Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Cell Rep Med ; 5(1): 101373, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232699

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious and poorly understood disease. To understand immune dysregulation in ME/CFS, we use single-cell RNA sequencing (scRNA-seq) to examine immune cells in patient and control cohorts. Postexertional malaise (PEM), an exacerbation of symptoms following strenuous exercise, is a characteristic symptom of ME/CFS. To detect changes coincident with PEM, we applied scRNA-seq on the same cohorts following exercise. At baseline, ME/CFS patients display classical monocyte dysregulation suggestive of inappropriate differentiation and migration to tissue. We identify both diseased and more normal monocytes within patients, and the fraction of diseased cells correlates with disease severity. Comparing the transcriptome at baseline and postexercise challenge, we discover patterns indicative of improper platelet activation in patients, with minimal changes elsewhere in the immune system. Taken together, these data identify immunological defects present at baseline in patients and an additional layer of dysregulation in platelets.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/genética , Síndrome de Fatiga Crónica/diagnóstico , Ejercicio Físico/fisiología , Perfilación de la Expresión Génica , Transcriptoma , Monocitos
2.
PLoS One ; 18(12): e0296060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38157384

RESUMEN

Myalgic Encephalomyelitis / Chronic Fatigue Syndrome is a debilitating, multisystem disease of unknown mechanism, with a currently ongoing search for its endocrine mediators. Circulating microRNAs (miRNA) are a promising candidate for such a mediator and have been reported as significantly different in the patient population versus healthy controls by multiple studies. None of these studies, however, agree with each other on which specific miRNA are under- or over-expressed. This discrepancy is the subject of the computational study presented here, in which a deep dive into the predicted gene targets and their functional interactions is conducted, revealing that the aberrant circulating miRNAs in ME/CFS, although different between patients, seem to mainly target the same specific set of genes (p ≈ 0.0018), which are very functionally related to each other (p ≲ 0.0001). Further analysis of these functional relations, based on directional pathway information, points to impairments in exercise hyperemia, angiogenic adaptations to hypoxia, antioxidant defenses, and TGF-ß signaling, as well as a shift towards mitochondrial fission, corroborating and explaining previous direct observations in ME/CFS. Many transcription factors and epigenetic modulators are implicated as well, with currently uncertain downstream combinatory effects. As the results show significant similarity to previous research on latent herpesvirus involvement in ME/CFS, the possibility of a herpesvirus origin of these miRNA changes is also explored through further computational analysis and literature review, showing that 8 out of the 10 most central miRNAs analyzed are known to be upregulated by various herpesviruses. In total, the results establish an appreciable and possibly central role for circulating microRNAs in ME/CFS etiology that merits further experimental research.


Asunto(s)
MicroARN Circulante , Síndrome de Fatiga Crónica , Herpesviridae , MicroARNs , Humanos , Síndrome de Fatiga Crónica/genética , MicroARN Circulante/genética , MicroARNs/genética , Herpesviridae/genética , Estudios Longitudinales , Simplexvirus/genética
3.
Adv Sci (Weinh) ; 10(30): e2302146, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37653608

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by debilitating fatigue that profoundly impacts patients' lives. Diagnosis of ME/CFS remains challenging, with most patients relying on self-report, questionnaires, and subjective measures to receive a diagnosis, and many never receiving a clear diagnosis at all. In this study, a single-cell Raman platform and artificial intelligence are utilized to analyze blood cells from 98 human subjects, including 61 ME/CFS patients of varying disease severity and 37 healthy and disease controls. These results demonstrate that Raman profiles of blood cells can distinguish between healthy individuals, disease controls, and ME/CFS patients with high accuracy (91%), and can further differentiate between mild, moderate, and severe ME/CFS patients (84%). Additionally, specific Raman peaks that correlate with ME/CFS phenotypes and have the potential to provide insights into biological changes and support the development of new therapeutics are identified. This study presents a promising approach for aiding in the diagnosis and management of ME/CFS and can be extended to other unexplained chronic diseases such as long COVID and post-treatment Lyme disease syndrome, which share many of the same symptoms as ME/CFS.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/diagnóstico , Síndrome de Fatiga Crónica/genética , Leucocitos Mononucleares , Inteligencia Artificial , Síndrome Post Agudo de COVID-19 , Pruebas Diagnósticas de Rutina
4.
Psychosom Med ; 85(8): 672-681, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37531610

