Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 973
Filtrar
1.
Nat Cell Biol ; 26(5): 797-810, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600235

RESUMEN

Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.


Asunto(s)
Síndrome de Cockayne , ADN Helicasas , Enzimas Reparadoras del ADN , Reparación del ADN , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II , Transcripción Genética , Ubiquitinación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Humanos , ADN Helicasas/metabolismo , ADN Helicasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , Daño del ADN , Rayos Ultravioleta , ADN/metabolismo , ADN/genética , Aductos de ADN/metabolismo , Aductos de ADN/genética , Reparación por Escisión , Factores de Transcripción , Receptores de Interleucina-17
2.
Genes (Basel) ; 15(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674442

RESUMEN

(1) Background: Cockayne syndrome (CS) is an ultra-rare multisystem disorder, classically subdivided into three forms and characterized by a clinical spectrum without a clear genotype-phenotype correlation for both the two causative genes ERCC6 (CS type B) and ERCC8 (CS type A). We assessed this, presenting a series of patients with genetically confirmed CSB. (2) Materials and Methods: We retrospectively collected demographic, clinical, genetic, neuroimaging, and serum neurofilament light-chain (sNFL) data about CSB patients; diagnostic and severity scores were also determined. (3) Results: Data of eight ERCC6/CSB patients are presented. Four patients had CS I, three patients CS II, and one patient CS III. Various degrees of ataxia and spasticity were cardinal neurologic features, with variably combined systemic characteristics. Mean age at diagnosis was lower in the type II form, in which classic CS signs were more evident. Interestingly, sNFL determination appeared to reflect clinical classification. Two novel premature stop codon and one novel missense variants were identified. All CS I subjects harbored the p.Arg735Ter variant; the milder CS III subject carried the p.Leu764Ser missense change. (4) Conclusion: Our work confirms clinical variability also in the ERCC6/CSB type, where manifestations may range from severe involvement with prenatal or neonatal onset to normal psychomotor development followed by progressive ataxia. We propose, for the first time in CS, sNFL as a useful peripheral biomarker, with increased levels compared to currently available reference values and with the potential ability to reflect disease severity.


Asunto(s)
Síndrome de Cockayne , ADN Helicasas , Enzimas Reparadoras del ADN , Proteínas de Unión a Poli-ADP-Ribosa , Factores de Transcripción , Humanos , Síndrome de Cockayne/genética , Síndrome de Cockayne/patología , Síndrome de Cockayne/diagnóstico , Proteínas de Unión a Poli-ADP-Ribosa/genética , Enzimas Reparadoras del ADN/genética , Femenino , Masculino , ADN Helicasas/genética , Niño , Preescolar , Adolescente , Estudios Retrospectivos , Adulto , Lactante , Estudios de Asociación Genética , Adulto Joven
3.
Cells ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38607030

RESUMEN

Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.


Asunto(s)
Síndrome de Cockayne , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Encéfalo/metabolismo , Organoides/metabolismo
4.
DNA Repair (Amst) ; 138: 103679, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640601

RESUMEN

Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer's Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson's Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes - diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.


Asunto(s)
Reparación del ADN , Enfermedades Neurodegenerativas , Humanos , Animales , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Trastornos por Deficiencias en la Reparación del ADN/genética , Trastornos por Deficiencias en la Reparación del ADN/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo
5.
Cells ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38474366

RESUMEN

Cockayne syndrome (CS) is a rare autosomal recessive disorder that affects the DNA repair process. It is a progeroid syndrome predisposing patients to accelerated aging and to increased susceptibility to respiratory infections. Here, we studied the immune status of CS patients to determine potential biomarkers associated with pathological aging. CS patients, as well as elderly and young, healthy donors, were enrolled in this study. Complete blood counts for patients and donors were assessed, immune cell subsets were analyzed using flow cytometry, and candidate cytokines were analyzed via multi-analyte ELISArray kits. In CS patients, we noticed a high percentage of lymphocytes, an increased rate of intermediate and non-classical monocytes, and a high level of pro-inflammatory cytokine IL-8. In addition, we identified an increased rate of particular subtypes of T Lymphocyte CD8+ CD28- CD27-, which are senescent T cells. Thus, an inflammatory state was found in CS patients that is similar to that observed in the elderly donors and is associated with an immunosenescence status in both groups. This could explain the CS patients' increased susceptibility to infections, which is partly due to an aging-associated inflammation process.


