Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 62(17): 2622-2631, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37579005

RESUMEN

Nickel-substituted rubredoxin (NiRd) from Desulfovibrio desulfuricans has previously been shown to act as both a structural and functional mimic of the [NiFe] hydrogenase. However, improvements both in turnover frequency and overpotential are needed to rival the native [NiFe] hydrogenase enzymes. Characterization of a library of NiRd mutants with variations in the secondary coordination sphere suggested that protein dynamics played a substantial role in modulating activity. In this work, rubredoxin scaffolds were selected from diverse organisms to study the effects of distal sequence variation on catalytic activity. It was found that though electrochemical catalytic activity was only slightly impacted across the series, the Rd sequence from a psychrophilic organism exhibited substantially higher levels of solution-phase hydrogen production. Additionally, Eyring analyses suggest that catalytic activation properties relate to the growth temperature of the parent organism, implying that the general correlation between the parent organism environment and catalytic activity often seen in naturally occurring enzymes may also be observed in artificial enzymes. Selecting protein scaffolds from hosts that inhabit diverse environments, particularly low-temperature environments, represents an alternative approach for engineering artificial metalloenzymes.


Asunto(s)
Hidrogenasas , Hidrogenasas/genética , Hidrogenasas/química , Rubredoxinas/genética , Rubredoxinas/química , Catálisis , Oxidación-Reducción
2.
Microbiol Spectr ; 10(4): e0196922, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35938806

RESUMEN

Mycobacterium tuberculosis is a highly specialized human pathogen. The success of M. tuberculosis is due to its ability to replicate within host macrophages, resist host immune responses, and ultimately enter a persistent state during a latent tuberculosis infection. Understanding how M. tuberculosis adapts to and replicates in the intracellular environment of the host is crucial for the development of novel, targeted therapeutics. We report the characterization of an M. tuberculosis mutant lacking Rv3249c, a TetR transcriptional regulator. We show that Rv3249c directly represses the adjacent alkB-rubA-rubB operon encoding an alkane hydroxylase/rubredoxin system. For consistency with related systems, we have named the rv3249c gene alkX. The alkX mutant survived better than wild-type M. tuberculosis inside macrophages. This could be phenocopied by overexpression of the alkB-rubA-rubB locus. We hypothesized that the improved intracellular survival phenotype is a result of increased fitness of the mutant; however, we found that the alkX mutant had a defect when grown on some host-associated carbon sources in vitro. We also found that the alkX mutant had a defect in biofilm formation, also linked to the overexpression of the alkB-rubAB genes. Combined, these results define the primary role of AlkX as a transcriptional repressor of the alkB-rubAB operon and suggest the operon contributes to intracellular survival of the pathogen. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is the leading cause of death worldwide due to a single infectious agent. It is important to understand how M. tuberculosis adapts to and replicates in the intracellular environment of the host. In this study, we characterized the TetR transcriptional regulator Rv3249c and show that it regulates a highly conserved alkane hydroxylase/rubredoxin system. Our data demonstrate that the AlkBRubAB system contributes to the success of the bacterium in host macrophages.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Proteínas Bacterianas/genética , Biopelículas , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Humanos , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Rubredoxinas/genética , Tuberculosis/microbiología
3.
J Biol Chem ; 298(8): 102210, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780837

RESUMEN

Microaerophilic pathogens such as Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis have robust oxygen consumption systems to detoxify oxygen and maintain intracellular redox balance. This oxygen consumption results from H2O-forming NADH oxidase (NOX) activity of two distinct flavin-containing systems: H2O-forming NOXes and multicomponent flavodiiron proteins (FDPs). Neither system is membrane bound, and both recycle NADH into oxidized NAD+ while simultaneously removing O2 from the local environment. However, little is known about the specific contributions of these systems in T. vaginalis. In this study, we use bioinformatics and biochemical analyses to show that T. vaginalis lacks a NOX-like enzyme and instead harbors three paralogous genes (FDPF1-3), each encoding a natural fusion product between the N-terminal FDP, central rubredoxin (Rb), and C-terminal NADH:Rb oxidoreductase domains. Unlike a "stand-alone" FDP that lacks Rb and oxidoreductase domains, this natural fusion protein with fully populated flavin redox centers directly accepts reducing equivalents of NADH to catalyze the four-electron reduction of oxygen to water within a single polypeptide with an extremely high turnover. Furthermore, using single-particle cryo-EM, we present structural insights into the spatial organization of the FDP core within this multidomain fusion protein. Together, these results contribute to our understanding of systems that allow protozoan parasites to maintain optimal redox balance and survive transient exposure to oxic conditions.


