Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Plant Physiol Biochem ; 208: 108503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484679

RESUMEN

Rutin is a significant flavonoid with strong antioxidant property and various therapeutic effects. It plays a crucial role in disease prevention and human health maintenance, especially in anti-inflammatory, antidiabetic, hepatoprotective and cardiovascular effects. While many plants can synthesize and accumulate rutin, tartary buckwheat is the only food crop possessing high levels of rutin. At present, the rutin content (RC) is regarded as the key index for evaluating the nutritional quality of tartary buckwheat. Consequently, rutin has become the focus for tartary buckwheat breeders and has made considerable progress. Here, we summarize research on the rutin in tartary buckwheat in the past two decades, including its accumulation, biosynthesis and breakdown pathways, and regulatory mechanisms. Furthermore, we propose several strategies to increase the RC in tartary buckwheat seeds based on current knowledge. This review aims to provide valuable references for elevating the quality of tartary buckwheat in the future.


Asunto(s)
Fagopyrum , Rutina , Humanos , Rutina/metabolismo , Fagopyrum/metabolismo , Biofortificación , Flavonoides/metabolismo , Redes y Vías Metabólicas
2.
Plant Physiol Biochem ; 207: 108402, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38310726

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) is frequently employed as a resource to develop health foods, owing to its abundant flavonoids such as rutin. However, the consumption of Tartary buckwheat (TB) is limited in food products due to the strong bitterness induced by the hydrolysis of rutin into quercetin. This transformation is facilitated by the degrading enzyme (RDE). While multiple RDE isoenzymes exist in TB, the superior coding gene of FtRDEs has not been fully explored, which hinders the breeding of TB varieties with minimal bitterness. Here, we found that FtRDE2 is the most abundant enzyme in RDE crude extracts, and its corresponding gene is specifically expressed in TB seeds. Results showed that FtRDE2 has strong rutin hydrolysis activity. Overexpression of FtRDE2 not only significantly promoted rutin hydrolysis and quercetin accumulation but also dramatically upregulated genes involved in the early phase of flavonoid synthesis (FtPAL1、FtC4H1、Ft4CL1, FtCHI1) and anthocyanin metabolism (FtDFR1). These findings elucidate the role of FtRDE2, emphasizing it as an endogenous factor contributing to the bitterness in TB and its involvement in the metabolic regulatory network. Moreover, correlation analysis revealed a positive relationship between the catalytic activity of RDE extracts and the expression level of FtRDE2 during seed germination. In summary, our results suggest that FtRDE2 can serve as a promising candidate for the molecular breeding of a TB variety with minimal bitterness.


Asunto(s)
Fagopyrum , Quercetina , Quercetina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Fitomejoramiento , Rutina/metabolismo , Semillas/metabolismo
3.
BMC Pharmacol Toxicol ; 25(1): 22, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414079

RESUMEN

BACKGROUND: Radiation triggers salivary gland damage and excess iron accumulates in tissues induces cell injury. Flavonoids are found in some fruits and are utilized as potent antioxidants and radioprotective agents. This study aimed to evaluate the antioxidant and anti-inflammatory effects of hesperidin and rutin on gamma radiation and iron overload induced submandibular gland (SMG) damage and to evaluate their possible impact on mitigating the alteration in mTOR signaling pathway and angiogenesis. METHODS: Forty-eight adult male Wistar albino rats were randomly assigned to six groups: group C received a standard diet and distilled water; group H received hesperidin at a dose of 100 mg/kg; four times a week for four weeks; group U received rutin at a dose of 50 mg/kg; three times a week for three weeks; group RF received a single dose (5 Gy) of gamma radiation followed by iron at a dose of 100 mg/kg; five times a week for four weeks; group RFH received radiation and iron as group RF and hesperidin as group H; group RFU received radiation and iron as group RF and rutin as group U. SMG specimens from all groups were removed at the end of the experiment; and some were used for biochemical analysis, while others were fixed for histological and immunohistochemical examination. RESULTS: In the RF group, several genes related to antioxidants (Nrf-2 and SOD) and DNA damage (BRCA1) were significantly downregulated, while several genes related to inflammation and angiogenesis (TNFα, IL-1ß and VEGF) and the mTOR signaling pathway (PIK3ca, AKT and mTOR) were significantly upregulated. Acinar cytoplasmic vacuolation, nuclear pyknosis, and interacinar hemorrhage with distinct interacinar spaces were observed as histopathological changes in SMGs. The duct system suffered significant damage, eventually degenerating entirely as the cells were shed into the lumina. VEGF and NF-κB were also significantly overexpressed. Hesperidin and rutin cotreatment generated partial recovery as indicated by significant upregulation of Nrf-2, SOD and BRCA1 and considerable downregulation of TNF-α, IL-1ß, VEGF, PIK3ca, AKT, and mTOR. Although some acini and ducts continued to deteriorate, most of them had a normal appearance. There was a notable decrease in the expression of VEGF and NF-κB. CONCLUSIONS: In γ-irradiated rats with iron overload, the administration of hesperidin and rutin may mitigate salivary gland damage.