Asunto(s)
Síndrome de Cockayne , Inmunosenescencia , Humanos , Anciano , Linfocitos T CD8-positivos , Envejecimiento , Citocinas , Biomarcadores
6.
Mol Biol Rep ; 51(1): 371, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411728

RESUMEN

BACKGROUND: Cockayne syndrome is an inherited heterogeneous defect in transcription-coupled DNA repair (TCR) cause severe clinical syndromes, which may affect the nervous system development of infants and even lead to premature death in some cases. ERCC8 diverse critical roles in the nucleotide excision repair (NER) complex, which is one of the disease-causing genes of Cockayne syndrome. METHODS AND RESULTS: The mutation of ERCC8 in the patient was identified and validated using WES and Sanger sequencing. Specifically, a compound heterozygous mutation (c.454_460dupGTCTCCA p. T154Sfs*13 and c.755_759delGTTTT p.C252Yfs*3) of ERCC8 (CSA) was found, which could potentially be the genetic cause of Cockayne syndrome in the proband. CONCLUSION: In this study, we identified a novel heterozygous mutation of ERCC8 in a Chinese family with Cockayne syndrome, which enlarging the genetic spectrum of the disease.


Asunto(s)
Síndrome de Cockayne , Humanos , Pueblo Asiatico , Núcleo Celular , Síndrome de Cockayne/genética , Enzimas Reparadoras del ADN/genética , Reparación por Escisión , Mutación/genética , Factores de Transcripción
7.
Aging (Albany NY) ; 16(3): 2026-2046, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38345566

RESUMEN

Progeroid disorders are a heterogenous group of rare and complex hereditary syndromes presenting with pleiotropic phenotypes associated with normal aging. Due to the large variation in clinical presentation the diseases pose a diagnostic challenge for clinicians which consequently restricts medical research. To accommodate the challenge, we compiled a list of known progeroid syndromes and calculated the mean prevalence of their associated phenotypes, defining what we term the 'progeria phenome'. The data were used to train a support vector machine that is available at https://www.mitodb.com and able to classify progerias based on phenotypes. Furthermore, this allowed us to investigate the correlation of progeroid syndromes and syndromes with various pathogenesis using hierarchical clustering algorithms and disease networks. We detected that ataxia-telangiectasia like disorder 2, spastic paraplegia 49 and Meier-Gorlin syndrome display strong association to progeroid syndromes, thereby implying that the syndromes are previously unrecognized progerias. In conclusion, our study has provided tools to evaluate the likelihood of a syndrome or patient being progeroid. This is a considerable step forward in our understanding of what constitutes a premature aging disorder and how to diagnose them.


Asunto(s)
Envejecimiento Prematuro , Síndrome de Cockayne , Progeria , Humanos , Progeria/genética , Progeria/patología , Envejecimiento Prematuro/genética , Envejecimiento , Fenotipo , Trastornos del Crecimiento/complicaciones
9.
ACS Nano ; 18(4): 3636-3650, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227493

RESUMEN

Microwave thermotherapy (MWT) has shown great potential in cancer treatment due to its deep tissue penetration and minimally invasive nature. However, the poor microwave absorption (MA) properties of the microwave thermal sensitizer in the medical frequency band significantly limit the thermal effect of MWT and then weaken the therapeutic efficacy. In this paper, a Ni-based multilayer heterointerface nanomissile of MOFs-Ni-Ru@COFs (MNRC) with improved MA performance in the desired frequency band via introducing magnetic loss and dielectric loss is developed for MWT-based treatment. The loading of the Ni nanoparticle in MNRC mediates the magnetic loss, introducing the MA in the medical frequency band. The heterointerface formed in the MNRC by nanoengineering induces significant interfacial polarization, increasing the dielectric loss and then enhancing the generated MA performance. Moreover, MNRC with the strong MA performance in the desired frequency range not only enhances the MW thermal effect of MWT but also facilitates the electron and energy transfer, generating reactive oxygen species (ROS) at tumor sites to mediate microwave dynamic therapy (MDT). The strategy of strengthening the MA performance of the sensitizer in the medical frequency band to improve MWT-MDT provides a direction for expanding the clinical application of MWT in tumor treatment.