RESUMEN

OBJECTIVE: Functional somatic syndromes (FSS) are highly prevalent across all levels of health care. The fact that they are characterized by medically unexplained symptoms, such as fatigue and pain, raises the important question of their underlying pathophysiology. Psychosocial stress represents a significant factor in the development of FSS and can induce long-term modifications at the epigenetic level. The aim of this review was to systematically review, for the first time, whether individuals with FSS are characterized by specific alterations in DNA methylation. METHODS: MEDLINE and PsycINFO were searched from the first available date to September 2022. The inclusion criteria were as follows: a) adults fulfilling the research diagnostic criteria for chronic fatigue syndrome, fibromyalgia syndrome, and/or irritable bowel syndrome; b) healthy control group; and c) candidate-gene or genome-wide study of DNA methylation. RESULTS: Sixteen studies ( N = 957) were included. In candidate-gene studies, specific sites within NR3C1 were identified, which were hypomethylated in individuals with chronic fatigue syndrome compared with healthy controls. In genome-wide studies in chronic fatigue syndrome, a hypomethylated site located to LY86 and hypermethylated sites within HLA-DQB1 were found. In genome-wide studies in fibromyalgia syndrome, differential methylation in sites related to HDAC4 , TMEM44 , KCNQ1 , SLC17A9 , PRKG1 , ALPK3 , TFAP2A , and LY6G5C was found. CONCLUSIONS: Individuals with chronic fatigue syndrome and fibromyalgia syndrome seem to be characterized by altered DNA methylation of genes regulating cellular signaling and immune functioning. In chronic fatigue syndrome, there is preliminary evidence for these to be implicated in key pathophysiological alterations, such as hypocortisolism and low-grade inflammation, and to contribute to the debilitating symptoms these individuals experience. PREREGISTRATION: PROSPERO identifier: CRD42022364720.


Asunto(s)
Síndrome de Fatiga Crónica , Fibromialgia , Síndrome del Colon Irritable , Adulto , Humanos , Síndrome de Fatiga Crónica/genética , Fibromialgia/genética , Metilación de ADN , Estudio de Asociación del Genoma Completo , Síndrome del Colon Irritable/genética
5.
Gene ; 877: 147568, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37328077

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with obscure aetiology. The underdiagnosis rate of ME/CFS is high due to the lack of diagnostic criteria based on objective markers. In recent years, circRNAs have emerged as potential genetic biomarkers for neurological diseases, including Parkinson's disease and Alzheimer's disease, making them likely to have the same prospect of being biomarkers in ME/CFS. However, despite the extensive amount of research that has been performed on the transcriptomes of ME/CFS patients, all of them are solely focused on linear RNAs, and the profiling of circRNAs in ME/CFS has been completely omitted. In this study, we investigated the expression profiles of circRNAs, comparing ME/CFS patients and controls before and after two sessions of cardiopulmonary exercise longitudinally. In patients with ME/CFS, the number of detected circRNAs was higher compared to healthy controls, indicating potential differences in circRNA expression associated with the disease. Additionally, healthy controls showed an increase in the number of circRNAs following exercise testing, while no similar pattern was evident in ME/CFS patients, further highlighting physiological differences between the two groups. A lack of correlation was observed between differentially expressed circRNAs and their corresponding coding genes in terms of expression and function, suggesting the potential of circRNAs as independent biomarkers in ME/CFS. Specifically, 14 circRNAs were highly expressed in ME/CFS patients but absent in controls throughout the exercise study, indicating a unique molecular signature specific to ME/CFS patients and providing potential diagnostic biomarkers for the disease. Significant enrichment of protein and gene regulative pathways were detected in relation to five of these 14 circRNAs based on their predicted miRNA target genes. Overall, this is the first study to describe the circRNA expression profile in peripheral blood of ME/CFS patients, providing valuable insights into the molecular mechanisms underlying the disease.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/genética , Síndrome de Fatiga Crónica/diagnóstico , ARN Circular/genética , Regulación de la Expresión Génica , Marcadores Genéticos
6.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373402