Asunto(s)
Hesperidina , Sobrecarga de Hierro , Ratas , Masculino , Animales , Hesperidina/farmacología , Hesperidina/uso terapéutico , Rutina/farmacología , Rutina/uso terapéutico , Rutina/metabolismo , Ratas Wistar , Glándula Submandibular/metabolismo , FN-kappa B/metabolismo , Rayos gamma/efectos adversos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Superóxido Dismutasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Hierro/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Estrés Oxidativo
4.
Biomed Res ; 45(1): 13-23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325842

RESUMEN

We aimed to investigate the neuroprotective effect of rutin on retinal ganglion cells (RGCs) under ischemia-reperfusion (I/R) conditions and the underlying mechanisms involving microglia polarization and JAK/STAT3 signaling. RGCs isolated from C57/Bl6 mice were co-cultured with BV2 microglial cells under normal or in vitro oxygen-glucose deprivation and reoxygenation (OGD/R) conditions. Rutin's effects were evaluated by assessing cell viability, apoptosis rates, cytokine levels, microglial polarization markers and JAK/STAT3 phosphorylation levels. The specific target is confirmed through the inhibitory effect of rutin on the respectively activated signaling factors. Furthermore, molecular docking analyses elucidated rutin-JAK1 interactions. OGD/R conditions significantly reduced RGC viability, exacerbated by BV2 co-culture. However, both 1 µM and 5 µM rutin treatment dose-dependently enhanced RGC viability, reduced apoptosis, and suppressed pro-inflammatory cytokine levels. Western blot analysis indicated that rutin promoted the M2 microglial phenotype and suppressed JAK/STAT3 signaling. Notably, rutin selectively inhibited JAK1 phosphorylation without affecting STAT3. Molecular docking highlighted potential interaction sites between rutin and specific JAK1 pseudokinase domain. Rutin exerts neuroprotective effects against retinal I/R injury by promoting M2 microglial polarization, potentially through the selective inhibition of JAK1 phosphorylation within the JAK/STAT3 signaling pathway. These findings provide a foundation for the therapeutic potential of rutin in retinal I/R injuries.


Asunto(s)
Microglía , Daño por Reperfusión , Ratones , Animales , Microglía/metabolismo , Rutina/farmacología , Rutina/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Citocinas/metabolismo , Fenotipo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
5.
Food Res Int ; 179: 114036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342549

RESUMEN

Polysaccharides and polyphenols are biologically active components that coexist in Lycium barbarum fruit, and there may be interactions between them that affect the release of each other. In this study, polyphenols bound to L. barbarum polysaccharide (LBP) were characterized, and the stability of bound phenolics (BP) was assessed by gastrointestinal digestion and colon fermentation. The results showed that a total of 65 phytochemicals such as flavonoids, phenolic acids, and coumarins were identified by UPLC-MS/MS. Quantitative analysis revealed that the major phenolic constituents were rutin, p-coumaric acid, catechin, ferulic acid, protocatechuic acid, and gallic acid, and their contents were 58.72, 24.03, 14.24, 13.28, 10.39, and 6.7 mg GAE/100 g DW, respectively. The release of BP by gastric digestion and gastrointestinal digestion was 9.67 % and 19.39 %, respectively. Most polyphenols were greatly affected by gastric digestion, while rutin was released in small intestine. The BP were fully released (49.77 %) and metabolized by gut microorganisms, and a considerable number of intermediates and end-products were detected, such as phloroglucinol, phenylacetic acid, and phenyllactic acid. Microbiomics data emphasized the positive impact of LBP on gut bacteria of Bacteroides, Parabacteroides, and Clostridioides. These findings could deepen our understanding of the bioavailability and biological fate of BP and also provide reference data for nutrient release and utilization of L. barbarum as a whole.