Asunto(s)
Síndrome de Cockayne , Neoplasias , Humanos , Microondas , Transferencia de Energía
10.
Geroscience ; 46(2): 1861-1879, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37751047

RESUMEN

Progeroid syndromes such as Hutchinson Gilford Progeroid syndrome (HGPS), Werner syndrome (WS) and Cockayne syndrome (CS), result in severely reduced lifespans and premature ageing. Normal senescent cells show splicing factor dysregulation, which has not yet been investigated in syndromic senescent cells. We sought to investigate the senescence characteristics and splicing factor expression profiles of progeroid dermal fibroblasts. Natural cellular senescence can be reversed by application of the senomorphic drug, trametinib, so we also investigated its ability to reverse senescence characteristics in syndromic cells. We found that progeroid cultures had a higher senescence burden, but did not always have differences in levels of proliferation, DNA damage repair and apoptosis. Splicing factor gene expression appeared dysregulated across the three syndromes. 10 µM trametinib reduced senescent cell load and affected other aspects of the senescence phenotype (including splicing factor expression) in HGPS and Cockayne syndromes. Werner syndrome cells did not demonstrate changes in in senescence following treatment. Splicing factor dysregulation in progeroid cells provides further evidence to support this mechanism as a hallmark of cellular ageing and highlights the use of progeroid syndrome cells in the research of ageing and age-related disease. This study suggests that senomorphic drugs such as trametinib could be a useful adjunct to therapy for progeroid diseases.


Asunto(s)
Síndrome de Cockayne , Progeria , Piridonas , Pirimidinonas , Síndrome de Werner , Humanos , Síndrome de Werner/tratamiento farmacológico , Síndrome de Werner/genética , Síndrome de Cockayne/tratamiento farmacológico , Síndrome de Cockayne/genética , Empalme Alternativo/genética , Senoterapéuticos , Progeria/tratamiento farmacológico , Progeria/genética , Factores de Empalme de ARN
11.
Environ Res ; 243: 117777, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38036208

RESUMEN

Oil spills and micropollutants have become thorny environmental issues, posing serious threat to ecosystem and human health. To settle such dilemma, this study successfully constructed a robust and environmentally-friendly MOFs-COFs hybrid-based membrane (FS-50/COF(MATPA)-MOF(Zr)/PDA@PVDF) for the first time through solution synthesis and solvothermal method, combined with surface modification of FS-50 molecule. Importantly, we employed a simple two-step strategy to obtain the high-aspect-ratio MOFs fibers: (1) solvent regulation to generate smaller needle-like whiskers during the in-situ growth of MOFs on COFs; (2) high pressure induced directional crystallization in filtration process. The introduction of polydopamine (PDA) greatly improved the adhesion between coating and PVDF membrane. The in-situ growth of high length-diameter ratio MOFs fibers on blocky COFs greatly enhanced the specific surface area of MOFs-COFs hybrid, thus provided sufficient absorption sites. The functional groups of FS-50 endowed the hybrid membrane with superhydrophilicity and superoleophobicity, which facilitated to selectively penetrate water molecules and repel non-polar pollutants. The separation efficiency and decontamination mechanism of hybrid membrane to the simulated oily wastewater (containing various MPs, dyes, and pesticides) were investigated through experiments and theoretical calculations. The hybrid membrane could selectively and synchronously adsorb various dyes (20 mg/L-120 mg/L, almost 100% removal) and pesticides (10 mg/L for DIF and TET, adsorption rates 93.2% and 90.9%, respectively) from oil-water emulsion (50 mL). The large-scale coated sponge (6 cm × 4.5 cm × 3 cm) could quickly achieve separation of oil-water mixture (almost 100%) with a water permeability of more than 162 L m-2·h-1·bar-1, and simultaneously remove various MPs (PP-2000, PP-100, PE-2000, PS-100, 0.2 g/300 mL for each), Sudan Ⅲ (C0 = 200 mg/L), and DIF (C0 = 10 mg/L) from a simulant oily wastewater (300 mL), with the removal rates of almost 100% for MPs, 99.7% for Sudan Ⅲ, and 95.8% for DIF. Furthermore, we elucidated the removal mechanism of pesticide and dyes through simulating the theoretical adsorption energy and potential adsorption sites. The hybrid membrane not only provides a promising candidate for the removal of multiple pollutants from oil-water emulsion, but also opens a new strategy for achieving efficient and clean aquatic environment restoration.