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multi-symptom illness characterized by debilitating fatigue and post-exertional malaise (PEM). Numerous studies have reported sex differences at the epidemiological, cellular, and molecular levels between male and female ME/CFS patients. To gain further insight into these sex-dependent changes, we evaluated differential gene expression by RNA-sequencing (RNA-Seq) in 33 ME/CFS patients (20 female, 13 male) and 34 matched healthy controls (20 female and 14 male) before, during, and after an exercise challenge intended to provoke PEM. Our findings revealed that pathways related to immune-cell signaling (including IL-12) and natural killer cell cytotoxicity were activated as a result of exertion in the male ME/CFS cohort, while female ME/CFS patients did not show significant enough changes in gene expression to meet the criteria for the differential expression. Functional analysis during recovery from an exercise challenge showed that male ME/CFS patients had distinct changes in the regulation of specific cytokine signals (including IL-1ß). Meanwhile, female ME/CFS patients had significant alterations in gene networks related to cell stress, response to herpes viruses, and NF-κß signaling. The functional pathways and differentially expressed genes highlighted in this pilot project provide insight into the sex-specific pathophysiology of ME/CFS.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Masculino , Femenino , Síndrome de Fatiga Crónica/genética , Síndrome de Fatiga Crónica/metabolismo , Proyectos Piloto , Células Asesinas Naturales/metabolismo , Interleucina-12/metabolismo , Citocinas/metabolismo
7.
Zhen Ci Yan Jiu ; 48(4): 317-24, 2023 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-37186194

RESUMEN

OBJECTIVE: To observe the effect of transcutaneous electrical acupoint stimulation (TEAS) on the histomorphological manifestations of hippocampal CA1 region and the expression of extracellular regulatory protein kinase (ERK), cyclic adenosine response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in chronic fatigue syndrome (CFS) rats, so as to explore the mechanisms of TEAS in improving the learning and memory abilities of CFS rats. METHODS: Forty male Wistar rats were randomly divided into normal group (10 rats) and modeling group (30 rats); then after modeling, they were selected and randomly divided into model group (10 rats) and TEAS group (10 rats). CFS rats model was prepared by sleep deprivation combined with weight-bearing swimming. Rats in the TEAS group were stimulated with Han's acupoint nerve stimulator at bilateral "Zusanli" (ST36) and "Shenshu" (BL23) (2 Hz/15 Hz, 1-2 mA), 20 min each time, once a day for 4 weeks with 1 d rest every 6 d. The score of general conditions of rats was evaluated. The learning and memory ability was tested with Morris water maze. The morphology and ultrastructure of hippocampal CA1 region were observed by HE staining and transmission electron microscopy. The expression levels of ERK, CREB and BDNF mRNAs and proteins in hippocampus were detected by real time quantitative PCR and Western blot, respectively. RESULTS: Compared with the normal group, the score of general condition was increased (P<0.01); the escape latency was prolonged (P<0.05, P<0.01) and the times of crossing the original platform was decreased (P<0.05); the expression levels of ERK, CREB and BDNF mRNAs and proteins in hippocampus were decreased (P<0.05, P<0.01) in the model group. Compared with the model group, the scores of general condition on the 42nd and 49th day were decreased (P<0.05, P<0.01); the escape latency was shortened (P<0.01, P<0.05)and the times of crossing the original platform were increased (P<0.05); the expression levels of ERK, CREB and BDNF mRNAs and proteins in hippocampus were increased (P<0.01, P<0.05) in the TEAS group. The morphology of neurons in hippocampal CA1 region was normal in the normal group. In the model group, the number of neurons in hippocampal CA1 region decreased, the arrangement of nerve cells was scattered, the number of apoptotic cells increased, some nuclear structures disappeared, nuclear heterochromatin increased, the cell membrane wrinkled, the chromatin appeared empty bright area, and the crista was incomplete. Compared with the model group, the nerve cells morphology in hippocampal CA1 region was more regular, the number of apoptotic cells decreased, the chromatin and the cytoplasm were uniformly distributed, and the crista was relatively intact in the TEAS group. CONCLUSION: TEAS can improve the learning and memory ability of CFS rats, the mechanisms may be related to improving the neural structure of hippocampal CA1 region and up-regulating the expression levels of ERK/CREB/BDNF.


