Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Pediatr Cardiol ; 44(8): 1736-1740, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37597120

RESUMEN

The autosomal recessive (AR) form of Long QT Syndrome (LQTS) is described both associated with deafness known as Jervell and Lange-Nielsen (JLN) syndrome, and without deafness (WD). The aim of the study is to report the characteristics of AR LQTS patients and the efficacy of the therapy. Data of all children with AR LQTS referred to the Bambino Gesù Children's Hospital IRCCS from September 2012 to September 2021were included. Three (30%) patients had compound heterozygosity and 7 (70%) had homozygous variants of the KCNQ1 gene, the latter showing deafness. Four patients (40%) presented aborted sudden cardiac death (aSCD): three with previous episodes of syncope (75%), the other without previous symptoms (16.6% of asymptomatic patients). An episode of aSCD occurred in 2/3 (66.7%) of WD and heterozygous patients, while in 2/7 (28%) JLN and homozygous patients and in 2/2 patients with QTC > 600 ms. All patients were treated with Nadolol. In 5 Mexiletine was added, shortening QTc and obtaining the disappearance of the T-wave alternance (TWA) in 3/3. Episodes of aSCD seem to be more frequent in LQTS patients with compound heterozygous variants and WD than in those with JLN and homozygous variants. Episodes of aSCD also appear more frequent in children with syncope or with QTc value > 600 ms, even on beta-blocker therapy, than in patients without syncope or with Qtc < 600 ms. However, our descriptive results should be confirmed by larger studies. Moreover, Mexiletine addition reduced QTc value and eliminated TWA.


Asunto(s)
Sordera , Paro Cardíaco , Síndrome de Jervell-Lange Nielsen , Síndrome de QT Prolongado , Niño , Humanos , Canal de Potasio KCNQ1/genética , Mexiletine/uso terapéutico , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/diagnóstico , Síndrome de Jervell-Lange Nielsen/tratamiento farmacológico , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de Jervell-Lange Nielsen/diagnóstico , Síncope/genética
2.
BMC Cardiovasc Disord ; 23(1): 399, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37568094

RESUMEN

OBJECTIVES: Long QT syndrome (LQTS) is one of the primary causes of sudden cardiac death (SCD) in youth. Studies have identified mutations in ion channel genes as key players in the pathogenesis of LQTS. However, the specific etiology in individual families remains unknown. METHODS: Three unrelated Chinese pedigrees diagnosed with LQTS or Jervell and Lange-Nielsen syndrome (JLNS) were recruited clinically. Whole exome sequencing (WES) was performed and further validated by multiplex ligation-dependent probe amplification (MLPA) and Sanger sequencing. RESULTS: All of the probands in our study experienced syncope episodes and featured typically prolonged QTc-intervals. Two probands also presented with congenital hearing loss and iron-deficiency anemia and thus were diagnosed with JLNS. A total of five different variants in KCNQ1, encoding a subunit of the voltage-gated potassium channel, were identified in 3 probands. The heterozygous variants, KCNQ1 c.749T > C was responsible for LQTS in Case 1, transmitting in an autosomal dominant pattern. Two patterns of compound heterozygous variants were responsible for JLNS, including a large deletion causing loss of the exon 16 and missense variant c.1663 C > T in Case 2, and splicing variant c.605-2 A > G and frame-shift variant c.1265del in Case 3. To our knowledge, the compound heterozygous mutations containing a large deletion and missense variant were first reported in patients with JLNS. CONCLUSION: Our study expanded the LQTS genetic spectrum, thus favoring disease screening and diagnosis, personalized treatment, and genetic consultation.