Asunto(s)
Rubredoxinas , Trichomonas vaginalis , Flavinas/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Rubredoxinas/genética , Rubredoxinas/metabolismo , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Agua/metabolismo
4.
Biochim Biophys Acta Proteins Proteom ; 1870(1): 140734, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34662730

RESUMEN

Electron transfer in metalloproteins is a driving force for many biological processes and widely distributed in nature. Rubredoxin B (RubB) from Mycobacterium tuberculosis is a first example among [1Fe-0S] proteins that support catalytic activity of terminal sterol-monooxygenases enabling its application in metabolic engineering. To explore the tolerance of RubB to the specific amino acid changes we evaluated the effect of surface mutations on its electrochemical properties. Based on the RubB fold we also designed the mutant with a putative additional site for protein-protein interactions to further evaluate electron transfer and electrochemical properties. The investigation of redox properties of mutant variants of RubB was done using screen-printed graphite electrodes (SPEs) modified with stable dispersion of multi-walled carbon nanotubes (MWCNTs). The redox potentials (midpoint potentials, E0Ꞌ) of mutants did not significantly differ from the wild type protein and vary in the range of -264 to -231 mV vs. Ag/AgCl electrode. However, all mutations affect electron transfer rate between the protein and electrode. Notably, the modulation of the protein-protein interactions was observed for the insertion mutant suggesting the possibility of tailoring of rubredoxin for the selected redox-partner. Overall, RubB is tolerant to the significant modifications in its structure enabling rational engineering of novel redox proteins.


Asunto(s)
Mutación , Mycobacterium tuberculosis/química , Rubredoxinas/química , Técnicas Electroquímicas , Rubredoxinas/genética , Rubredoxinas/metabolismo
5.
ACS Synth Biol ; 10(8): 2116-2120, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34370434

RESUMEN

The genetic encoding of artificial enzymes represents a substantial advantage relative to traditional molecular catalyst optimization, as laboratory-based directed evolution coupled with high-throughput screening methods can provide rapid development and functional characterization of enzyme libraries. However, these techniques have been of limited utility in the field of artificial metalloenzymes due to the need for in vitro cofactor metalation. Here, we report the development of methodology for in vivo production of nickel-substituted rubredoxin, an artificial metalloenzyme that is a structural, functional, and mechanistic mimic of the [NiFe] hydrogenases. Direct voltammetry on cell lysate establishes precedent for the development of an electrochemical screen. This technique will be broadly applicable to the in vivo generation of artificial metalloenzymes that require a non-native metal cofactor, offering a route for rapid enzyme optimization and setting the stage for integration of artificial metalloenzymes into biochemical pathways within diverse hosts.


Asunto(s)
Escherichia coli , Hidrógeno/metabolismo , Hidrogenasas , Ingeniería de Proteínas , Rubredoxinas , Escherichia coli/enzimología , Escherichia coli/genética , Hidrogenasas/genética , Hidrogenasas/metabolismo , Rubredoxinas/genética , Rubredoxinas/metabolismo
6.
Anal Biochem ; 619: 114128, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33577792

RESUMEN

Rubredoxins (Rds), like those from Pyrococcus furious (Pf), have largely been found to be expressed in Escherichia coli (E. coli) as a mixture of different N-terminal forms, which may affect the properties of the protein. The typical procedures for the purification of Rds are cumbersome and usually with low yield. We present herein a streamlined purification strategy based on the reversed-phase high performance liquid chromatography (RP-HPLC), which offers high yield and high resolution after simply one-step purification following pre-treatment. We also show that RP-HPLC can be a valuable tool to gain information related to the thermal decomposition pathway of Pf-Rds.