Asunto(s)
Electroacupuntura , Síndrome de Fatiga Crónica , Ratas , Masculino , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Síndrome de Fatiga Crónica/genética , Síndrome de Fatiga Crónica/terapia , Ratas Sprague-Dawley , Puntos de Acupuntura , Ratas Wistar , Hipocampo , Cromatina
8.
Artículo en Inglés | MEDLINE | ID: mdl-36767803

RESUMEN

New clinical observational studies suggest that Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a sequela of COVID-19 infection, but whether there is an exact causal relationship between COVID-19 and ME/CFS remains to be verified. To investigate whether infection with COVID-19 actually causes ME/CFS, this paper obtained pooled data from the Genome Wide Association Study (GWAS) and analyzed the relationship between COVID susceptibility, hospitalization and severity of COVID and ME/CFS, respectively, using two-sample Mendelian randomization (TSMR). TSMR analysis was performed by inverse variance weighting (IVW), weighted median method, MR-Egger regression and weighted mode and simple mode methods, respectively, and then the causal relationship between COVID-19 and ME/CFS was further evaluated by odds ratio (OR). Eventually, we found that COVID-19 severity, hospitalization and susceptibility were all not significantly correlated with ME/CFS (OR:1.000,1.000,1.000; 95% CI:0.999-1.000, 0.999-1.001, 0.998-1.002; p = 0.333, 0.862, 0.998, respectively). We found the results to be reliable after sensitivity analysis. These results suggested that SARS-CoV-2 infection may not significantly contribute to the elevated risk of developing CFS, and therefore ME/CFS may not be a sequela of COVID-19, but may simply present with symptoms similar to those of CFS after COVID-19 infection, and thus should be judged and differentiated by physicians when diagnosing and treating the disease in clinical practice.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/etiología , Síndrome de Fatiga Crónica/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , SARS-CoV-2/genética
9.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769022

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex multi-organ illness characterized by unexplained debilitating fatigue and post-exertional malaise (PEM), which is defined as a worsening of symptoms following even minor physical or mental exertion. Our study aimed to evaluate transcriptomic changes in ME/CFS female patients undergoing an exercise challenge intended to precipitate PEM. Our time points (baseline before exercise challenge, the point of maximal exertion, and after an exercise challenge) allowed for the exploration of the transcriptomic response to exercise and recovery in female patients with ME/CFS, as compared to healthy controls (HCs). Under maximal exertion, ME/CFS patients did not show significant changes in gene expression, while HCs demonstrated altered functional gene networks related to signaling and integral functions of their immune cells. During the recovery period (commonly during onset of PEM), female ME/CFS patients showed dysregulated immune signaling pathways and dysfunctional cellular responses to stress. The unique functional pathways identified provide a foundation for future research efforts into the disease, as well as for potential targeted treatment options.


Asunto(s)
Síndrome de Fatiga Crónica , Humanos , Femenino , Síndrome de Fatiga Crónica/genética , Síndrome de Fatiga Crónica/diagnóstico , Transcriptoma , Perfilación de la Expresión Génica , Ejercicio Físico/fisiología , Transducción de Señal
10.
Sci Rep ; 13(1): 1896, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732593

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and fibromyalgia (FM) are two chronic complex diseases with overlapping symptoms affecting multiple systems and organs over time. Due to the absence of validated biomarkers and similarity in symptoms, both disorders are misdiagnosed, and the comorbidity of the two is often unrecognized. Our study aimed to investigate the expression profiles of 11 circulating miRNAs previously associated with ME/CFS pathogenesis in FM patients and individuals with a comorbid diagnosis of FM associated with ME/CFS (ME/CFS + FM), and matched sedentary healthy controls. Whether these 11 circulating miRNAs expression can differentiate between the two disorders was also examined. Our results highlight differential circulating miRNAs expression signatures between ME/CFS, FM and ME/CFS + FM, which also correlate to symptom severity between ME/CFS and ME/CFS + FM groups. We provided a prediction model, by using a machine-learning approach based on 11 circulating miRNAs levels, which can be used to discriminate between patients suffering from ME/CFS, FM and ME/CFS + FM. These 11 miRNAs are proposed as potential biomarkers for discriminating ME/CFS from FM. The results of this study demonstrate that ME/CFS and FM are two distinct illnesses, and we highlight the comorbidity between the two conditions. Proper diagnosis of patients suffering from ME/CFS, FM or ME/CFS + FM is crucial to elucidate the pathophysiology of both diseases, determine preventive measures, and establish more effective treatments.