Asunto(s)
Síndrome de Jervell-Lange Nielsen , Síndrome de QT Prolongado , Adolescente , Humanos , Síndrome de Jervell-Lange Nielsen/diagnóstico , Síndrome de Jervell-Lange Nielsen/genética , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Mutación , Exones , Mutación Missense , Linaje
3.
J Membr Biol ; 256(3): 287-297, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37166559

RESUMEN

Heart diseases such as arrhythmia are the main causes of sudden death. Arrhythmias are typically caused by mutations in specific genes, damage in the cardiac tissue, or due to some chemical exposure. Arrhythmias caused due to mutation is called inherited arrhythmia. Induced arrhythmias are caused due to tissue damage or chemical exposure. Mutations in genes that encode ion channels of the cardiac cells usually result in (dysfunction) improper functioning of the channel. Improper functioning of the ion channel may lead to major changes in the action potential (AP) of the cardiac cells. This further leads to distorted electrical activity of the heart. Distorted electrical activity will affect the ECG that results in arrhythmia. KCNQ1 P535T mutation is one such gene mutation that encodes the potassium ion channel (KV7.1) of the cardiac ventricular tissue. Its clinical significance is not known. This study aims to perform a simulation study on P535T mutation in the KCNQ1 gene that encodes the potassium ion channel KV7.1 in the ventricular tissue grid. The effect of P535T mutation on transmural tissue grids for three genotypes (wild type, heterozygous, and homozygous) of cells are studied and the generated pseudo-ECGs are compared. Results show the delayed repolarization in the cells of ventricular tissue grid. Slower propagation of action potential in the transmural tissue grid is observed in the mutated (heterozygous and homozygous) genotypes. Longer QT interval is also observed in the pseudo-ECG of heterozygous and homozygous genotype tissue grids. From the pseudo-ECGs, it is observed that KCNQ1 P535T mutation leads to Long QT Syndrome (LQTS) which may result in life-threatening arrhythmias, such as Torsade de Pointes (TdP), Jervell and Lange-Nielsen syndrome (JLNS), and Romano-Ward syndrome (RWS).


Asunto(s)
Síndrome de Jervell-Lange Nielsen , Síndrome de QT Prolongado , Síndrome de Romano-Ward , Humanos , Canal de Potasio KCNQ1/genética , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de QT Prolongado/genética , Síndrome de Romano-Ward/genética , Mutación , Canales de Potasio , Canales de Potasio KCNQ/genética
4.
Orphanet J Rare Dis ; 18(1): 23, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721196

RESUMEN

BACKGROUND: The c.1124_1127delTTCA p.(Ile375Argfs*43) pathogenic variant is the most frequently identified molecular defect in the KCNQ1 gene in the cardiogenetics clinic of the Antwerp University Hospital. This variant was observed in nine families presenting with either Jervell-Lange-Nielsen syndrome or long QT syndrome (LQTS). Here, we report on the molecular, clinical and functional characterization of the KCNQ1 c.1124_1127delTTCA variant. RESULTS: Forty-one heterozygous variant harboring individuals demonstrated a predominantly mild clinical and electrophysiological phenotype, compared to individuals harboring other KCNQ1 pathogenic variants (5% symptomatic before 40 years of age, compared to 24% and 29% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers, respectively, 33% with QTc ≤ 440 ms compared to 10% in p.(Tyr111Cys) and p.(Ala341Val) variant carriers). The LQTS phenotype was most comparable to that observed for the Swedish p.(Arg518*) founder mutation (7% symptomatic at any age, compared to 17% in p.(Arg518*) variant carriers, 33% with QTc ≤ 440 ms compared to 16% in p.(Arg518*) variant carriers). Surprisingly, short tandem repeat analysis did not reveal a common haplotype for all families. One KCNQ1 c.1124_1127delTTCA harboring patient was diagnosed with Brugada syndrome (BrS). The hypothesis of a LQTS/BrS overlap syndrome was supported by electrophysiological evidence for both loss-of-function and gain-of-function (acceleration of channel kinetics) in a heterologous expression system. However, BrS phenotypes were not identified in other affected individuals and allelic KCNQ1 expression testing in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) showed nonsense mediated decay of the c.1124_1127delTTCA allele. CONCLUSIONS: The c.1124_1127delTTCA frameshift variant shows a high prevalence in our region, despite not being confirmed as a founder mutation. This variant leads to a mild LQTS phenotype in the heterozygous state. Despite initial evidence for a gain-of-function effect based on in vitro electrophysiological assessment in CHO cells and expression of the KCNQ1 c.1124_1127delTTCA allele in patient blood cells, additional testing in iPSC-CMs showed lack of expression of the mutant allele. This suggests haploinsufficiency as the pathogenic mechanism. Nonetheless, as inter-individual differences in allele expression in (iPSC-) cardiomyocytes have not been assessed, a modifying effect on the BrS phenotype through potassium current modulation cannot be excluded.