Asunto(s)
Medicamentos Herbarios Chinos , Polifenoles , Espectrometría de Masas en Tándem , Polifenoles/análisis , Fermentación , Cromatografía Liquida , Fenoles/metabolismo , Digestión , Rutina/metabolismo , Colon/metabolismo
6.
Food Funct ; 15(2): 779-793, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38126185

RESUMEN

As a common plant-derived dietary flavonoid, rutin receives widespread attention because of its good antioxidant bioactivities. Protein kinase Cα (PKCα) is a serine/threonine kinase that is involved in uncountable cellular processes, among which ferroptosis, a novel form of cell death, is triggered by lipid peroxidation and has been reported to be associated with pulmonary arterial hypertension (PAH). But it is still not well appreciated how rutin inhibits ferroptosis in PAH and what function PKCα has in this process. In this study, we first observed whether rutin could prevent PAH by attenuating ferroptosis with a PAH animal model and pulmonary artery smooth muscle cells (PASMCs) under hypoxia. Mitochondrial metabolomics and network pharmacology were employed to clarify the metabolic alterations and screen target proteins, and the results showed that PKCα was a vital node in rutin regulating mitochondrial metabolism related to ferroptosis in PAH. Based on molecular docking and multispectral analysis, we found that rutin could directly interact with PKCα through hydrogen bonds, which could induce static quenching, and then influence the secondary structure of PKCα. In conclusion, these findings mainly point to a novel mechanism that rutin protects PAH rats by modifying the structure and altering the activity of PKCα, and thus suppressing ferroptosis. This work reveals that the interaction behaviors between small molecules and bio-macromolecules are a critical factor to develop natural biological active ingredients and gives an insight into the potential applications of flavonoids in health and disease.


Asunto(s)
Ferroptosis , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratas , Animales , Hipertensión Arterial Pulmonar/complicaciones , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Rutina/metabolismo , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Simulación del Acoplamiento Molecular , Proliferación Celular , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
7.
ACS Appl Mater Interfaces ; 15(47): 54294-54303, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37972277

RESUMEN

Rutin, a flavonoid glycoside phytochemical compound, has a remarkable antiobesity effect. However, its therapeutic potential is hindered by its poor water solubility and low oral bioavailability. In this study, rutin was loaded into liposomes (LR) through the self-assembly of lecithin and cholesterol. It was discovered that liposomes improved the water solubility and cellular uptake of rutin in adipocytes. These rutin-loaded liposomes were then incorporated into a microneedle patch (MP) system formed by polyvinylpyrrolidone and poly(vinyl alcohol), and the MP-LR showed an increased release percentage in the adipose tissue microenvironment of pH 6.5 and achieved local delivery of rutin into adipocytes. Next, the therapeutic potentials of rutin, LR, and MP-LR were investigated in a high-fat diet (HFD)-induced obese mouse model. The MP-LR formulation decreased the weight of the HFD mice the most significantly. The antilipogenesis mechanisms of MP-LR are downregulating the lipid synthesis-related proteins (PPAR γ and C/EBP α) in adipocytes and promoting the expression of the beige adipogenesis-related proteins (UCP 1 and Cyt C). The MP systems further promote the local penetration of LR into the adipose tissue specifically, which again elevates their antiobesity effect. Overall, this study suggests that MP-delivered liposome-based formulation is a promising approach to enhance the antiobesity efficacy of antilipogenesis bioactive compounds.


