 227 individuals and included 31 linkage groups, 1055 markers, with a length of 1980 cM. Race-specific resistance to four D. rosae races (5, 7, 10, 14) was evaluated using a detached leaf assay. BS resistance was also evaluated under natural infection in the field. Resistance to races 5, 10 and 14 of D. rosae and field resistance co-located on chromosome 1. A unique sequence of 32 bp in exon 4 of the muRdr1A gene was identified in 'CA60' that co-segregates with D. rosae resistance. Two diagnostic markers, a presence/absence marker and an INDEL marker, specific to this sequence were designed and validated in the mapping population and a backcross population derived from 'CA60.' Resistance to D. rosae race 7 mapped to a different location on chromosome 1.


Asunto(s)
Ascomicetos/fisiología , Cruzamientos Genéticos , Resistencia a la Enfermedad/genética , Genes de Plantas , Polimorfismo de Nucleótido Simple/genética , Rosa/genética , Rosa/microbiología , Tetraploidía , Alelos , Secuencia de Bases , Mapeo Cromosómico , Segregación Cromosómica/genética , Estudios de Asociación Genética , Marcadores Genéticos , Especificidad del Huésped/genética , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo/genética
17.
Arch Microbiol ; 202(1): 191-196, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31595323

RESUMEN

A novel Gram-negative, aerobic, rod-shaped bacterium, RS19T, was isolated from rose rhizosphere soil. The strain was psychrophilic and showed good growth over a temperature range of 1-37 â„ƒ. Colonies on TSB agar were circular, smooth, mucoid, convex with clear edges and yellow. Phylogenetic analysis based on 16S rRNA gene sequences characterized RS19T in the genus Dyadobacter and showed that strain RS19T was most closely related to Dyadobacter psychrophilus CGMCC 1.8951T (97.4%) and Dyadobacter alkalitolerans CGMCC 1.8973T (97.1%). The average nucleotide identity values to the closest related species type strains were less than 84.0%. The DNA G + C content was 43.1 mol%, and the predominant respiratory menaquinone was MK-7. The major fatty acids were summed features 3 (C16:1ω7c and/or C16:1ω6c), iso-C15:0, C16:1ω5c and iso-C17:0 3-OH. Based on genotypic, phenotypic and chemotaxonomic data, strain RS19T is different from closely related species of the genus Dyadobacter. RS19T represents a novel species within the genus Dyadobacter, for which the name Dyadobacter luteus sp. nov. is proposed. The type strain is RS19T (= CGMCC 1.13719T = ACCC 60381T = JCM 32940T).


Asunto(s)
Cytophagaceae/clasificación , Filogenia , Rizosfera , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Cytophagaceae/química , Cytophagaceae/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , ARN Ribosómico 16S/genética , Rosa/microbiología , Análisis de Secuencia de ADN , Especificidad de la Especie , Vitamina K 2/análisis
18.
BMC Plant Biol ; 19(1): 522, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775626

RESUMEN

BACKGROUND: The WRKYs are a major family of plant transcription factors that play roles in the responses to biotic and abiotic stresses; however, a comprehensive study of the WRKY family in roses (Rosa sp.) has not previously been performed. RESULTS: In the present study, we performed a genome-wide analysis of the WRKY genes in the rose (Rosa chinensis), including their phylogenetic relationships, gene structure, chromosomal locations, and collinearity. Using a phylogenetic analysis, we divided the 56 RcWRKY genes into three subgroups. The RcWRKYs were unevenly distributed across all seven rose chromosomes, and a study of their collinearity suggested that genome duplication may have played a major role in RcWRKY gene duplication. A Ka/Ks analysis indicated that they mainly underwent purifying selection. Botrytis cinerea infection induced the expression of 19 RcWRKYs, most of which had undergone gene duplication during evolution. These RcWRKYs may regulate rose resistance against B. cinerea. Based on our phylogenetic and expression analyses, RcWRKY41 was identified as a candidate regulatory gene in the response to B. cinerea infection, which was confirmed using virus-induced gene silencing. CONCLUSIONS: This study provides useful information to facilitate the further study of the function of the rose WRKY gene family.