Asunto(s)
Canal de Potasio KCNQ1 , Síndrome de QT Prolongado , Animales , Cricetinae , Alelos , Bélgica , Cricetulus , Canal de Potasio KCNQ1/genética , Humanos , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de QT Prolongado/genética
5.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674868

RESUMEN

The KCNQ1 gene encodes the α-subunit of the cardiac voltage-gated potassium (Kv) channel KCNQ1, also denoted as Kv7.1 or KvLQT1. The channel assembles with the ß-subunit KCNE1, also known as minK, to generate the slowly activating cardiac delayed rectifier current IKs, a key regulator of the heart rate dependent adaptation of the cardiac action potential duration (APD). Loss-of-function variants in KCNQ1 cause the congenital Long QT1 (LQT1) syndrome, characterized by delayed cardiac repolarization and a QT interval prolongation in the surface electrocardiogram (ECG). Autosomal dominant loss-of-function variants in KCNQ1 result in the LQT syndrome called Romano-Ward syndrome (RWS), while autosomal recessive variants affecting function, lead to Jervell and Lange-Nielsen syndrome (JLNS), associated with deafness. The aim of this study was the characterization of novel KCNQ1 variants identified in patients with RWS to widen the spectrum of known LQT1 variants, and improve the interpretation of the clinical relevance of variants in the KCNQ1 gene. We functionally characterized nine human KCNQ1 variants using the voltage-clamp technique in Xenopus laevis oocytes, from which we report seven novel variants. The functional data was taken as input to model surface ECGs, to subsequently compare the functional changes with the clinically observed QTc times, allowing a further interpretation of the severity of the different LQTS variants. We found that the electrophysiological properties of the variants correlate with the severity of the clinically diagnosed phenotype in most cases, however, not in all. Electrophysiological studies combined with in silico modelling approaches are valuable components for the interpretation of the pathogenicity of KCNQ1 variants, but assessing the clinical severity demands the consideration of other factors that are included, for example in the Schwartz score.


Asunto(s)
Síndrome de Jervell-Lange Nielsen , Síndrome de Romano-Ward , Humanos , Síndrome de Romano-Ward/genética , Canal de Potasio KCNQ1/genética , Síndrome de Jervell-Lange Nielsen/genética , Fenotipo , Electrocardiografía , Mutación , Canales de Potasio KCNQ/genética
8.
Turk Kardiyol Dern Ars ; 49(5): 368-376, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34308870

RESUMEN

OBJECTIVE: Long QT syndrome (LQTS) is an inherited cardiac ion channel disorder (channelopathy) that is characterized by prolonged QT intervals on the electrocardiography (ECG) and possess the risk of sudden cardiac death (SCD). Jervell-Lange Nielsen syndrome (JLNS) is a specific subtype of LQTS that is accompanied by congenital sensorineural hearing loss, inherited autosomal recessively, and higher risk of SCD. In this study, we aimed to investigate JLNS prevalence in deaf children attending special schools for hearing loss, located in our province. METHODS: An ECG screening program was conducted in 6 special schools for children with hearing loss in Istanbul and a total of 440 students between 6 and 18 years old were included. Corrected QT interval (QTc) was calculated using the Bazett formula. Notably, 51 students, detected with any abnormal finding on ECG, were invited to our center for a comprehensive examination. RESULTS: A total of 8 patients were found with a prolonged QT interval. JLNS was diagnosed in 4 (0.9%) patients. In addition, 2 students had already been diagnosed with JLNS at another center earlier. The other 2 students, being siblings, were newly diagnosed with JLNS; and appropriate treatment was initiated. Genetic testing revealed a pathological homozygous mutation in KCNQ1 gene. The younger sibling (Case 1), who possessed a QTc of greater than 500 ms and a history of syncope, which was very suspicious for SCD, was implanted an implantable cardioverter-defibrillator. Propranolol treatment was initiated for both siblings. CONCLUSION: JLNS should be carefully considered and screened, especially in patients with a history of congenital deafness.