Asunto(s)
Proteínas Arqueales/química , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Pyrococcus furiosus/química , Rubredoxinas/química , Proteínas Arqueales/genética , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Escherichia coli/química , Escherichia coli/genética , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rubredoxinas/genética , Rubredoxinas/aislamiento & purificación
7.
mBio ; 11(5)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32900801

RESUMEN

Clostridioides difficile is a major cause of diarrhea associated with antibiotherapy. After germination of C. difficile spores in the small intestine, vegetative cells are exposed to low oxygen (O2) tensions. While considered strictly anaerobic, C. difficile is able to grow in nonstrict anaerobic conditions (1 to 3% O2) and tolerates brief air exposure indicating that this bacterium harbors an arsenal of proteins involved in O2 detoxification and/or protection. Tolerance of C. difficile to low O2 tensions requires the presence of the alternative sigma factor, σB, involved in the general stress response. Among the genes positively controlled by σB, four encode proteins likely involved in O2 detoxification: two flavodiiron proteins (FdpA and FdpF) and two reverse rubrerythrins (revRbr1 and revRbr2). As previously observed for FdpF, we showed that both purified revRbr1 and revRbr2 harbor NADH-linked O2- and H2O2-reductase activities in vitro, while purified FdpA mainly acts as an O2-reductase. The growth of a fdpA mutant is affected at 0.4% O2, while inactivation of both revRbrs leads to a growth defect above 0.1% O2 O2-reductase activities of these different proteins are additive since the quadruple mutant displays a stronger phenotype when exposed to low O2 tensions compared to the triple mutants. Our results demonstrate a key role for revRbrs, FdpF, and FdpA proteins in the ability of C. difficile to grow in the presence of physiological O2 tensions such as those encountered in the colon.IMPORTANCE Although the gastrointestinal tract is regarded as mainly anoxic, low O2 tension is present in the gut and tends to increase following antibiotic-induced disruption of the host microbiota. Two decreasing O2 gradients are observed, a longitudinal one from the small to the large intestine and a second one from the intestinal epithelium toward the colon lumen. Thus, O2 concentration fluctuations within the gastrointestinal tract are a challenge for anaerobic bacteria such as C. difficile This enteropathogen has developed efficient strategies to detoxify O2 In this work, we identified reverse rubrerythrins and flavodiiron proteins as key actors for O2 tolerance in C. difficile These enzymes are responsible for the reduction of O2 protecting C. difficile vegetative cells from associated damages. Original and complex detoxification pathways involving O2-reductases are crucial in the ability of C. difficile to tolerate O2 and survive to O2 concentrations encountered in the gastrointestinal tract.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Tracto Gastrointestinal/fisiología , Oxígeno/metabolismo , Anaerobiosis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/patogenicidad , Tracto Gastrointestinal/microbiología , Técnicas de Inactivación de Genes , Hemeritrina/genética , Hemeritrina/metabolismo , Peróxido de Hidrógeno/metabolismo , Rubredoxinas/genética , Rubredoxinas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/metabolismo
8.
J Phys Chem B ; 123(46): 9792-9800, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31608640

RESUMEN

The field of solar fuels is a rapidly growing area of research, though low overall efficiencies continue to preclude large-scale implementation. To resolve the elementary processes involved in light-driven energy storage and identify key factors contributing to efficiency losses, systematic investigation and optimization are necessary. In this work, a ruthenium chromophore is directly attached to a model hydrogenase enzyme, nickel-substituted rubredoxin, to construct a molecular system capable of photoinduced hydrogen evolution. Time-resolved absorption and emission spectroscopy reveal direct, rapid intramolecular electron transfer (ET) between the two metal centers to generate a charge-separated state that persists for ∼1 µs, though this species is not productive for hydrogen evolution. Investigation of the photochemical behavior under catalytic conditions in conjunction with thermochemical analyses suggests that ET to the catalytic nickel site from the reductively quenched ruthenium center is the rate-determining step. By eliminating the need for three components to diffuse together, direct mechanistic information about catalysis is obtained in a time-resolved manner. This approach is generalizable to study the activity and intramolecular charge transfer properties of a wide range of photosensitizers and catalysts, with applicability toward diverse energy conversion reactions.