Asunto(s)
Liposomas , Rutina , Ratones , Animales , Rutina/farmacología , Rutina/metabolismo , Rutina/uso terapéutico , Liposomas/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Agua/metabolismo
8.
Fish Shellfish Immunol ; 141: 109062, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37678480

RESUMEN

Neuroinflammation is prevalent in multiple brain diseases and may also lead to dementia, cognitive impairment, and impaired spatial memory function associated with neurodegenerative diseases. A neuroprotective and antioxidant flavonoid, rutin hydrate (RH), was evaluated for the anti-neuroinflammatory activity mediated by copper sulfate (CuSO4) solution and lipopolysaccharide (LPS) in zebrafish. The results showed that 100 mg/L RH significantly reduced the ratio of neutrophil mobility in caudal hematopoietic tissue (CHT) region caused by CuSO4 and the number of neutrophils co-localized with facial peripheral nerves. In the LPS model, RH co-injection significantly diminished neutrophil and macrophage migration. Therefore, RH exhibited a significant rescue effect on both models. In addition, RH treatment remarkably reduced the effects of neuroinflammation on the locomotor ability, expression levels of genes associated with behavioral disorders, and acetylcholinesterase (AChE) activity. Furthermore, network pharmacology techniques were employed to investigate the potential mechanisms, and the associated genes and enzyme activities were validated in order to elucidate the underlying mechanisms. Network pharmacological analysis and zebrafish model indicated that RH regulated the expressions of NF-κB pathway-related targets (Toll-like receptor 9 (tlr9), nuclear factor kappa B subunit 1 (nfkb1), RELA proto-oncogene (RelA), nitric oxide synthase 2a, inducible (nos2a), tumour necrosis factor alpha-like (tnfα), interleukin 6 (il6), interleukin 1ß (il1ß), chemokine 8 (cxcl8), and macrophage migration inhibitory factor (mif)) as well as six key factors (arachidonic acid 4 alpha-lipoxygenase (alox4a), arachidonate 5-lipoxygenase a (alox5), prion protein a (prnpa), integrin, beta 2 (itgb2), catalase (CAT), and alkaline phosphatase (ALP) enzymes). Through this study, a thorough understanding of the mechanism underlying the therapeutic effects of RH in neuroinflammation has been achieved, thereby establishing a solid foundation for further research on the potential therapeutic applications of RH in neuroinflammatory disorders.


Asunto(s)
FN-kappa B , Pez Cebra , Animales , FN-kappa B/metabolismo , Pez Cebra/metabolismo , Enfermedades Neuroinflamatorias , Rutina/farmacología , Rutina/metabolismo , Rutina/uso terapéutico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Acetilcolinesterasa/metabolismo , Microglía , Factor de Necrosis Tumoral alfa/metabolismo
9.
J Agric Food Chem ; 71(34): 12715-12729, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37581468

RESUMEN

In patients suffering from inflammatory bowel diseases (IBDs), the immune system is disrupted and the intestinal barrier function is compromised. Here, six zinc-flavonoid particles were produced by one-step reaction via changing flavonoids (myricetin, quercetin, and rutin) and solvent (water and ethanol), and then their cytocompatibility and ability to scavenge H2O2, free radicals, and LPS-induced ROS were compared. Zinc-rutin particles (W-ZnRT) composed of rutin (78.92 wt %), Na12[ZnPO4]12·12H2O (6.76 wt %), and crystal water were screened out because W-ZnRT exhibited 80.8 ± 15% cell viability against RAW264.7, could rapidly scavenge 78.1 ± 1% of H2O2 and 71.6 ± 2% of DPPH within 30 min, and reduced LPS-increased intracellular ROS to normal levels. In addition, the therapeutic effects of rutin and W-ZnRT were also compared in dextran sulfate sodium (DSS)-induced acute and chronic colitis in mice. W-ZnRT was superior to rutin alone in chronic colitis (n = 9), although they were equally effective in acute colitis (n = 7). Compared to rutin, 11 oral doses of W-ZnRT (40 mg kg-1) significantly improved intestinal permeability (p = 0.0299) and colon length (p = 0.0025), reduced intestinal proinflammatory factors (IL-6, IL-1ß, and TNF-α), and upregulated tight junction proteins to maintain intestinal barrier function. Taken together, these results identified W-ZnRT as an efficient and safe therapeutic strategy for IBD.