Asunto(s)
MicroARN Circulante , Síndrome de Fatiga Crónica , Fibromialgia , MicroARNs , Humanos , Síndrome de Fatiga Crónica/diagnóstico , Síndrome de Fatiga Crónica/genética , Fibromialgia/diagnóstico , Fibromialgia/genética , MicroARN Circulante/genética , Enfermedad Crónica , Biomarcadores
11.
Psychol Med ; 53(9): 3879-3886, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35354508

RESUMEN

BACKGROUND: Functional somatic disorders (FSD) feature medical symptoms of unclear etiology. Attempts to clarify their origin have been hampered by a lack of rigorous research designs. We sought to clarify the etiology of the FSD by examining the genetic risk patterns for FSD and other related disorders. METHODS: This study was performed in 5 829 186 individuals from Swedish national registers. We quantified familial genetic risk for FSD, internalizing disorders, and somatic disorders in cases of chronic fatigue syndrome (CFS), fibromyalgia (FM), and irritable bowel syndrome (IBS), using a novel method based on aggregate risk in first to fifth degree relatives, adjusting for cohabitation. We compared these profiles with those of a prototypic internalizing psychiatric - major depression (MD) - and a somatic/autoimmune disorder: rheumatoid arthritis (RA). RESULTS: Patients with FM carry substantial genetic risks not only for FM, but also for pain syndromes and internalizing, autoimmune and sleep disorders. The genetic risk profiles for IBS and CFS are also widely distributed although with lower average risks. By contrast, genetic risk profiles of MD and RA are much more restricted to related conditions. CONCLUSION: Patients with FM have a relatively unique family genetic risk score profile with elevated genetic risk across a range of disorders that differs markedly from the profiles of a classic autoimmune disorder (RA) and internalizing disorder (MD). A similar less marked pattern of genetic risks was seen for IBS and CFS. FSD arise from a distinctive pattern of genetic liability for a diversity of psychiatric, autoimmune, pain, sleep, and functional somatic disorders.


Asunto(s)
Artritis Reumatoide , Trastorno Depresivo Mayor , Síndrome de Fatiga Crónica , Fibromialgia , Síndrome del Colon Irritable , Humanos , Fibromialgia/epidemiología , Fibromialgia/genética , Síndrome del Colon Irritable/epidemiología , Síndrome del Colon Irritable/genética , Síndrome de Fatiga Crónica/epidemiología , Síndrome de Fatiga Crónica/genética , Comorbilidad , Depresión , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/genética , Suecia/epidemiología , Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Factores de Riesgo , Dolor
12.
J Transl Med ; 20(1): 598, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517845

RESUMEN

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease that lacks known pathogenesis, distinctive diagnostic criteria, and effective treatment options. Understanding the genetic (and other) risk factors associated with the disease would begin to help to alleviate some of these issues for patients. METHODS: We applied both GWAS and the PrecisionLife combinatorial analytics platform to analyze ME/CFS cohorts from UK Biobank, including the Pain Questionnaire cohort, in a case-control design with 1000 cycles of fully random permutation. Results from this study were supported by a series of replication and cohort comparison experiments, including use of disjoint Verbal Interview CFS, post-viral fatigue syndrome and fibromyalgia cohorts also derived from UK Biobank, and compared results for overlap and reproducibility. RESULTS: Combinatorial analysis revealed 199 SNPs mapping to 14 genes that were significantly associated with 91% of the cases in the ME/CFS population. These SNPs were found to stratify by shared cases into 15 clusters (communities) made up of 84 high-order combinations of between 3 and 5 SNPs. p-values for these communities range from 2.3 × 10-10 to 1.6 × 10-72. Many of the genes identified are linked to the key cellular mechanisms hypothesized to underpin ME/CFS, including vulnerabilities to stress and/or infection, mitochondrial dysfunction, sleep disturbance and autoimmune development. We identified 3 of the critical SNPs replicated in the post-viral fatigue syndrome cohort and 2 SNPs replicated in the fibromyalgia cohort. We also noted similarities with genes associated with multiple sclerosis and long COVID, which share some symptoms and potentially a viral infection trigger with ME/CFS. CONCLUSIONS: This study provides the first detailed genetic insights into the pathophysiological mechanisms underpinning ME/CFS and offers new approaches for better diagnosis and treatment of patients.