Asunto(s)
Hidrógeno/química , Níquel/química , Rubredoxinas/química , Energía Solar , Catálisis , Transporte de Electrón , Hidrógeno/metabolismo , Cinética , Oxidación-Reducción , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Rubredoxinas/genética , Rubredoxinas/metabolismo , Rutenio/química , Luz Solar
9.
Plant Cell ; 31(9): 2241-2258, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31320483

RESUMEN

Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both PSI and PSII, but its mode of action remains unclear. Here, we show that RubA in the cyanobacterium Synechocystis sp PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry. We find that RubA, like the accessory factor Ycf48, is a component of the initial D1 assembly module as well as larger PSII assembly intermediates and that the redox-responsive rubredoxin-like domain is located on the cytoplasmic surface of PSII complexes. Fusion of RubA to Ycf48 still permits normal PSII assembly, suggesting a spatiotemporal proximity of both proteins during their action. RubA is also important for the accumulation of PSI, but this is an indirect effect stemming from the downregulation of light-dependent chlorophyll biosynthesis induced by PSII deficiency. Overall, our data support the involvement of RubA in the redox control of PSII biogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Rubredoxinas/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Clorofila/biosíntesis , Mutación , Complejo de Proteína del Fotosistema I/metabolismo , Pigmentos Biológicos/aislamiento & purificación , Rubredoxinas/química , Rubredoxinas/genética , Synechocystis/genética , Synechocystis/crecimiento & desarrollo , Tilacoides/metabolismo
10.
Biomed Res Int ; 2019: 2932585, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31355252

RESUMEN

Rubredoxins are a class of iron-containing proteins that play an important role in the reduction of superoxide in some anaerobic bacteria and also act as electron carriers in many biochemical processes. Unlike the more widely studied about rubredoxin proteins in anaerobic bacteria, very few researches about the function of rubredoxins have been proceeded in plants. Previous studies indicated that rubredoxins in A. thaliana may play a critical role in responding to oxidative stress. In order to identify more rubredoxins in plants that maybe have similar functions as the rubredoxin-like protein of A. thaliana, we identified and analyzed plant rubredoxin proteins using bioinformatics-based methods. Totally, 66 candidate rubredoxin proteins were identified based on public databases, exhibiting lengths of 187-360 amino acids with molecular weights of 19.856-37.117 kDa. The results of subcellular localization showed that these candidate rubredoxins were localized to the chloroplast, which might be consistent with the fact that rubredoxins were predominantly expressed in leaves. Analyses of conserved motifs indicated that these candidate rubredoxins contained rubredoxin and PDZ domains. The expression patterns of rubredoxins in glycophyte and halophytic plant under salt/drought stress revealed that rubredoxin is one of the important stress response proteins. Finally, the coexpression network of rubredoxin in Arabidopsis thaliana under abiotic was extracted from ATTED-II to explore the function and regulation relationship of rubredoxin in Arabidopsis thaliana. Our results showed that putative rubredoxin proteins containing PDZ and rubredoxin domains, localized to the chloroplast, may act with other proteins in chloroplast to responses to abiotic stress in higher plants. These findings might provide value inference to promote the development of plant tolerance to some abiotic stresses and other economically important crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Evolución Molecular , Rubredoxinas , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dominios Proteicos , Rubredoxinas/química , Rubredoxinas/genética , Rubredoxinas/metabolismo
11.
Nat Commun ; 10(1): 2775, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235796