Asunto(s)
Antioxidantes , Colitis , Ratones , Animales , Antioxidantes/metabolismo , Rutina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Zinc/metabolismo , Peróxido de Hidrógeno/metabolismo , Lipopolisacáridos/efectos adversos , Colitis/tratamiento farmacológico , Colon/metabolismo , Antiinflamatorios/farmacología , Sulfato de Dextran/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo
10.
J Microbiol Biotechnol ; 33(11): 1521-1530, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37644729

RESUMEN

An α-L-rhamnosidase gene from Thermoclostridium. stercorarium subsp. thermolacticum DSM 2910 (TstRhaA) was cloned and expressed. The maximum TstRhaA activity of the protein reached 25.2 U/ml, and the molecular mass was approximately 106.6 kDa. The protein was purified 8.0-fold by Ni-TED affinity with an overall recovery of 16.6% and a specific activity of 187.9 U/mg. TstRhaA activity was the highest at 65°C and pH 6.5. In addition, it exhibited excellent thermal stability, better pH stability, good tolerance to low concentrations of organic reagents, and high catalytic activity for p-nitrophenyl-α-L-rhamnopyranoside (pNPR). Substrate specificity studies showed that TstRhaA exhibited a high specific activity for rutin. At 60°C, pH 6.5, and 0.3 U/ml enzyme dosage, 60 g/l rutin was converted to 45.55 g/l isoquercitrin within 150 min. The molar conversion rate of rutin and the yield of isoquercitrin were 99.8% and 12.22 g/l/h, respectively. The results suggested that TstRhaA could be used for mass production of isoquercitrin.


Asunto(s)
Glicósido Hidrolasas , Rutina , Rutina/metabolismo , Glicósido Hidrolasas/metabolismo , Biotransformación
11.
J Agric Food Chem ; 71(33): 12487-12496, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578464

RESUMEN

Quercetin, a polyphenol antioxidant, is widely distributed in food in the form of glycoside rutin, which is not readily absorbed in the gastrointestinal tract. The microbiota of the colon is known to biotransform rutin, generating quercetin aglycones that can be absorbed. We investigated the role of the ileal and colonic microbiota in rutin biotransformation using established in vitro fermentation models. Overall, a higher rate of rutin biotransformation was observed during colonic fermentation compared with ileal fermentation. The colonic microbiome showed higher potential for rutin conversion to quercetin through an increased abundance of α-rhamnosidase- and ß-glucosidase-encoding genes compared to the ileal microbiome. Nonetheless, rutin metabolism occurred rapidly during ileal fermentation (∼20% rutin disappearance after 1 h). The appearance of quercetin varied depending on the ileal inoculum and correlated with an increased abundance of Firmicutes, suggesting that quercetin absorption could be improved via modulation of the ileal microbiota.


Asunto(s)
Quercetina , Rutina , Porcinos , Animales , Rutina/metabolismo , Quercetina/metabolismo , Fermentación , Colon/metabolismo , Biotransformación
12.
Food Funct ; 14(12): 5728-5751, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37282615

RESUMEN

Oxidative stress results from the imbalance between reactive oxygen species (ROS) production and antioxidant defence and is primarily involved in aging. The current study investigated the antioxidant activity of rutin in aging in rats induced by D-galactose (D-gal) for 42 days. Rutin was orally used at doses of 50 and 100 mg kg-1 daily. Results showed that D-gal induced oxidative alterations in the brain and liver recognized via upregulation of aging and oxidative markers. In contrast, rutin ameliorated the oxidative stress induced by D-gal by enhancing antioxidant markers such as superoxide dismutase-1, glutathione peroxidase-1, and glutathione S-transferase-α. Also, rutin significantly decreased the accumulation of ß-galactosidase and reduced the expression of p53, p21, Bcl-2-associated X protein (Bax), caspase-3 (CASP3), and mammalian target of rapamycin (mTOR) in brain and hepatic tissues. Rutin potentially attenuated these aging-related oxidative alterations in a dose-dependent manner. Moreover, rutin markedly reduced the increased immunohistochemical expression of ß-galactosidase, 8-hydroxy-2'-deoxyguanosine, calcium-binding adapter molecule 1, glial fibrillary acidic protein, Bax, and interleukin-6 and significantly increased Bcl2, synaptophysin, and Ki67. Furthermore, a molecular docking study revealed that rutin exhibited high affinity to rat and human caspases, PI3K/AKT/mTOR, and the IL-6 receptor. Finally, we can conclude that rutin supplementation can be a promising natural protective compound that could delay aging and maintain health.