Asunto(s)
Síndrome de Fatiga Crónica , Fibromialgia , Humanos , COVID-19/complicaciones , Síndrome de Fatiga Crónica/genética , Fibromialgia/genética , Síndrome Post Agudo de COVID-19/genética , Reproducibilidad de los Resultados , Factores de Riesgo
13.
Ann Clin Transl Neurol ; 9(11): 1838-1857, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36204816

RESUMEN

COVID-19 and ME/CFS present with some similar symptoms, especially physical and mental fatigue. In order to understand the basis of these similarities and the possibility of underlying common genetic components, we performed a systematic review of all published genetic association and cohort studies regarding COVID-19 and ME/CFS and extracted the genes along with the genetic variants investigated. We then performed gene ontology and pathway analysis of those genes that gave significant results in the individual studies to yield functional annotations of the studied genes using protein analysis through evolutionary relationships (PANTHER) VERSION 17.0 software. Finally, we identified the common genetic components of these two conditions. Seventy-one studies for COVID-19 and 26 studies for ME/CFS were included in the systematic review in which the expression of 97 genes for COVID-19 and 429 genes for ME/CFS were significantly affected. We found that ACE, HLA-A, HLA-C, HLA-DQA1, HLA-DRB1, and TYK2 are the common genes that gave significant results. The findings of the pathway analysis highlight the contribution of inflammation mediated by chemokine and cytokine signaling pathways, and the T cell activation and Toll receptor signaling pathways. Protein class analysis revealed the contribution of defense/immunity proteins, as well as protein-modifying enzymes. Our results suggest that the pathogenesis of both syndromes could involve some immune dysfunction.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Humanos , Síndrome de Fatiga Crónica/genética , Síndrome de Fatiga Crónica/metabolismo , COVID-19/genética , Estudios de Cohortes , Inflamación
14.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233152

RESUMEN

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease with variable severity. Patients experience frequent relapses where symptoms increase in severity, leaving them with a marked reduction in quality of life. Previous work has investigated molecular differences between ME/CFS patients and healthy controls, but not the dynamic changes specific to each individual patient. We applied precision medicine here to map genomic changes in two selected ME/CFS patients through a period that contained a relapse recovery cycle. DNA was isolated from two patients and a healthy age/gender matched control at regular intervals and captured the patient relapse in each case. Reduced representation DNA methylation sequencing profiles were obtained spanning the relapse recovery cycle. Both patients showed a significantly larger methylome variability (10-20-fold) through the period of sampling compared with the control. During the relapse, changes in the methylome profiles of the two patients were detected in regulatory-active regions of the genome that were associated, respectively, with 157 and 127 downstream genes, indicating disturbed metabolic, immune and inflammatory functions. Severe health relapses in the ME/CFS patients resulted in functionally important changes in their DNA methylomes that, while differing between the two patients, led to very similar compromised physiology. DNA methylation as a signature of disease variability in ongoing ME/CFS may have practical applications for strategies to decrease relapse frequency.


Asunto(s)
Síndrome de Fatiga Crónica , Epigénesis Genética , Epigenómica , Síndrome de Fatiga Crónica/genética , Síndrome de Fatiga Crónica/metabolismo , Humanos , Calidad de Vida , Recurrencia
15.
Front Immunol ; 13: 952987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189286

RESUMEN

Background: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global crisis. Although many people recover from COVID-19 infection, they are likely to develop persistent symptoms similar to those of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) after discharge. Those constellations of symptoms persist for months after infection, called Long COVID, which may lead to considerable financial burden and healthcare challenges. However, the mechanisms underlying Long COVID and ME/CFS remain unclear. Methods: We collected the genes associated with Long COVID and ME/CFS in databases by restricted screening conditions and clinical sample datasets with limited filters. The common genes for Long COVID and ME/CFS were finally obtained by taking the intersection. We performed several advanced bioinformatics analyses based on common genes, including gene ontology and pathway enrichment analyses, protein-protein interaction (PPI) analysis, transcription factor (TF)-gene interaction network analysis, transcription factor-miRNA co-regulatory network analysis, and candidate drug analysis prediction. Results: We found nine common genes between Long COVID and ME/CFS and gained a piece of detailed information on their biological functions and signaling pathways through enrichment analysis. Five hub proteins (IL-6, IL-1B, CD8A, TP53, and CXCL8) were collected by the PPI network. The TF-gene and TF-miRNA coregulatory networks were demonstrated by NetworkAnalyst. In the end, 10 potential chemical compounds were predicted. Conclusion: This study revealed common gene interaction networks of Long COVID and ME/CFS and predicted potential therapeutic drugs for clinical practice. Our findings help to identify the potential biological mechanism between Long COVID and ME/CFS. However, more laboratory and multicenter evidence is required to explore greater mechanistic insight before clinical application in the future.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , MicroARNs , COVID-19/complicaciones , COVID-19/genética , Biología Computacional , Síndrome de Fatiga Crónica/diagnóstico , Síndrome de Fatiga Crónica/epidemiología , Síndrome de Fatiga Crónica/genética , Humanos , Interleucina-6 , Pandemias , SARS-CoV-2 , Biología de Sistemas , Factores de Transcripción , Síndrome Post Agudo de COVID-19
16.
J Transl Med ; 20(1): 487, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284330