RESUMEN

The recent development of chemical and bio-conjugation techniques allows for the engineering of various protein polymers. However, most of the polymerization process is difficult to control. To meet this challenge, we develop an enzymatic procedure to build polyprotein using the combination of a strict protein ligase OaAEP1 (Oldenlandia affinis asparaginyl endopeptidases 1) and a protease TEV (tobacco etch virus). We firstly demonstrate the use of OaAEP1-alone to build a sequence-uncontrolled ubiquitin polyprotein and covalently immobilize the coupled protein on the surface. Then, we construct a poly-metalloprotein, rubredoxin, from the purified monomer. Lastly, we show the feasibility of synthesizing protein polymers with rationally-controlled sequences by the synergy of the ligase and protease, which are verified by protein unfolding using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). Thus, this study provides a strategy for polyprotein engineering and immobilization.


Asunto(s)
Biocatálisis , Endopeptidasas/metabolismo , Proteínas de Plantas/metabolismo , Poliproteínas/síntesis química , Ingeniería de Proteínas/métodos , Estudios de Factibilidad , Microscopía de Fuerza Atómica/métodos , Oldenlandia , Poliproteínas/genética , Poliproteínas/aislamiento & purificación , Poliproteínas/ultraestructura , Potyvirus , Desplegamiento Proteico , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/ultraestructura , Rubredoxinas/síntesis química , Rubredoxinas/genética , Rubredoxinas/aislamiento & purificación , Rubredoxinas/ultraestructura , Imagen Individual de Molécula/métodos , Análisis Espectral/métodos , Proteínas Virales
12.
J Microbiol ; 57(2): 138-142, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30706342

RESUMEN

Thermococcus onnurineus NA1, an obligate anaerobic hyperthermophilic archaeon, showed variable oxygen (O2) sensitivity depending on the types of substrate employed as an energy source. Unexpectedly, the culture with yeast extract as a sole energy source showed enhanced growth by 2-fold in the presence of O2. Genome-wide transcriptome analysis revealed the upregulation of several antioxidant-related genes encoding thioredoxin peroxidase (TON_0862), rubrerythrin (TON_0864), rubrerythrin-related protein (TON_0873), NAD(P)H rubredoxin oxidoreductase (TON_0865), or thioredoxin reductase (TON_1603), which can couple the detoxification of reactive oxygen species with the regeneration of NAD(P)+ from NAD(P)H. We present a plausible mechanism by which O2 serves to maintain the intracellular redox balance. This study demonstrates an unusual strategy of an obligate anaerobe underlying O2-mediated growth enhancement despite not having heme-based or cytochrome-type proteins.


Asunto(s)
Oxígeno/metabolismo , Thermococcus/enzimología , Thermococcus/crecimiento & desarrollo , Thermococcus/genética , Antioxidantes , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocromos/genética , Citocromos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica Arqueal , Genes Arqueales/genética , Proteínas de Unión al Hemo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Hemeritrina/genética , Hemeritrina/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/toxicidad , Rubredoxinas/genética , Rubredoxinas/metabolismo , Thermococcus/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transcriptoma , Regulación hacia Arriba
13.
Biochemistry ; 57(16): 2308-2316, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29561598

RESUMEN

Protein design is a powerful tool for interrogating the basic requirements for the function of a metal site in a way that allows for the selective incorporation of elements that are important for function. Rubredoxins are small electron transfer proteins with a reduction potential centered near 0 mV (vs normal hydrogen electrode). All previous attempts to design a rubredoxin site have focused on incorporating the canonical CXXC motifs in addition to reproducing the peptide fold or using flexible loop regions to define the morphology of the site. We have produced a rubredoxin site in an utterly different fold, a three-helix bundle. The spectra of this construct mimic the ultraviolet-visible, Mössbauer, electron paramagnetic resonance, and magnetic circular dichroism spectra of native rubredoxin. Furthermore, the measured reduction potential suggests that this rubredoxin analogue could function similarly. Thus, we have shown that an α-helical scaffold sustains a rubredoxin site that can cycle with the desired potential between the Fe(II) and Fe(III) states and reproduces the spectroscopic characteristics of this electron transport protein without requiring the classic rubredoxin protein fold.