Asunto(s)
Antioxidantes , Galactosa , Humanos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Galactosa/efectos adversos , Galactosa/metabolismo , Simulación del Acoplamiento Molecular , Rutina/farmacología , Rutina/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Estrés Oxidativo , Hígado/metabolismo , Envejecimiento , Encéfalo/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos/metabolismo
13.
BMC Biol ; 21(1): 87, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069628

RESUMEN

BACKGROUND: Two widely cultivated annual buckwheat crops, Fagopyrum esculentum and F. tataricum, differ from each other in both rutin concentration and reproductive system. However, the underlying genetic mechanisms remain poorly elucidated. RESULTS: Here, we report the first haplotype-resolved chromosome-level genome assemblies of the two species. Two haplotype genomes of F. esculentum were assembled as 1.23 and 1.19 Gb with N50 = 9.8 and 12.4 Mb, respectively; the two haplotype genomes of F. tataricum were 453.7 and 446.2 Mb with N50 = 50 and 30 Mb, respectively. We further annotated protein-coding genes of each haplotype genome based on available gene sets and 48 newly sequenced transcriptomes. We found that more repetitive sequences, especially expansion of long terminal repeat retrotransposons (LTR-RTs), contributed to the large genome size of F. esculentum. Based on the well-annotated sequences, gene expressions, and luciferase experiments, we identified the sequence mutations of the promoter regions of two key genes that are likely to have greatly contributed to the high rutin concentration and selfing reproduction in F. tartaricum. CONCLUSIONS: Our results highlight the importance of high-quality genomes to identify genetic mutations underlying phenotypic differences between closely related species. F. tataricum may have been experienced stronger selection than F. esculentum through choosing these two non-coding alleles for the desired cultivation traits. These findings further suggest that genetic manipulation of the non-coding promoter regions could be widely employed for breeding buckwheat and other crops.


Asunto(s)
Fagopyrum , Rutina , Rutina/genética , Rutina/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Haplotipos , Fitomejoramiento , Genitales/metabolismo
14.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047259

RESUMEN

The fermentation process has been widely used to improve plant-based foods' nutritional and nutraceutical properties. This study aimed to investigate and compare the impact of sourdough fermentation on the bioactive content and profile, antioxidant and antihypertensive activities, as well as the anti-inflammatory properties of fermented (FS) and non-fermented (NFS) flour from Tuscan Triticum dicoccum wheat (spelt) on tumor necrosis factor-alpha (TNF-α)-inflamed human intestinal epithelial cells (HT-29). FS showed significantly higher total phenolic and flavonoid content, in vitro and ex vivo antioxidant activities, and ACE-inhibitory activities than NFS. Gallic acid was identified by HPLC-DAD as the most representative polyphenol, followed by rutin, trans-ferulic acid, iso-quercitrin, and quercetin, in the fermented spelt sample. Instead, rutin and gallic acid were identified as the predominant compounds in the non-fermented ones. Moreover, FS exhibited a better protective effect on inflamed HT-29 cells by significantly counteracting the TNFα-induced alterations, lowering the expression of IL-8, COX-2, and ICAM-1 inflammatory mediator while enhancing antioxidant enzyme HO-1 gene expression. In conclusion, sourdough fermentation positively affected the nutraceutical and functional properties of spelt, which may represent a valuable ingredient for the formulation of functional foods and a key product for managing hypertension and inflammatory intestinal diseases.


Asunto(s)
Antioxidantes , Alimentos Fermentados , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Fermentación , Triticum/metabolismo , Antihipertensivos/metabolismo , Ácido Gálico/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Rutina/farmacología , Rutina/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Alimentos Fermentados/análisis , Pan/análisis , Harina/análisis
15.
Chem Biodivers ; 20(4): e202200248, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36908157