Asunto(s)
Compuestos Azo , Síndrome de Cockayne , Contaminantes Ambientales , Polímeros de Fluorocarbono , Plaguicidas , Polivinilos , Humanos , Emulsiones , Microplásticos , Ecosistema , Plásticos , Aguas Residuales , Colorantes , Agua
12.
Anal Chem ; 95(47): 17400-17406, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37967038

RESUMEN

Amine determination is crucial to our daily life, including the prevention of pollution, the treatment of certain disorders, and the evaluation of food quality. Herein, a mixed-linkage donor-acceptor covalent organic framework (named DSE-COF) was first constructed by the polymerization between 2,4-dihydroxybenzene-1,3,5-tricarbaldehyde (DTA) and 4,4'-(benzo[c][1,2,5]selenadiazole-4,7-diyl)dianiline (SEZ). DSE-COF displayed superior turn-on fluorescent responses to primary, secondary, and tertiary aliphatic amines, such as cadaverine, isopropylamine, sec-butylamine, cyclohexylamine, hexamethylenediamine, di-n-butylamine, and triethylamine in absolute acetonitrile than other organic species. Further experiments and theoretical calculations demonstrated that the combination of intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) effects between the DSE-COF and aliphatic amines resulted in enhanced fluorescence. Credibly, DSE-COF can quantitatively detect cadaverine content in actual pork samples with satisfactory results. In addition, DSE-COF-based test papers could rapidly monitor cadaverine from real pork samples, manifesting the potential application of COFs in food quality inspection.


Asunto(s)
Síndrome de Cockayne , Estructuras Metalorgánicas , Humanos , Cadaverina , Aminas , Ciclohexilaminas , Colorantes
13.
BMJ Case Rep ; 16(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848274

RESUMEN

Xeroderma pigmentosum-Cockayne syndrome complex (XP-CS) is exceedingly rare, with 43 cases described over the past five decades; 21 of these cases exhibited mutations in the ERCC5 endonuclease associated with xeroderma pigmentosum, group G.We report the first known phenotypic characterisation of the homozygous chromosome 13 ERCC5, Exon 11, c.2413G>A (p.Gly805Arg) missense mutation in a female toddler presenting with findings of both XP and CS.Her severe presentation also questions previous hypotheses that only truncating mutations and early missense mutations of XPG are capable of producing the dire findings of XP-CS.


Asunto(s)
Síndrome de Cockayne , Xerodermia Pigmentosa , Humanos , Femenino , Xerodermia Pigmentosa/complicaciones , Xerodermia Pigmentosa/genética , Mutación Missense , Síndrome de Cockayne/diagnóstico , Síndrome de Cockayne/genética , Síndrome de Cockayne/complicaciones , Mutación
14.
Chem Commun (Camb) ; 59(77): 11456-11468, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37674461

RESUMEN

Organoarsenics are low-toxicity compounds that are used widely as feed additives to promote livestock growth, enhance meat pigmentation, and fight against intestinal parasites. The organoarsenic compounds are commonly found in poultry waste and the degradation of organoarsenic produces the toxic carcinogen inorganic arsenic such as As(V) and As(III), which results in severe arsenic pollution of soil and groundwater. As a consequence, there exists a high necessity to develop suitable sensing methods for the trace detection and quantification of organoarsenic feed additives in wastewater. Among various detection methods, in particular, fluorescence-based sensing has become a popular and efficient method used extensively for sensing water contaminants and environmental contaminants. In the recent past, a wide variety of fluorescence chemosensors have been designed and employed for the efficient sensing and quantification of the concentration of organoarsenic feed additives in different environmental samples. This review article systematically highlights various fluorescence chemosensors reported to date for fluorescence-based sensing of organoarsenic feed additives. The fluorescence sensors discussed in this review are classified and grouped according to their structures and functions, and in each section, we provide a detailed report on the structure, photophysics, and fluorescence sensing properties of different chemosensors. Lastly, the future perspectives on the design and development of practically useful sensor systems for selective and discriminative sensing of organoarsenic compounds have been stated.