Asunto(s)
Transporte de Electrón/genética , Conformación Proteica en Hélice alfa , Rubredoxinas/química , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/química , Hierro/química , Modelos Moleculares , Oxidación-Reducción , Rubredoxinas/genética
14.
J Biol Chem ; 291(53): 27062-27072, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27810897

RESUMEN

Mycobacterium tuberculosis escapes killing in human macrophages by secreting protein kinase G (PknG). PknG intercepts host signaling to prevent fusion of the phagosome engulfing the mycobacteria with the lysosome and, thus, their degradation. The N-terminal NORS (no regulatory secondary structure) region of PknG (approximately residues 1-75) has been shown to play a role in PknG regulation by (auto)phosphorylation, whereas the following rubredoxin-like metal-binding motif (RD, residues ∼74-147) has been shown to interact tightly with the subsequent catalytic domain (approximately residues 148-420) to mediate its redox regulation. Deletions or mutations in NORS or the redox-sensitive RD significantly decrease PknG survival function. Based on combined NMR spectroscopy, in vitro kinase assay, and molecular dynamics simulation data, we provide novel insights into the regulatory roles of the N-terminal regions. The NORS region is indeed natively disordered and rather dynamic. Consistent with most earlier data, autophosphorylation occurs in our assays only when the NORS region is present and, thus, in the NORS region. Phosphorylation of it results only in local conformational changes and does not induce interactions with the subsequent RD. Although the reduced, metal-bound RD makes tight interactions with the following catalytic domain in the published crystal structures, it can also fold in its absence. Our data further suggest that oxidation-induced unfolding of the RD regulates substrate access to the catalytic domain and, thereby, PknG function under different redox conditions, e.g. when exposed to increased levels of reactive oxidative species in host macrophages.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Mycobacterium tuberculosis/metabolismo , Desplegamiento Proteico , Rubredoxinas/química , Rubredoxinas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Humanos , Simulación de Dinámica Molecular , Mutación/genética , Oxidación-Reducción , Estructura Secundaria de Proteína , Rubredoxinas/genética
15.
Int J Mol Sci ; 17(6)2016 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-27248998

RESUMEN

Rubredoxin is one of the simplest iron-sulfur (Fe-S) proteins. It is found primarily in strict anaerobic bacteria and acts as a mediator of electron transfer participation in different biochemical reactions. The PutRUB gene encoding a chloroplast-localized rubredoxin family protein was screened from a yeast full-length cDNA library of Puccinellia tenuiflora under NaCl and NaHCO3 stress. We found that PutRUB expression was induced by abiotic stresses such as NaCl, NaHCO3, CuCl2 and H2O2. These findings suggested that PutRUB might be involved in plant responses to adversity. In order to study the function of this gene, we analyzed the phenotypic and physiological characteristics of PutRUB transgenic plants treated with NaCl and NaHCO3. The results showed that PutRUB overexpression inhibited H2O2 accumulation, and enhanced transgenic plant adaptability to NaCl and NaHCO3 stresses. This indicated PutRUB might be involved in maintaining normal electron transfer to reduce reactive oxygen species (ROS) accumulation.


Asunto(s)
Poaceae/fisiología , Rubredoxinas/genética , Rubredoxinas/metabolismo , Estrés Fisiológico , Clonación Molecular , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biblioteca de Genes , Genes del Cloroplasto , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Poaceae/genética , Poaceae/metabolismo , Bicarbonato de Sodio/farmacología , Cloruro de Sodio/farmacología
16.
Mol Biochem Parasitol ; 206(1-2): 39-45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26775086