RESUMEN

One of the most common bipyridinium herbicides that can lead to liver toxicity is paraquat. Rutin is a bioflavonoid with antioxidant, anti-inflammatory, anti-hepatotoxic, and antimicrobial properties. The effect of rutin on paraquat-induced liver toxicity was examined in this study. 48 male rats were divided into six groups: the control group was given a normal diet; the non-treated group was given paraquat; the positive control group was given paraquat, and silymarin and the treatment groups were given paraquat and rutin at doses of 25, 50, and 100 mg/kg. After fourteen days, the rats were anesthetized by xylazine-ketamine, and fasting blood samples were obtained from their hearts to measure alkaline phosphatase (ALP), aspartate transaminase (AST), alanine transaminase (ALT), malondialdehyde (MDA), creatinine, lipid profile, antioxidant capacity, and carbonyl protein. The liver tissue was removed to measure the levels of catalase (CAT), superoxide dismutase (SOD), total protein, vitamin C, plus NF-κB, IL1ß, and caspase-3 gene expressions. Paraquat gavage in the untreated group (group 2) for 14 days in comparison with the control group induced a significant augmentation (p<0.05) in levels of lipid profile, AST, ALP, ALT, MDA, carbonyl protein, and also NF-κB, IL1ß, Caspase3 expressions. Treatment with rutin reduced the factors as mentioned above. Paraquat poisoning induced a substantial decline (p<0.05) in HDL content, FRAP level, CAT, and SOD activity of the liver compared to the control group. However, rutin oral treatment led to a substantial increase (p<0.05) in the level of these factors compared to the paraquat-only treated group. Based on the findings of the present study, it was found that rutin can be significantly effective in improving hepatotoxicity caused by paraquat.


Asunto(s)
Antioxidantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Rutina , Animales , Masculino , Ratas , Antioxidantes/metabolismo , Caspasa 3/efectos de los fármacos , Caspasa 3/metabolismo , Lípidos/farmacología , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Estrés Oxidativo , Paraquat/toxicidad , Paraquat/metabolismo , Rutina/farmacología , Rutina/metabolismo , Superóxido Dismutasa/metabolismo , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico
16.
J Integr Plant Biol ; 65(6): 1423-1441, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36680412

RESUMEN

Common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum), the two most widely cultivated buckwheat species, differ greatly in flavonoid content and reproductive mode. Here, we report the first high-quality and chromosome-level genome assembly of common buckwheat with 1.2 Gb. Comparative genomic analysis revealed that common buckwheat underwent a burst of long terminal repeat retrotransposons insertion accompanied by numerous large chromosome rearrangements after divergence from Tartary buckwheat. Moreover, multiple gene families involved in stress tolerance and flavonoid biosynthesis such as multidrug and toxic compound extrusion (MATE) and chalcone synthase (CHS) underwent significant expansion in buckwheat, especially in common buckwheat. Integrated multi-omics analysis identified high expression of catechin biosynthesis-related genes in flower and seed in common buckwheat and high expression of rutin biosynthesis-related genes in seed in Tartary buckwheat as being important for the differences in flavonoid type and content between these buckwheat species. We also identified a candidate key rutin-degrading enzyme gene (Ft8.2377) that was highly expressed in Tartary buckwheat seed. In addition, we identified a haplotype-resolved candidate locus containing many genes reportedly associated with the development of flower and pollen, which was potentially related to self-incompatibility in common buckwheat. Our study provides important resources facilitating future functional genomics-related research of flavonoid biosynthesis and self-incompatibility in buckwheat.


Asunto(s)
Fagopyrum , Flavonoides , Flavonoides/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Rutina/análisis , Rutina/metabolismo , Genes de Plantas , Semillas/genética
17.
J Environ Sci (China) ; 127: 158-168, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522050

RESUMEN

The wastewater discharge from the process of chrome plating, which contains 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and chromium (Cr), may be toxic to biofilm. In this study we found that the biofilm formed by Pseudomonas aeruginosa PAO1 was inhibited by exposure to a combination of F-53B and Cr(VI). The combined pollution damaged the cell membranes and the structure of the biofilm, and inhibited the production of the Pseudomonas quinolone-based signal, which affected biofilm formation. Moreover, the secretion of extracellular polymeric substances decreased as a result of this combined exposure. Exposure to F-53B and Cr(VI) individually or in combination could induce the excessive accumulation of intracellular reactive oxygen species (ROS), and the ROS positive rate of the bacteria increased under the treatment with 0.2 mmol/L of Cr(VI) and 250 nmol/L of F-53B, respectively. In addition, the activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced for scavenging ROS in the bacteria that were exposed to Cr(VI) and F-53B. As an antioxidant, rutin was used to repair the toxicity of Cr(VI) and F-53B towards the biofilm formed by the bacteria. When rutin was added to the bacteria medium, with either Cr(VI) or F-53B as pollutant, or with the combined pollutants, the extracellular protein content of the bacteria recovered to 0.84, 0.94, and 0.85 times that of the control, respectively. Meanwhile, the accumulation of ROS and the activities of SOD and CAT decreased, which indicated that the addition of rutin can alleviate the oxidative stress and promote the antioxidant stress system.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/química , Pseudomonas aeruginosa , Pez Cebra/metabolismo , Rutina/farmacología , Rutina/metabolismo , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/análisis , Cromo/toxicidad , Cromo/metabolismo , Superóxido Dismutasa/metabolismo , Biopelículas
18.
Pestic Biochem Physiol ; 189: 105294, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36549820