Asunto(s)
Arsénico , Síndrome de Cockayne , Humanos , Fluorescencia , Luminiscencia
15.
Aging Cell ; 22(10): e13959, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37688320

RESUMEN

Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS) are rare genetic disorders caused by mutation of the DNA repair and multifunctional CSA or CSB protein, but only CS patients display a progeroid and neurodegenerative phenotype, providing a unique conceptual and experimental paradigm. As DNA methylation (DNAm) remodelling is a major ageing marker, we performed genome-wide analysis of DNAm of fibroblasts from healthy, UVSS and CS individuals. Differential analysis highlighted a CS-specific epigenomic signature (progeroid-related; not present in UVSS) enriched in three categories: developmental transcription factors, ion/neurotransmitter membrane transporters and synaptic neuro-developmental genes. A large fraction of CS-specific DNAm changes were associated with expression changes in CS samples, including in previously reported post-mortem cerebella. The progeroid phenotype of CS was further supported by epigenomic hallmarks of ageing: the prediction of DNAm of repetitive elements suggested an hypomethylation of Alu sequences in CS, and the epigenetic clock returned a marked increase in CS biological age respect to healthy and UVSS cells. The epigenomic remodelling of accelerated ageing in CS displayed both commonalities and differences with other progeroid diseases and regular ageing. CS shared DNAm changes with normal ageing more than other progeroid diseases do, and included genes functionally validated for regular ageing. Collectively, our results support the existence of an epigenomic basis of accelerated ageing in CS and unveil new genes and pathways that are potentially associated with the progeroid/degenerative phenotype.


Asunto(s)
Síndrome de Cockayne , Humanos , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Epigenómica , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Envejecimiento/genética , Mutación
16.
Intern Med ; 62(15): 2253-2259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532514

RESUMEN

Two patients, 48- and 50-year-old sisters, presented with a characteristic facial appearance with slowly progressive deafness and cerebellar ataxia starting in their 30s. Genetic testing identified compound heterozygous pathogenic variants in the ERCC6 gene: c.1583G>A (p.G528E) and c.1873T>G (p.Y625D). A diagnosis of Cockayne syndrome (CS) B type III was made. CS is usually diagnosed in childhood with well-defined facial characteristics and photosensitivity. This case report describes rare cases of adulthood CS with a primary presentation of slowly progressing deafness and cerebellar ataxia. CS should be considered in adults with characteristic facial and skin findings, deafness, and cerebellar ataxia.


Asunto(s)
Ataxia Cerebelosa , Síndrome de Cockayne , Sordera , Adulto , Humanos , Persona de Mediana Edad , Síndrome de Cockayne/complicaciones , Síndrome de Cockayne/diagnóstico , Síndrome de Cockayne/genética , Enzimas Reparadoras del ADN/genética , Hermanos , Ataxia Cerebelosa/genética , Mutación
17.
Genes (Basel) ; 14(8)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37628604