RESUMEN

Amebiasis is an intestinal infection widespread throughout the world caused by the human pathogen Entamoeba histolytica. Metronidazole has been a drug of choice against amebiasis for decades despite its low efficacy against asymptomatic cyst carriers and emergence of resistance in other protozoa with similar anaerobic metabolism. Therefore, identification and characterization of specific targets is urgently needed to design new therapeutics for improved treatment against amebiasis. Toward this goal, thiol-dependent redox metabolism is of particular interest. The thiol-dependent redox metabolism in E. histolytica consists of proteins including peroxiredoxin, rubrerythrin, Fe-superoxide dismutase, flavodiiron proteins, NADPH: flavin oxidoreductase, and amino acids including l-cysteine, S-methyl-l-cysteine, and thioprolines (thiazolidine-4-carboxylic acids). E. histolytica completely lacks glutathione and its metabolism, and l-cysteine is the major intracellular low molecular mass thiol. Moreover, this parasite possesses a functional thioredoxin system consisting of thioredoxin and thioredoxin reductase, which is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In this review, we summarize and highlight the thiol-based redox metabolism and its control mechanisms in E. histolytica, in particular, the features of the system unique to E. histolytica, and its potential use for drug development against amebiasis.


Asunto(s)
Entamoeba histolytica/metabolismo , Entamebiasis/parasitología , Peroxirredoxinas/metabolismo , Proteínas Protozoarias/metabolismo , Superóxido Dismutasa/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Antiprotozoarios/uso terapéutico , Cisteína/análogos & derivados , Cisteína/metabolismo , Entamoeba histolytica/efectos de los fármacos , Entamoeba histolytica/genética , Entamoeba histolytica/crecimiento & desarrollo , Entamebiasis/tratamiento farmacológico , Flavoproteínas/genética , Flavoproteínas/metabolismo , Regulación de la Expresión Génica , Hemeritrina/genética , Hemeritrina/metabolismo , Humanos , Terapia Molecular Dirigida , Oxidación-Reducción , Peroxirredoxinas/antagonistas & inhibidores , Peroxirredoxinas/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Rubredoxinas/genética , Rubredoxinas/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/genética , Tiazolidinas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Reductasa de Tiorredoxina-Disulfuro/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
17.
Structure ; 23(8): 1500-1506, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26190574

RESUMEN

Lipopolysaccharide (LPS) synthesis and export are essential pathways for bacterial growth, proliferation, and virulence. The essential protein LapB from Escherichia coli has recently been identified as a regulator of LPS synthesis. We have determined the crystal structure of LapB (without the N-terminal transmembrane helix) at 2 Å resolution using zinc single-wavelength anomalous diffraction phasing derived from a single bound zinc atom. This structure demonstrates the presence of nine tetratricopeptide repeats (TPR) motifs, including two TPR folds that were not predicted from sequence, and a rubredoxin-type metal binding domain. The rubredoxin domain is bound intimately to the TPR motifs, which has not been previously observed or predicted. Mutations in the rubredoxin/TPR interface inhibit in vivo cell growth, and in vitro studies indicate that these modifications cause local displacement of rubredoxin from its binding site without changing the secondary structure of LapB. LapB is the first reported structure to contain both a rubredoxin domain and TPR motifs.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/genética , Escherichia coli/patogenicidad , Regulación Bacteriana de la Expresión Génica , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/química , Rubredoxinas/química , Secuencias de Aminoácidos , Sitios de Unión , Cationes Bivalentes , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rubredoxinas/genética , Rubredoxinas/metabolismo , Alineación de Secuencia , Termodinámica , Virulencia , Zinc/química
18.
PLoS One ; 9(3): e80014, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24603413