RESUMEN

BACKGROUND: Catechol-O-methyltransferase (COMT) has been shown to influence clinical pain, descending modulation, and exercise-induced symptom worsening. COMT regulates nociceptive processing and inflammation, key pathophysiological features of Chronic Fatigue Syndrome and Fibromyalgia (CFS/FM). We aimed to determine the interactions between genetic and epigenetic mechanisms regulating COMT and its influence on inflammatory markers and symptoms in patients with CFS/FM. METHODS: A case-control study with repeated-measures design was used to reduce the chance of false positive and increase the power of our findings. Fifty-four participants (28 patients with CFS/FM and 26 controls) were assessed twice within 4 days. The assessment included clinical questionnaires, neurophysiological assessment (pain thresholds, temporal summation, and conditioned pain modulation), and blood withdrawal in order to assess rs4818, rs4633, and rs4680 COMT polymorphisms and perform haplotype estimation, DNA methylation in the COMT gene (both MB-COMT and S-COMT promoters), and cytokine expression (TNF-α, IFN-γ, IL-6, and TGF-ß). RESULTS: COMT haplotypes were associated with DNA methylation in the S-COMT promoter, TGF-ß expression, and symptoms. However, this was not specific for one condition. Significant between-group differences were found for increased DNA methylation in the MB-COMT promoter and decreased IFN-γ expression in patients. DISCUSSION: Our results are consistent with basic and clinical research, providing interesting insights into genetic-epigenetic regulatory mechanisms. MB-COMT DNA methylation might be an independent factor contributing to the pathophysiology of CFS/FM. Further research on DNA methylation in complex conditions such as CFS/FM is warranted. We recommend future research to employ a repeated-measure design to control for biomarkers variability and within-subject changes.


Asunto(s)
Síndrome de Fatiga Crónica , Fibromialgia , Humanos , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Fibromialgia/genética , Síndrome de Fatiga Crónica/genética , Estudios de Casos y Controles , Epigénesis Genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Polimorfismo de Nucleótido Simple/genética , Dolor/genética , Inflamación/genética , Factor de Crecimiento Transformador beta/metabolismo
17.
Transl Psychiatry ; 12(1): 277, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821115

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease with a variety of symptoms such as post-exertional malaise, fatigue, and pain, but where aetiology and pathogenesis are unknown. An increasing number of studies have implicated the involvement of the immune system in ME/CFS. Furthermore, a hereditary component is suggested by the reported increased risk for disease in relatives, and genetic association studies are being performed to identify potential risk variants. We recently reported an association with the immunologically important human leucocyte antigen (HLA) genes HLA-C and HLA-DQB1 in ME/CFS. Furthermore, a genome-wide genetic association study in 42 ME/CFS patients reported significant association signals with two variants in the T cell receptor alpha (TRA) locus (P value <5 × 10-8). As the T cell receptors interact with the HLA molecules, we aimed to replicate the previously reported findings in the TRA locus using a large Norwegian ME/CFS cohort (409 cases and 810 controls) and data from the UK biobank (2105 cases and 4786 controls). We investigated numerous SNPs in the TRA locus, including the two previously ME/CFS-associated variants, rs11157573 and rs17255510. No associations were observed in the Norwegian cohort, and there was no significant association with the two previously reported SNPs in any of the cohorts. However, other SNPs showed signs of association (P value <0.05) in the UK Biobank cohort and meta-analyses of Norwegian and UK biobank cohorts, but none survived correction for multiple testing. Hence, our research did not identify any reliable associations with variants in the TRA locus.