Asunto(s)
Pérdida Auditiva Bilateral/complicaciones , Pérdida Auditiva Sensorineural/complicaciones , Síndrome de Jervell-Lange Nielsen/epidemiología , Adolescente , Niño , Muerte Súbita Cardíaca , Electrocardiografía , Femenino , Pérdida Auditiva Bilateral/congénito , Pérdida Auditiva Sensorineural/congénito , Homocigoto , Humanos , Síndrome de Jervell-Lange Nielsen/diagnóstico , Síndrome de Jervell-Lange Nielsen/genética , Canal de Potasio KCNQ1/genética , Masculino , Mutación , Prevalencia , Estudios Prospectivos , Síncope/etiología , Turquía/epidemiología
10.
Nat Commun ; 12(1): 697, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514733

RESUMEN

Mutations in voltage-gated potassium channel KCNE1 cause Jervell and Lange-Nielsen syndrome type 2 (JLNS2), resulting in congenital deafness and vestibular dysfunction. We conducted gene therapy by injecting viral vectors using the canalostomy approach in Kcne1-/- mice to treat both the hearing and vestibular symptoms. Results showed early treatment prevented collapse of the Reissner's membrane and vestibular wall, retained the normal size of the semicircular canals, and prevented the degeneration of inner ear cells. In a dose-dependent manner, the treatment preserved auditory (16 out of 20 mice) and vestibular (20/20) functions in mice treated with the high-dosage for at least five months. In the low-dosage group, a subgroup of mice (13/20) showed improvements only in the vestibular functions. Results supported that highly efficient transduction is one of the key factors for achieving the efficacy and maintaining the long-term therapeutic effect. Secondary outcomes of treatment included improved birth and litter survival rates. Our results demonstrated that gene therapy via the canalostomy approach, which has been considered to be one of the more feasible delivery methods for human inner ear gene therapy, preserved auditory and vestibular functions in a dose-dependent manner in a mouse model of JLNS2.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Síndrome de Jervell-Lange Nielsen/terapia , Canales de Potasio con Entrada de Voltaje/genética , Canales Semicirculares/cirugía , Animales , Animales Recién Nacidos , Dependovirus , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Audición/genética , Humanos , Inyecciones/métodos , Síndrome de Jervell-Lange Nielsen/genética , Masculino , Ratones , Ratones Noqueados , Parvovirinae/genética , Propiocepción/genética
11.
Ann Palliat Med ; 10(4): 4938-4943, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33040543

RESUMEN

Jervell and Lange-Nielsen syndrome (JLNS) is a subtype of congenital long QT syndrome (LQTS), which is a potentially life-threatening ion channelopathy characterized by delayed myocardial repolarization that leads to QT prolongation. Since JLNS is a rare disease, there have been few in-depth studies on this disease since yet. Previous studies have found that the pathogenesis of JLNS is related to KCNQ1 or KCNE1 gene mutation. There are a relatively small number of studies reporting the successful ablation treatment on JLNS patient due to the extremely low incidence rate. We report a 51-year-old female patient diagnosed with JLNS through gene detection. The patient has A to G missense mutation in KCNE1 gene, and a subunit with abnormal structure, which is the basis for congenital deafness. The main clinical manifestation of this patient is frequent fatal ventricular arrhythmia triggered by premature ventricular contraction (PVC). Ablation was successfully performed to eliminate the triggering PVC. The patient was not able to have implantable cardioverter defibrillator (ICD) implantation due to economic reasons. During the 12-month follow-up, no syncope or fatal arrhythmia was found in this patient. Our case showed that radiofrequency catheter ablation (RFCA) was an effective way to treat fatal arrhythmia in JLNS patient.