RESUMEN

Some years ago, we showed that thermo-chemically denatured, partially-unfolded forms of Pyrococcus furiosus triosephosphateisomerase (PfuTIM) display cold-denaturation upon cooling, and heat-renaturation upon reheating, in proportion with the extent of initial partial unfolding achieved. This was the first time that cold-denaturation was demonstrated for a hyperthermophile protein, following unlocking of surface salt bridges. Here, we describe the behavior of another hyperthermophile protein, the small, monomeric, 53 residues-long rubredoxin from Pyrococcus furiosus (PfRd), which is one of the most thermostable proteins known to man. Like PfuTIM, PfRd too displays cold-denaturation after initial thermo-chemical perturbation, however, with two differences: (i) PfRd requires considerably higher temperatures as well as higher concentrations of guanidium hydrochloride (Gdm.HCl) than PfuTIM; (ii) PfRd's cold-denaturation behavior during cooling after thermo-chemical perturbation is incompletely reversible, unlike PfuTIM's, which was clearly reversible (from each different conformation generated). Differential cold-denaturation treatments allow PfRd to access multiple partially-unfolded states, each of which is clearly highly kinetically-stable. We refer to these as 'Trishanku' unfolding intermediates (or TUIs). Fascinatingly, refolding of TUIs through removal of Gdm.HCl generates multiple partially-refolded, monomeric, kinetically-trapped, non-native 'Trishanku' refolding intermediates (or TRIs), which differ from each other and from native PfRd and TUIs, in structural content and susceptibility to proteolysis. We find that the occurrence of cold denaturation and observations of TUI and TRI states is contingent on the oxidation status of iron, with redox agents managing to modulate the molecule's behavior upon gaining access to PfRd's iron atom. Mass spectrometric examination provides no evidence of the formation of disulfide bonds, but other experiments suggest that the oxidation status of iron (and its extent of burial) together determine whether or not PfRd shows cold denaturation, and also whether redox agents are able to modulate its behavior.


Asunto(s)
Proteínas Arqueales/química , Frío , Calor , Conformación Proteica , Replegamiento Proteico , Rubredoxinas/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Secuencia de Bases , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Desnaturalización Proteica , Estabilidad Proteica , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Rubredoxinas/genética , Rubredoxinas/metabolismo , Análisis de Secuencia de ADN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Termodinámica
19.
PLoS One ; 9(3): e89703, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24603898

RESUMEN

Pyrococcus furiosus rubredoxin (PfRd), a small, monomeric, 53 residues-long, iron-containing, electron-transfer protein of known structure is sometimes referred to as being the most structurally-stable protein known to man. Here, using a combination of mutational and spectroscopic (CD, fluorescence, and NMR) studies of differently made holo- and apo-forms of PfRd, we demonstrate that it is not the presence of iron, or even the folding of the PfRd chain into a compact well-folded structure that causes holo-PfRd to display its extraordinary thermal stability, but rather the correct iron binding-guided packing of certain residues (specifically, Trp3, Phe29, Trp36, and also Tyr10) within a tight aromatic cluster of six residues in PfRd's hydrophobic core. Binding of the iron atom appears to play a remarkable role in determining subtle details of residue packing, forcing the chain to form a hyper-thermally stable native structure which is kinetically stable enough to survive (subsequent) removal of iron. On the other hand, failure to bind iron causes the same chain to adopt an equally well-folded native-like structure which, however, has a differently-packed aromatic cluster in its core, causing it to be only as stable as any other ordinary mesophile-derived rubredoxin. Our studies demonstrate, perhaps for the very first time ever that hyperthermal stability in proteins can owe to subtle differences in residue packing vis a vis mesostable proteins, without there being any underlying differences in either amino acid sequence, or bound ligand status.


Asunto(s)
Aminoácidos Aromáticos/química , Proteínas Arqueales/química , Hierro/química , Pyrococcus furiosus/metabolismo , Rubredoxinas/química , Secuencia de Aminoácidos , Aminoácidos Aromáticos/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Dicroismo Circular , Interacciones Hidrofóbicas e Hidrofílicas , Hierro/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Pyrococcus furiosus/genética , Rubredoxinas/genética , Rubredoxinas/metabolismo , Espectrometría de Fluorescencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Termodinámica
20.
J Biol Chem ; 288(37): 26688-96, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23900844

RESUMEN

In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema II/metabolismo , Rubredoxinas/química , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clorofila/química , Secuencia Conservada , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Fotosíntesis , Filogenia , Rubredoxinas/genética , Semillas/metabolismo , Especificidad de la Especie , Espectrofotometría , Synechocystis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...