Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetica ; 149(5-6): 299-311, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34546501

RESUMEN

Rubus hirsutus is a type of tonifying kidney-essence herb that belongs to the Rosaceae family, and has been commonly used to treat multiple diseases, such as polyuria, impotence, and infertility. In this study, we determined the complete chloroplast sequence of R. hirsutus and conduced a comparative analysis within the genus Rubus. The assembled chloroplast (cp.) genome is 156,380 bp in length with a GC content of 37.0% and shares a conserved quadripartite structure within the other cp. genomes in this genus. A total of 132 unique genes were annotated in the cp. genome of R. hirsutus, which contained 87 protein-coding genes, 37 tRNAs, and eight rRNAs. Seventeen duplicated genes were identified in the inverted repeats region. Furthermore, 70 simple sequence repeats and 35 long repeats were detected in total in the R. hirsutus chloroplast genome. Eight mutational hotspots were identified in the cp. genome of this species with higher nucleotide variations in non-coding regions than those of coding regions. Furthermore, the gene order, codon usage, and repeat sequence distribution were highly consistent in Rubus according to the results of a comparative analysis. A phylogenetic analysis indicated that there was a sister relationship between R. hirsutus and R. chingii. Overall, the complete chloroplast genome of R. hirsutus and the comparative analysis will help to further the evolutionary study, conservation, phylogenetic reconstruction, and development of molecular barcodes for the genus Rubus.


Asunto(s)
Cloroplastos/genética , Genoma del Cloroplasto/genética , Rubus/clasificación , Rubus/genética , Filogenia , Rubus/citología
2.
Plant Cell Rep ; 39(12): 1655-1668, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32892290

RESUMEN

KEY MESSAGE: Sustainability and safety aspects of plant cell cultures as food are presented. Applicability of dairy side streams as carbon source and use of natural growth enhancers in cultivation are shown. Biotechnologically produced cellular products are currently emerging to replace and add into the portfolio of agriculturally derived commodities. Plant cell cultures used for food could supplement current food production. However, still many aspects need to be resolved before this new food concept can enter the market. Issues related to sustainability and safety for human consumption are relevant for both consumers and regulators. In this study, two plant cell cultures, deriving from arctic bramble (Rubus arcticus) and birch (Betula pendula), were cultivated using lactose-rich dairy side streams as alternative carbon sources to replace sucrose. Biomasses were comparable to those of original plant cell culture media when up to 83% and 75% of the original sucrose was replaced by these side streams for arctic bramble and birch cell cultures, respectively. Furthermore, nutritional composition or sensory properties were not compromised. Synthetic plant growth regulators were replaced by natural components, such as coconut water and IAA for several subculture cycles. Finally, it was shown that only trace amounts of free growth regulators are present in the cells at the harvesting point and assessment by freshwater crustaceans assay indicated that toxicity of the cells was not exceeding that of traditionally consumed bilberry fruit.


Asunto(s)
Betula/citología , Técnicas de Cultivo de Célula/métodos , Células Vegetales , Rubus/citología , Aminoácidos/análisis , Animales , Carbohidratos/análisis , Carbohidratos/química , Medios de Cultivo/química , Daphnia/efectos de los fármacos , Inocuidad de los Alimentos , Humanos , Odorantes , Células Vegetales/química , Reguladores del Crecimiento de las Plantas/análisis , Reguladores del Crecimiento de las Plantas/metabolismo , Sacarosa/metabolismo , Desarrollo Sostenible , Pruebas de Toxicidad/métodos
3.
Protoplasma ; 257(1): 119-139, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31399808

RESUMEN

Leaves of Rubus idaeus are a raw material, ingredients of herbal blend, and a source of antioxidants. There are no data concerning histochemistry of trichomes, and little is known about the leaf structure of this species. The aim of this study was to determine the histochemistry of active compounds and the structure of glandular trichomes, micromorphology, anatomy, and ultrastructure of leaves as well as content of elements. To determine the histochemistry of glandular trichomes, different chemical compounds were used. The leaf structure was analysed using light, scanning, and transmission electron microscopes. The content of elements was determined with atomic absorption spectrometry, and the microanalysis of the epidermis ultrastructure was carried out with a transmission electron microscope equipped with a digital X-ray analyser. In glandular trichomes, polyphenols, terpenes, lipids, proteins, and carbohydrates were identified. The main elements in the ultrastructure of the epidermis were Na, Mo, Se, Ca, and Mg. In dry matter of leaves, K, Mg, Ca, P, and Fe were dominant. Infusions from leaves are safe for health in terms of the Cd and Pb concentrations. Leaves can be a valuable raw material. Non-glandular trichomes prevent clumping of mixed raw materials in herbal mixtures.


Asunto(s)
Minerales/metabolismo , Nutrientes/metabolismo , Hojas de la Planta/química , Rubus/química , Rubus/citología , Tricomas/citología , Biomasa , Histocitoquímica , Tamaño de los Órganos , Hojas de la Planta/ultraestructura , Estomas de Plantas/anatomía & histología , Estomas de Plantas/ultraestructura , Rubus/ultraestructura , Tricomas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...