Asunto(s)
Síndrome de Fatiga Crónica , Estudios de Cohortes , Síndrome de Fatiga Crónica/genética , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
18.
BMC Neurol ; 22(1): 269, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854226

RESUMEN

BACKGROUND: Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a common, long-term condition characterised by post-exertional malaise, often with fatigue that is not significantly relieved by rest. ME/CFS has no confirmed diagnostic test or effective treatment and we lack knowledge of its causes. Identification of genes and cellular processes whose disruption adds to ME/CFS risk is a necessary first step towards development of effective therapy. METHODS: Here we describe DecodeME, an ongoing study co-produced by people with lived experience of ME/CFS and scientists. Together we designed the study and obtained funding and are now recruiting up to 25,000 people in the UK with a clinical diagnosis of ME/CFS. Those eligible for the study are at least 16 years old, pass international study criteria, and lack any alternative diagnoses that can result in chronic fatigue. These will include 5,000 people whose ME/CFS diagnosis was a consequence of SARS-CoV-2 infection. Questionnaires are completed online or on paper. Participants' saliva DNA samples are acquired by post, which improves participation by more severely-affected individuals. Digital marketing and social media approaches resulted in 29,000 people with ME/CFS in the UK pre-registering their interest in participating. We will perform a genome-wide association study, comparing participants' genotypes with those from UK Biobank as controls. This should generate hypotheses regarding the genes, mechanisms and cell types contributing to ME/CFS disease aetiology. DISCUSSION: The DecodeME study has been reviewed and given a favourable opinion by the North West - Liverpool Central Research Ethics Committee (21/NW/0169). Relevant documents will be available online ( www.decodeme.org.uk ). Genetic data will be disseminated as associated variants and genomic intervals, and as summary statistics. Results will be reported on the DecodeME website and via open access publications.


Asunto(s)
COVID-19 , Síndrome de Fatiga Crónica , Adolescente , Síndrome de Fatiga Crónica/genética , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , SARS-CoV-2
19.
Brain Behav Immun ; 102: 362-369, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35318112

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown etiology and pathogenesis, which manifests in a variety of symptoms like post-exertional malaise, brain fog, fatigue and pain. Hereditability is suggested by an increased disease risk in relatives, however, genome-wide association studies in ME/CFS have been limited by small sample sizes and broad diagnostic criteria, therefore no established risk loci exist to date. In this study, we have analyzed three ME/CFS cohorts: a Norwegian discovery cohort (N = 427), a Danish replication cohort (N = 460) and a replication dataset from the UK biobank (N = 2105). To the best of our knowledge, this is the first ME/CFS genome-wide association study of this magnitude incorporating 2532 patients for the genome-wide analyses and 460 patients for a targeted analysis. Even so, we did not find any ME/CFS risk loci displaying genome-wide significance. In the Norwegian discovery cohort, the TPPP gene region showed the most significant association (rs115523291, P = 8.5 × 10-7), but we could not replicate the top SNP. However, several other SNPs in the TPPP gene identified in the Norwegian discovery cohort showed modest association signals in the self-reported UK biobank CFS cohort, which was also present in the combined analysis of the Norwegian and UK biobank cohorts, TPPP (rs139264145; P = 0.00004). Interestingly, TPPP is expressed in brain tissues, hence it will be interesting to see whether this association, with time, will be verified in even larger cohorts. Taken together our study, despite being the largest to date, could not establish any ME/CFS risk loci, but comprises data for future studies to accumulate the power needed to reach genome-wide significance.


Asunto(s)
Síndrome de Fatiga Crónica , Estudios de Cohortes , Síndrome de Fatiga Crónica/genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple/genética , Autoinforme
20.
Zhen Ci Yan Jiu ; 46(11): 980-4, 2021 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-34865338

RESUMEN

Acupuncture therapy is effective in the treatment of chronic fatigue syndrome (CFS) and has its own unique advantages. In the present paper, we reviewed the progress of experimental researches on the underlying mechanisms of acupuncture treatment of CFS in recent 10 years from: 1) regulating the immune system including the peripheral immune organ, immune cells and immune cytokines, proinflammatory and anti-inflammatory cytokines, and lowering the increase of positive rate of multiple mycoplasma infection; 2) regulating the neuroendocrine system including the hypothalamus-pituitary-adrenal axis and stress hormones, monoamine neurotransmitters, and opioid peptides; 3)raising the anti- oxidative stress ability by reducing malondiadehyde, and upregulating activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase; and 4) regulating multiple cellular molecule signaling pathways revealed by genomic and proteomic technologies. In conclusion, acupuncture can relieve CFS through multiple ways and systems, which may provide some ideas for further studies on the biological mechanisms.


Asunto(s)
Terapia por Acupuntura , Acupuntura , Síndrome de Fatiga Crónica , Síndrome de Fatiga Crónica/genética , Síndrome de Fatiga Crónica/terapia , Humanos , Sistema Hipófiso-Suprarrenal , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...