Asunto(s)
Sordera , Síndrome de Jervell-Lange Nielsen , Arritmias Cardíacas , Femenino , Humanos , Síndrome de Jervell-Lange Nielsen/genética , Canal de Potasio KCNQ1/genética , Persona de Mediana Edad , Mutación
12.
Europace ; 22(12): 1880-1884, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-32830254

RESUMEN

AIMS: We report clinical and molecular analysis of an infant presenting with foetal bradycardia and clinical outcome of Jervell and Lange-Nielsen syndrome (JLNS). METHODS AND RESULTS: Clinical, electrocardiogram (ECG), and echocardiographic data were collected from members in a three-generation family. Whole exomes were amplified and sequenced for proband. The identified variants were verified in the remaining members. The pathogenicity of candidate variants was predicted using multiple software programmes. A 28-year-old non-consanguineous Chinese woman at 23 weeks' gestation presenting with sustained foetal bradycardia of 100 b.p.m. Immunological disorders and infection were excluded. The infant was delivered at 37 weeks' gestation with 2700-g birthweight. QTc was prolonged in both ECG and Holter recording. Hearing tests confirmed bilateral sensorineural hearing loss. Genetic testing demonstrated that the infant carried a novel frameshift c.431delC (p.I145Sfs*92) and a novel nonsense c.1175G>A (p.W392X) compound variants of KCNQ1 inherited from mother and father, respectively, in autosomal recessive inheritance. Only relative II-5 carrying heterozygous KCNQ1-I145Sfs*92 variant had prolonged QTc, while the other carriers did not have prolonged QT, suggesting an autosomal dominant inheritance of LQT1 phenotype with incomplete penetrance in the family. CONCLUSION: We report the novel frameshift KCNQ1-I145Sfs*92 and nonsense KCNQ1-W392X compound variants in autosomal recessive inheritance that caused JLNS presenting as sustained foetal bradycardia for the first time. Meanwhile, KCNQ1-I145Sfs*92 heterozygous variant demonstrated LQT1 phenotype in autosomal dominant inheritance with incomplete penetrance.


Asunto(s)
Síndrome de Jervell-Lange Nielsen , Síndrome de QT Prolongado , Adulto , Bradicardia/diagnóstico , Bradicardia/genética , China , Femenino , Humanos , Lactante , Síndrome de Jervell-Lange Nielsen/diagnóstico , Síndrome de Jervell-Lange Nielsen/genética , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Linaje
13.
Neural Plast ; 2020: 3569359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508908

RESUMEN

Jervell and Lange-Nielsen syndrome (JLNS) is a rare but severe autosomal recessive disease characterized by profound congenital deafness and a prolonged QTc interval (greater than 500 milliseconds) in the ECG waveforms. The prevalence of JLNS is about 1/1000000 to 1/200000 around the world. However, exceed 25% of JLNS patients suffered sudden cardiac death with kinds of triggers containing anesthesia. Approximately 90% of JLNS cases are caused by KCNQ1 gene mutations. Here, using next-generation sequencing (NGS), we identified a compound heterozygosity for two mutations c.1741A>T (novel) and c.477+5G>A (known) in KCNQ1 gene as the possible pathogenic cause of JLNS, which suggested a high risk of cardiac events in a deaf child. The hearing of this patient improved significantly with the help of cochlear implantation (CI). But life-threatening arrhythmias occurred with a trigger of anesthesia after the end of the CI surgery. Our findings extend the KCNQ1 gene mutation spectrum and contribute to the management of deaf children diagnosed with JLNS for otolaryngologists (especially cochlear implant teams).


Asunto(s)
Síndrome de Jervell-Lange Nielsen/genética , Canal de Potasio KCNQ1/genética , Mutación , Pueblo Asiatico , Preescolar , China , Análisis Mutacional de ADN , Sordera/genética , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Síndrome de Jervell-Lange Nielsen/fisiopatología , Masculino , Linaje
14.
Fetal Pediatr Pathol ; 38(4): 273-281, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30942114

RESUMEN

Background: Jervell and Lange-Nielsen syndrome (JLNS) is an autosomal recessive genetic disease with deafness and QT prolongation. Mutations in KCNQ1 and KCNE1 genes are a cause of JLNS. Our objective was to perform mutational analysis of the KCNQ1 and KCNE1 genes to determine the frequency of mutations in the Iranian population. Material and methods: Fourteen patients and their families were investigated. Mutational screening of the KCNQ1 and KCNE1 genes was performed by a polymerase chain reaction (PCR) followed by direct Sanger sequencing. Results: We identified two frameshift mutations in the KCNQ1 gene, including a novel mutation, c.1356 1356delG, and a known mutation, c.1534_1534delG. A common single nucleotide polymorphism (SNP), c.112G > A, was also found in KCNE1 in seven probands. Conclusion: A novel mutation in the KCNQ1 gene is described. There may be less frequency of mutations in the KCNQ1 and of KCNE1 genes in Iranian JLNS patients compared with other populations.