Asunto(s)
Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Rosa/genética , Factores de Transcripción/genética , Botrytis , Mapeo Cromosómico , Cromosomas de las Plantas , Resistencia a la Enfermedad/genética , Duplicación de Gen , Perfilación de la Expresión Génica , Genes de Plantas , Estudio de Asociación del Genoma Completo , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/fisiología , Rosa/microbiología , Sintenía , Factores de Transcripción/fisiología
19.
Phytopathology ; 109(11): 1859-1868, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31298994

RESUMEN

In this study, we explored the pathogenicity and phylogenetic position of Agrobacterium spp. strains isolated from crown gall tissues on annual, perennial, and ornamental plants in Iran. Of the 43 strains studied, 10 strains were identified as Allorhizobium vitis (formerly Agrobacterium vitis) using the species-specific primer pair PGF/PGR. Thirty-three remaining strains were studied using multilocus sequence analysis of four housekeeping genes (i.e., atpD, gyrB, recA, and rpoB), from which seven strains were identified as A. larrymoorei and one strain was identified as A. rubi (Rer); the remaining 25 strains were scattered within the A. tumefaciens species complex. Two strains were identified as genomospecies 1 (G1), seven strains were identified as A. radiobacter (G4), seven strains were identified as A. deltaense (G7), two strains were identified as A. nepotum (G14), and one strain was identified as "A. viscosum" (G15). The strains Rnr, Rnw, and Rew as well as the two strains OT33 and R13 all isolated from rose and the strain Ap1 isolated from apple were clustered in three atypical clades within the A. tumefaciens species complex. All but eight strains (i.e., Nec10, Ph38, Ph49, fic9, Fic72, R13, OT33, and Ap1) were pathogenic on tomato and sunflower seedlings in greenhouse conditions, whereas all but three strains (i.e., fic9, Fic72, and OT33) showed tumorigenicity on carrot root discs. The phylogenetic analysis and nucleotide diversity statistics suggested the existence of two novel genomospecies within the A. tumefaciens species complex, which we named "G19" and "G20." Hence, we propose the strains Rew, Rnw, and Rnr as the members of "G19" and the strains R13 and OT33 as the members of G20, whereas the phylogenetic status of the atypical strain Ap1 remains undetermined.


Asunto(s)
Agrobacterium tumefaciens , Tumores de Planta , Rosa , Agrobacterium tumefaciens/clasificación , Agrobacterium tumefaciens/fisiología , ADN Bacteriano/genética , Irán , Filogenia , Tumores de Planta/microbiología , Rosa/microbiología
20.
Plant Dis ; 103(7): 1577-1583, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31082321

RESUMEN

Botrytis cinerea Pers. infects cut flower roses (Rosa × hybrida L.) during greenhouse production and gray mold symptoms are often expressed in the postharvest environment, resulting in significant economic losses. Disease management is based on cultural practices and preventative chemical treatments; however, gray mold outbreaks continue to occur. Rose tissues from six commercial shipments from two greenhouses in Colombia were evaluated to determine the Botrytis species composition as well as identify other pathogens present, gray mold incidence and severity, and fungicide resistance profiles. Botrytis isolates (49 total) were grouped into six morphological phenotypes, and all were identified to be B. cinerea sensu stricto. Disease incidence was higher in the petals than in the stem, stamen, ovary, sepal, or leaf tissues. Other fungi were isolated infrequently and included Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, Penicillium citrinum, Aspergillus brasiliensis, and Diplodia sp. Fungicide resistance profiles were determined using previously established discriminatory doses. Isolates resistant to thiophanate-methyl, iprodione, boscalid, and cyprodinil were found frequently in all shipments and in both greenhouses. The frequency of resistance to penthiopyrad, fenhexamid, fluopyram, isofetamid, and fludioxonil varied between shipments and greenhouses. No resistance to pydiflumetofen was observed at the discriminatory doses tested. Isolates with resistance to multiple chemical classes were commonly found. These results indicate that fungicide resistance management practices may improve preharvest and postharvest gray mold control of cut flower roses.


Asunto(s)
Botrytis , Rosa , Antifúngicos/farmacología , Botrytis/efectos de los fármacos , Botrytis/fisiología , Colombia , Farmacorresistencia Fúngica , Rosa/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...