RESUMEN

In plants, prolonged exposure to ultraviolet (UV) radiation causes harmful DNA lesions. Nucleotide excision repair (NER) is an important DNA repair mechanism that operates via two pathways: transcription coupled repair (TC-NER) and global genomic repair (GG-NER). In plants and mammals, TC-NER is initiated by the Cockayne Syndrome A and B (CSA/CSB) complex, whereas GG-NER is initiated by the Damaged DNA Binding protein 1/2 (DDB1/2) complex. In the yeast Saccharomyces cerevisiae (S. cerevisiae), GG-NER is initiated by the Radiation Sensitive 7 and 16, (RAD7/16) complex. Arabidopsis thaliana has two homologues of yeast RAD16, At1g05120 and At1g02670, which we named AtRAD16 and AtRAD16b, respectively. In this study, we characterized the roles of AtRAD16 and AtRAD16b. Arabidopsis rad16 and rad16b null mutants exhibited increased UV sensitivity. Moreover, AtRAD16 overexpression increased plant UV tolerance. Thus, AtRAD16 and AtRAD16b contribute to plant UV tolerance and growth. Additionally, we found physical interaction between AtRAD16 and AtRAD7. Thus, the Arabidopsis RAD7/16 complex is functional in plant NER. Furthermore, AtRAD16 makes a significant contribution to Arabidopsis UV tolerance compared to the DDB1/2 and the CSB pathways. This is the first time the role and interaction of DDB1/2, RAD7/16, and CSA/CSB components in a single system have been studied.


Asunto(s)
Arabidopsis , Síndrome de Cockayne , Proteínas de Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae , Arabidopsis/genética , Reparación del ADN/genética , Rayos Ultravioleta/efectos adversos , Mamíferos , Proteínas de Unión al ADN/genética , Adenosina Trifosfatasas
19.
Mol Genet Genomic Med ; 11(11): e2254, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37592445

RESUMEN

BACKGROUND: Cockayne syndrome (CS, OMIM #133540, #216400) is a rare autosomal recessive disease involving multiple systems, typically characterized by microcephaly, premature aging, growth retardation, neurosensory abnormalities, and photosensitivity. The age of onset is related to the severity of the clinical phenotype, which may lead to fatal outcomes. METHODS: We report a 3-year-old girl who presented with photosensitivity, gait abnormalities, stunting, and microcephaly and showed atypical clinical classification due to mild clinical manifestations at an early onset age. RESULTS: Next-generation sequencing reveals the frameshift mutation (c.394_398del, p.Leu132Asnfs*6) and a novel microdeletion of ERCC8 (exon4del, p.Arg92fs). CONCLUSION: Therefore, it is still necessary to carry out next-generation sequencing for CS patients with atypical clinical manifestations, which is essential for diagnosis and accurate genetic counseling.


Asunto(s)
Síndrome de Cockayne , Microcefalia , Femenino , Humanos , Preescolar , Síndrome de Cockayne/diagnóstico , Síndrome de Cockayne/genética , Microcefalia/diagnóstico , Microcefalia/genética , Pueblos del Este de Asia , Enzimas Reparadoras del ADN/genética , Factores de Transcripción/genética , Secuenciación de Nucleótidos de Alto Rendimiento
20.
Dermatologie (Heidelb) ; 74(9): 696-706, 2023 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-37650893

RESUMEN

Progeroid syndromes (PSs) are characterized by the premature onset of age-related pathologies. PSs display a wide range of heterogeneous pathological symptoms that also manifest during natural aging, including vision and hearing loss, atrophy, hair loss, progressive neurodegeneration, and cardiovascular defects. Recent advances in molecular pathology have led to a better understanding of the underlying mechanisms of these diseases. The genetic mutations underlying PSs are functionally linked to genome maintenance and repair, supporting the causative role of DNA damage accumulation in aging. While some of those genes encode proteins with a direct involvement in a DNA repair machinery, such as nucleotide excision repair (NER), others destabilize the genome by compromising the stability of the nuclear envelope, when lamin A is dysfunctional in Hutchinson-Gilford progeria syndrome (HGPS) or regulate the DNA damage response (DDR) such as the ataxia telangiectasia-mutated (ATM) gene. Understanding the molecular pathology of progeroid diseases is crucial in developing potential treatments to manage and prevent the onset of symptoms. This knowledge provides insight into the underlying mechanisms of premature aging and could lead to improved quality of life for individuals affected by progeroid diseases.


Asunto(s)
Envejecimiento Prematuro , Síndrome de Cockayne , Envejecimiento de la Piel , Humanos , Calidad de Vida , Envejecimiento/genética , Síndrome de Cockayne/genética , Envejecimiento Prematuro/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...