Asunto(s)
Síndrome de Jervell-Lange Nielsen/genética , Canal de Potasio KCNQ1/genética , Canales de Potasio con Entrada de Voltaje/genética , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Mutación del Sistema de Lectura , Estudios de Asociación Genética , Heterocigoto , Homocigoto , Humanos , Irán/epidemiología , Masculino , Linaje , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
15.
Hum Mutat ; 40(2): 162-176, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30461122

RESUMEN

KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel-complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange-Nielson syndrome (JLNS1 and JLNS2), a cardio-auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death. Some normal-hearing carriers of heterozygous missense variants of KCNE1 and KCNQ1 have prolonged QT intervals, a dominantly inherited phenotype designated Romano-Ward syndrome (RWS), which is also associated with arrhythmias and elevated risk of sudden death. Coassembly of certain mutant KCNE1 monomers with wild-type KCNQ1 subunits results in RWS by a dominant negative mechanism. This paper reviews variants of KCNE1 and their associated phenotypes, including biallelic truncating null variants of KCNE1 that have not been previously reported. We describe three homozygous nonsense mutations of KCNE1 segregating in families ascertained ostensibly for nonsyndromic deafness: c.50G>A (p.Trp17*), c.51G>A (p.Trp17*), and c.138C>A (p.Tyr46*). Some individuals carrying missense variants of KCNE1 have RWS. However, heterozygotes for loss-of-function variants of KCNE1 may have normal QT intervals while biallelic null alleles are associated with JLNS2, indicating a complex genotype-phenotype spectrum for KCNE1 variants.


Asunto(s)
Sordera/genética , Síndrome de Jervell-Lange Nielsen/genética , Canales de Potasio con Entrada de Voltaje/genética , Síndrome de Romano-Ward/genética , Adolescente , Adulto , Codón sin Sentido/genética , Sordera/patología , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Heterocigoto , Homocigoto , Humanos , Síndrome de Jervell-Lange Nielsen/patología , Síndrome de QT Prolongado , Masculino , Persona de Mediana Edad , Mutación Missense/genética , Linaje , Fenotipo , Síndrome de Romano-Ward/patología , Adulto Joven
16.
Stem Cell Res ; 31: 174-180, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30099333

RESUMEN

Four human iPSC cell lines (one Jervell and Lange-Nielsen Syndrome, one Long QT Syndrome-type 1 and two healthy controls) were generated from peripheral blood obtained from donors belonging to the same family. CytoTune™-iPS 2.0 Sendai Reprogramming Kit (containing OCT3/4, KLF4, SOX2 and cMYC as reprogramming factors) was used to generate all cell lines. The four iPSCs have normal karyotype, express pluripotency markers as determined by RT-PCR and flow cytometry and differentiated spontaneously in vitro into cells of the three germ layers, confirming their pluripotent capacity.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de QT Prolongado/complicaciones , Diferenciación Celular , Humanos , Síndrome de Jervell-Lange Nielsen/patología , Factor 4 Similar a Kruppel
17.
Stem Cell Res ; 29: 157-161, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29677589

RESUMEN

We report the generation of human induced pluripotent stem cells (hiPSCs) from dermal fibroblasts of a female patient carrier of the two compound heterozygous mutations c.568 C>T p.R190W (maternal allele), and c.1781 G>A p.R594Q (paternal allele) on the KCNQ1 gene, causing Jervell and Lange-Nielsen Syndrome (JLNS). To obtain hiPSCs, we used the classical approach of the four retroviruses each encoding for a reprogramming factor OCT4, SOX2, KLF4, cMYC. The obtained hiPSC clones display pluripotent stem cell characteristics, and differentiate into spontaneously beating cardiomyocytes (hiPSC-CMs).