RESUMEN

Thiram is a fungicide that is used to prevent fungal diseases in seeds and crops and also as an animal repellent. The pro-oxidant activity of thiram is well established. Rutin is a flavonoid glycoside present in many fruits and plants and has several beneficial properties, including antioxidant effects. We have previously shown that thiram causes oxidative damage in human erythrocytes. The present study was designed to evaluate the protective effect of rutin against thiram-induced damage in human erythrocytes. Treatment of erythrocytes with 0.5 mM thiram for 4 h increased the level of oxidative stress markers, decreased antioxidant power and lowered the activity of antioxidant and membrane bound enzymes. It also enhanced the generation of reactive oxygen and nitrogen species (ROS and RNS) and altered the morphology of erythrocytes. However, prior treatment of erythrocytes with rutin (0.5, 1 and 2 mM) for 2 h, followed by 4 h incubation with 0.5 mM thiram, led to a decrease in the level of oxidative stress markers in a rutin concentration-dependent manner. A significant restoration in the antioxidant power and activity of antioxidant enzymes was observed upon the treatment of erythrocytes with 1 and 2 mM rutin. Pre-incubation with rutin lowered the generation of ROS and RNS which will reduce oxidative damage in erythrocytes. The thiram-induced changes in cell morphology and activity of membrane-bound enzymes were also attenuated by rutin. These results suggest that rutin can be used to mitigate thiram-induced oxidative damage in human erythrocytes.


Asunto(s)
Antioxidantes , Rutina , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rutina/farmacología , Rutina/metabolismo , Tiram , Glutatión/metabolismo , Estrés Oxidativo , Eritrocitos
19.
Plant Physiol Biochem ; 194: 696-707, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36565614

RESUMEN

Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.


Asunto(s)
Fagopyrum , Rutina , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Luciferasas/metabolismo , Rutina/metabolismo , Técnicas del Sistema de Dos Híbridos
20.
Appl Biochem Biotechnol ; 195(5): 3366-3383, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36585550

RESUMEN

Alcohol-induced oxidative stress is a key player in the development of liver diseases, and herbal alternatives are important means of ameliorating the hepatotoxic effects. The study aimed to evaluate the hepatoprotective potentiality of Artabotrys odoratissimus, an important medicinal shrub from the family Annonaceae. The phenolic compounds from bark ethanol extract (BEE) were detected using RP-HPLC. The in vitro hepatoprotective activity against ethanol-induced damage was studied in HepG2 cells with cell viability assays, mitochondrial membrane potential (MMP) assay, reactive oxygen species (ROS) assay, double staining assay and western blotting. The in vivo mice model was used to evaluate the alcohol-induced stress with liver function enzymes, lipid profile and histopathology. All the thirteen phenolic compounds detected with HPLC were docked onto protein targets such as aspartate amino transferase (AST), alkaline phosphatase (ALP) and inducible nitric oxide synthase (NO). The RP-HPLC detected the presence of various phenolics including rutin, chlorogenic acid and catechin, amongst others. Co-administration of BEE with ethanol alleviated cell death, ROS and MMP in HepG2 cells compared to the negative control. The extract also modulated the MAP kinase/caspase-3 pathway, thereby showing protective effects in HepG2 cells. Also, pre-treatment for 14 days with the extract in the mice model before a single toxic dose (5 g/kg body weight) reduced the liver injury by bringing the levels of liver function enzymes, lipid profile and bilirubin to near normal. In silico analysis revealed that rutin showed the best binding affinity with all the target proteins in the study. These results provide evidence that BEE possesses significant hepatoprotective effects against ethanol-induced oxidative stress in hepatic cells and in vivo models, which is further validated with in silico analysis.


Asunto(s)
Antioxidantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Animales , Antioxidantes/química , Etanol/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Corteza de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hepatocitos/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Fenoles/metabolismo , Rutina/metabolismo , Lípidos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...