Asunto(s)
Heterocigoto , Células Madre Pluripotentes Inducidas , Síndrome de Jervell-Lange Nielsen , Canal de Potasio KCNQ1/genética , Mutación Missense , Sustitución de Aminoácidos , Línea Celular , Niño , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de Jervell-Lange Nielsen/metabolismo , Síndrome de Jervell-Lange Nielsen/patología , Factor 4 Similar a Kruppel
18.
Hereditas ; 154: 16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29270100

RESUMEN

BACKGROUND: Genealogy and molecular genetic studies of a Swedish river valley population resulted in a large pedigree, showing that the hereditary hemochromatosis (HH) HFE/p.C282Y mutation is inherited with other recessive disorders such as Wilson´s disease (WND), a rare recessive disorder of copper overload. The population also contain individuals with the Swedish long QT syndrome (LQTS1) founder mutation (KCNQ1/p.Y111C) which in homozygotes causes the Jervell & Lange Nielsen syndrome (JLNS) and hearing loss (HL).Aims of the study were to test whether the Swedish long QT founder mutation originated in an ancestral HFE family and if carriers had an increased risk for hemochromatosis (HH), a treatable disorder. We also aimed to identify the pathogenic mutation causing the hearing loss disorder segregating in the pedigree. METHODS: LQTS patients were asked about their ancestry and possible origin in a HH family. They were also offered a predictive testing for the HFE genotype. Church books were screened for families with hearing loss. One HH family had two members with hearing loss, who underwent molecular genetic analysis of the LQTS founder mutation, connexin 26 and thereafter exome sequencing. Another family with hearing loss in repeat generations was also analyzed for connexin 26 and underwent exome sequencing. RESULTS: Of nine LQTS patients studied, four carried a HFE mutation (two p.C282Y, two p.H63D), none was homozygous. Three LQTS patients confirmed origin in a female founder ( b 1694, identical to AJ b 1694, a HFE pedigree member from the Fax river. Her descent of 44 HH families, included also 29 families with hearing loss (HL) suggesting JLNS. Eleven LQTS probands confirmed origin in a second founder couple (b 1614/1605) in which the woman b 1605 was identical to a HFE pedigree member from the Fjällsjö river. In her descent there were not only 64 HH, six WND families, one JLNS, but also 48 hearing loss families. Most hearing loss was non syndromic and caused by founder effects of the late 16th century. One was of Swedish origin carrying the WHRN, c.1977delC, (p.S660Afs*30) mutation, the other was a TMC1(NM_138691),c.1814T>C,(p.L605P) mutation, possibly of Finnish origin. CONCLUSIONS: Deep human HFE genealogies show HFE to be associated with other genetic disorders like Wilson´s disease, LQTS, JLNS, and autosomal recessive hearing loss. Two new homozygous HL mutations in WHRN/p.S660Afs*30 and TMC1/p.L605P were identified,none of them previously reported from Scandinavia. The rarity of JLNS was possibly caused by miscarriage or intrauterine death. Most hearing loss (81.7%) was seen after 1844 when first cousin marriages were permitted. However, only 10 (10.3%) came from 1st cousin unions and only 2 (2.0 %) was born out of wedlock.


Asunto(s)
Efecto Fundador , Pérdida Auditiva Sensorineural/genética , Hemocromatosis/genética , Degeneración Hepatolenticular/genética , Síndrome de Jervell-Lange Nielsen/genética , Proteínas de la Membrana/genética , Análisis Mutacional de ADN , Femenino , Heterocigoto , Humanos , Masculino , Mutación , Linaje , Suecia
19.
BMC Med Genet ; 18(1): 114, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29037160

RESUMEN

BACKGROUND: Jervell and Lange-Nielsen syndrome (JLNS) isa recessive model of long QT syndrome which might also be related to possible hearing loss. Although the syndrome has been demonstrated to be originated from homozygous or compound heterozygous mutations in either the KCNQ1 or KCNE1 genes, additional mutations in other genetic loci should be considered, particularly in malignant course patients. CASE PRESENTATIONS: Three patients were admitted into hospital due to recurrent seizures/syncope, intrauterine and postnatal bradycardia respectively; moreover all three patients had congenital sensorineural hearing-loss. Their electrocardiograms showed markedly prolonged QT interval. Implantable defibrillator was implanted and left cardiac sympathetic denervation was performed due to the progressive disease in case 1. She had countless ventricular fibrillation and appropriate shock while using an implantable defibrillator. The DNA sequencing analysis of the KCNQ1 gene disclosed a homozygous c.728G > A (p.Arg243His) missense mutation in case1. Further targeted next generation sequencing of cardiac panel comprising 68 gene revealed a heterozygous c.1346 T > G (p.Ile449Arg) variant in RYR2 gene and a heterozygous c.809G > A (p.Cys270Tyr) variant in NKX2-5 gene in the same patient. Additional gene alterations in RYR2 and NKX2-5 genes were thought to be responsible for progressive and malignant course of the disease. As a result of DNA sequencing analysis of KCNQ1 and KCNE1 genes, a compound heterozygosity for two mutations had been detected in KCNQ1 gene in case 2: a maternally derived c.477 + 1G > A splice site mutation and a paternally derived c.520C > T (p.Arg174Cys) missense mutation. Sanger sequencing of KCNQ1 and KCNE1 genes displayed a homozygous c.1097G > A (p.Arg366Gln) mutation in KCNQ1 gene in case 3. ß-blocker therapy was initiated to all the index subjects. CONCLUSIONS: Three families of JLNS who presented with long QT and deafness and who carry homozygous, or compound heterozygous mutation in KCNQ1 gene were presented in this report. It was emphasized that broad targeted cardiac panels may be useful to predict the outcome especially in patients with unexplained phenotype-genotype correlation. Clinical presentations and molecular findings will be discussed further to clarify the phenotype genotype associations.


Asunto(s)
Pérdida Auditiva Sensorineural/congénito , Síndrome de Jervell-Lange Nielsen/genética , Canal de Potasio KCNQ1/genética , Polimorfismo de Nucleótido Simple , Antagonistas Adrenérgicos beta/uso terapéutico , Preescolar , Electrocardiografía , Femenino , Pérdida Auditiva Sensorineural/etiología , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteína Homeótica Nkx-2.5/genética , Homocigoto , Humanos , Lactante , Síndrome de Jervell-Lange Nielsen/diagnóstico , Síndrome de Jervell-Lange Nielsen/tratamiento farmacológico , Masculino , Linaje , Canales de Potasio con Entrada de Voltaje/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Análisis de Secuencia de ADN/métodos , Turquía
20.
BMC Med Genet ; 18(1): 66, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28595573

RESUMEN

BACKGROUND: According to previous KCNQ1 (potassium channel, voltage gated, KQT-like subfamily, member 1) gene screening studies, missense variants, but not nonsense or frame-shift variants, cause the majority of long QT syndrome (LQTS; Romano-Ward syndrome [RWS]) 1 cases. Several missense variants are reported to cause RWS by a dominant-negative mechanism, and some KCNQ1 variants can cause both Jervell and Lange-Nielsen Syndrome (JLNS; in an autosomal recessive manner) and LQTS1 (in an autosomal dominant manner), while other KCNQ1 variants cause only JLNS. The human KCNQ1 gene is known to have two transcript isoforms (kidney isoform and pancreas isoform), and both isoforms can form a functional cardiac potassium channel. CASE PRESENTATION: Here, we report a novel nonsense KCNQ1 variant causing not only JLNS, but also significant QTc prolongation identical to RWS in an autosomal dominant manner. Our case study supports that haploinsufficiency in the KCNQ1 gene is causative of significant QTc prolongation identical to RWS. Interestingly, the nonsense variant (NM_000218.2:c.115G > T [p.Glu39X]) locates in exon 1a of KCNQ1, which is a kidney-isoform specific exon. The variant is located closer to the N-terminus than previously identified nonsense or frame-shift variants. CONCLUSION: To the best of our knowledge, this is the first report showing that a nonsense variant in exon 1a of KCNQ1, which is the kidney-isoform specific exon, causes JLNS. Our findings may be informative to the genetic pathogenesis of RWS and JLNS caused by KCNQ1 variants.


Asunto(s)
Codón sin Sentido , Exones , Síndrome de Jervell-Lange Nielsen/genética , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Femenino , Homocigoto , Humanos , Persona de Mediana Edad , Embarazo , Complicaciones del Embarazo/genética , Isoformas de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...